--- title: "Quickly Analyze Cancer Data with Data from UCSCXenaShiny" author: - name: Shixiang Wang affiliation: Central South University email: wangshx@csu.edu.cn date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Quickly Analyze Cancer Data with Data from UCSCXenaShiny} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "100%" ) ``` ```{r setup} library(bregr) library(dplyr) if (!requireNamespace("UCSCXenaShiny")) { install.packages("UCSCXenaShiny") } library(UCSCXenaShiny) ``` [**UCSCXenaShiny**](https://openbiox.github.io/UCSCXenaShiny/reference/) offers extensive builtin cancer datasets and data query functions to facilitate analysis and visualization. ## Obtain Data ```{r} data <- inner_join( tcga_clinical_fine, tcga_surv |> select(sample, OS, OS.time), by = c("Sample" = "sample") ) |> filter(!is.na(Stage_ajcc), !is.na(Gender)) head(data) ``` ## Execute bregr Pipeline Assessing the influence of AJCC Stage on overall survival can be done by analyzing data grouped by gender. ```{r} m <- br_pipeline( data = data, y = c("OS.time", "OS"), x = "Stage_ajcc", x2 = "Age", group_by = "Gender", method = "coxph" ) m ``` ```{r} br_get_results(m, tidy = TRUE) |> knitr::kable() ``` ## Generate Visualizations For example: ```{r fig.dpi=150, fig.width=6, fig.height=6} m <- br_rename_models(m, c("Female", "Male", "All")) br_show_forest_ggstats(m) ``` ## Explore Further Besides, using `tcga_surv_get()`, you can efficiently retrieve values for a specified gene (`c("mRNA", "miRNA", "methylation", "transcript", "protein", "mutation", "cnv")`) from the TCGA cohort. For more comprehensive guidance on querying various omics data from different databases/cohorts, refer to the [Molecular Data Query](https://lishensuo.github.io/UCSCXenaShiny_Book/data-query.html) section of the **UCSCXenaShiny** tutorial book.