## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 6 ) ## ----echo = TRUE-------------------------------------------------------------- library("brglm2") data("alligators", package = "brglm2") ## ----echo = TRUE-------------------------------------------------------------- agresti_contrasts <- list(lake = contr.treatment(levels(alligators$lake), base = 4), size = contr.treatment(levels(alligators$size), base = 2)) all_ml <- brmultinom(foodchoice ~ size + lake , weights = freq, data = alligators, contrasts = agresti_contrasts, ref = 1, type = "ML") all_ml_summary <- summary(all_ml) ## Estimated regression parameters round(all_ml_summary$coefficients, 2) ## Estimated standard errors round(all_ml_summary$standard.errors, 2) ## ----echo = TRUE-------------------------------------------------------------- all_mean <- update(all_ml, type = "AS_mean") summary(all_mean) ## ----echo = TRUE-------------------------------------------------------------- all_median <- update(all_ml, type = "AS_median") summary(all_median) ## ----echo = TRUE, error = TRUE------------------------------------------------ all_ml_sparse <- update(all_ml, weights = round(freq/3), slowit = 0.1) summary(all_ml_sparse) ## ----echo = TRUE-------------------------------------------------------------- library("detectseparation") se_ratios <- check_infinite_estimates(all_ml_sparse) plot(se_ratios) ## ----echo = TRUE-------------------------------------------------------------- all_mean_sparse <- update(all_ml_sparse, type = "AS_mean") summary(all_mean_sparse) all_median_sparse <- update(all_ml_sparse, type = "AS_median") summary(all_median_sparse)