## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(cache = FALSE, autodep = TRUE, collapse = TRUE, comment = "", highlight = FALSE # , fig.height = 3, fig.width = 3, ) ## ----------------------------------------------------------------------------- library(bnclassify) data(car) ## ----------------------------------------------------------------------------- nb <- nb('class', car) nb <- lp(nb, car, smooth = 0.01) ## ----------------------------------------------------------------------------- narcs(nb) ## ----------------------------------------------------------------------------- cv(nb, car, k = 10) ## ----------------------------------------------------------------------------- p <- predict(nb, car) head(p) ## ----echo = FALSE, results='hide', include=FALSE------------------------------ suppressWarnings(RNGversion("3.5.0")) set.seed(1) ## ----learn_ode---------------------------------------------------------------- ode_cl_aic <- tan_cl('class', car, score = 'aic') suppressWarnings(RNGversion("3.5.0")) set.seed(3) fssj <- fssj('class', car, k = 5, epsilon = 0) ## ----------------------------------------------------------------------------- ode_cl_aic <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic')) ## ----------------------------------------------------------------------------- ode_cl_aic ## ----------------------------------------------------------------------------- ms <- modelstring(ode_cl_aic) strwrap(ms, width = 60) ## ----------------------------------------------------------------------------- is_ode(ode_cl_aic) params(nb)$buying length(features(fssj)) ## ----------------------------------------------------------------------------- manb <- lp(nb, car, smooth = 0.01, manb_prior = 0.5) round(manb_arc_posterior(manb)) ## ----------------------------------------------------------------------------- params(manb)$doors all.equal(params(manb)$buying, params(nb)$buying) ## ----------------------------------------------------------------------------- logLik(ode_cl_aic, car) AIC(ode_cl_aic, car) ## ----------------------------------------------------------------------------- suppressWarnings(RNGversion("3.5.0")) set.seed(0) cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE) ## ----------------------------------------------------------------------------- pp <- predict(nb, car, prob = TRUE) # Show class posterior distributions for the first six instances of car head(pp)