## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(comment = "#>", message=FALSE, tidy.opts=list(width.cutoff=60), tidy=TRUE, collapse = TRUE, warning = FALSE) ## ----------------------------------------------------------------------------- #install.packages("bipd") #or devtools::install_github("MikeJSeo/bipd") library(bipd) set.seed(1) simulated_dataset <- generate_sysmiss_ipdma_example(Nstudies = 10, Ncov = 5, sys_missing_prob = 0.3, magnitude = 0.2, heterogeneity = 0.1) head(simulated_dataset) ## ----------------------------------------------------------------------------- missP <- findMissingPattern(simulated_dataset, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), studyname = "study", treatmentname = "treat", outcomename = "y") ## ----------------------------------------------------------------------------- missP$missingpercent missP$sys_covariates missP$spor_covariates ## ----------------------------------------------------------------------------- simulated_dataset2 <- simulated_dataset randomindex <- sample(c(TRUE,FALSE), dim(simulated_dataset)[1], replace = TRUE, prob = c(0.1, 0.9)) simulated_dataset2[randomindex,"x1"] <- NA missP2 <- findMissingPattern(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), studyname = "study", treatmentname = "treat", outcomename = "y") missP2$missingpercent missP2$sys_covariates missP2$spor_covariates ## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE----- library(mice) #for datasets with only one study level library(miceadds) #for multilevel datasets without systematically missing predictors library(micemd) #for multilevel datasets with systematically missing predictors. ## ----------------------------------------------------------------------------- imputation <- ipdma.impute(simulated_dataset, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), interaction = TRUE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5) ## ----------------------------------------------------------------------------- imputation$meth imputation$pred ## ----------------------------------------------------------------------------- ls(imputation) ## ----------------------------------------------------------------------------- length(imputation$imp.list) ## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE----- imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "2l.glm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5) ## ----------------------------------------------------------------------------- imputation2$meth imputation2$pred ## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE----- meth <- imputation2$meth meth["x1"] <- "2l.norm" imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "2l.glm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5, meth = meth) ## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE----- imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "pmm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5) ## ----------------------------------------------------------------------------- imputation2$meth