## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(biosensors.usc) ## ----file1-------------------------------------------------------------------- file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc") ## ----file2-------------------------------------------------------------------- file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc") ## ----data1-------------------------------------------------------------------- data1 = load_data(file1, file2) class(data1) names(data1) ## ----------------------------------------------------------------------------- another_data_example = generate_data(n=100, Qp=100, Xp=5) head(another_data_example$variables) plot(another_data_example$quantiles, main="Simulated data") ## ----wass, fig.width=6, fig.height=4------------------------------------------ regm = regmod_regression(data1, "BMI") ## ----xpred, fig.width=6, fig.height=4----------------------------------------- xpred = as.matrix(25) pred = regmod_prediction(regm, xpred) ## ----ridg, fig.width=6, fig.height=4------------------------------------------ ridg = ridge_regression(data1, "BMI") ## ----nada, fig.width=6, fig.height=4------------------------------------------ nada = nadayara_regression(data1, "BMI") ## ---- fig.width=6, fig.height=4----------------------------------------------- npre = nadayara_prediction(nada, t(colMeans(data1$quantiles$data))) ## ----data2-------------------------------------------------------------------- file3 = system.file("extdata", "data_2.csv", package = "biosensors.usc") file4 = system.file("extdata", "variables_2.csv", package = "biosensors.usc") data2 = load_data(file3, file4) ## ----htest-------------------------------------------------------------------- htest = hypothesis_testing(data1, data2) ## ----------------------------------------------------------------------------- print(htest$energy_pvalue) print(htest$anova_pvalue) ## ----clus, fig.width=6, fig.height=8------------------------------------------ clus = clustering(data1, clusters=3) ## ----------------------------------------------------------------------------- assignments = clustering_prediction(clus, data1$quantiles$data)