--- title: "Introduction to boxTest" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to boxTest} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8 --- ------------------------- ```{r setup, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(boxTest) ``` # Introduction The **boxTest** package provides a simple workflow for comparing two groups using boxplots and statistical tests. It automatically: 1. Checks normality via Shapiro–Wilk test. 2. Applies the appropriate test: * **Independent 2-sample t-test** (if both groups are normal) * **Mann–Whitney U test** (if at least one group is non-normal) 3. Returns a publication-ready boxplot with optional jittered points. # Example We will use the built-in `mtcars` dataset to compare **mpg** between automatic (`am = 0`) and manual (`am = 1`) cars. ```{r example} # Load package library(boxTest) # Compare mpg between automatic and manual cars res <- compare_two_groups(mtcars, "mpg", "am") # Display the boxplot res$plot ``` # Normality Check The function also returns the Shapiro-Wilk normality test results for each group. ```{r normality} res$normality ``` # Test Summary Finally, the package provides a summary of the statistical test applied, including test statistic, degrees of freedom, and p-value. ```{r test-summary} res$test_summary ``` # Conclusion The **boxTest** package streamlines exploratory analysis and significance testing for two-group comparisons in R. It is particularly useful for beginners and provides a clear, publication-ready output.