## ----setup, include=TRUE------------------------------------------------------ ## ----eval=FALSE--------------------------------------------------------------- # # Computer and Information Systems Managers in Orlando, FL and San Jose, CA. # # Orlando: "OEUM003674000000011302103" # # San Jose: "OEUM004194000000011302108" # library(blscrapeR) # df <- bls_api(c("OEUM003674000000011302103", "OEUM004194000000011302108")) # head(df) ## ----eval=FALSE--------------------------------------------------------------- # library(blscrapeR) # df <- bls_api("OEUN000000000000000000004") # head(df) ## ----eval=FALSE--------------------------------------------------------------- # library(blscrapeR) # library(tidyverse) # df <- bls_api(c("CMU1030000000000D", "CMU1030000000000P")) # # # Spread series ids and rename columns to human readable format. # df.sp <- spread(df, seriesID, value) %>% # rename("hourly_cost"=CMU1030000000000D, "pct_of_wages"=CMU1030000000000P) %>% # # Percentages are represented as floating integers. Fix this to avoid confusion. # mutate(pct_of_wages = pct_of_wages*0.01) # # head(df.sp) ## ----eval=FALSE--------------------------------------------------------------- # library(blscrapeR) # library(tidyverse) # df <- bls_api(c("NBU10500000000000033030", "NBU11500000000000028178")) # # # Spread series ids and rename columns to human readable format. # df.sp <- spread(df, seriesID, value) %>% # rename("pct_paid_vacation"=NBU10500000000000033030, "pct_health_ins"=NBU11500000000000028178) %>% # # Value data are in whole numbers but represent percentages. Fix this to avoid confusion. # mutate(pct_of_wages = pct_of_wages*0.01, pct_health_ins = pct_health_ins*0.01) # # head(df.sp)