## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE, fig.width = 6, fig.height = 6) # Packages -------------------------------------------------------------------- suppressPackageStartupMessages({ suppressWarnings({ library("bioregion") library("dplyr") library("ggplot2") library("sf") }) }) options(tinytex.verbose = TRUE) ## ----------------------------------------------------------------------------- data("vegedf") data("vegemat") # Calculation of (dis)similarity matrices vegedissim <- dissimilarity(vegemat, metric = c("Simpson")) vegesim <- dissimilarity_to_similarity(vegedissim) ## ----------------------------------------------------------------------------- # Non hierarchical bioregionalization vege_nhclu <- nhclu_kmeans(vegedissim, n_clust = 3, index = "Simpson", seed = 1) vege_nhclu$cluster_info # Hierarchical bioregionalization set.seed(1) vege_hclu <- hclu_hierarclust(dissimilarity = vegedissim, index = "Simpson", method = "average", n_clust = 3, optimal_tree_method = "best", verbose = FALSE) vege_hclu$cluster_info # Network bioregionalization set.seed(1) vege_netclu <- netclu_walktrap(vegesim, index = "Simpson") vege_netclu$cluster_info # Bipartite network bioregionalization install_binaries(verbose = FALSE) vege_netclubip <- netclu_infomap(vegedf, seed = 1, bipartite = TRUE) vege_netclubip$cluster_info ## ----------------------------------------------------------------------------- all_metrics <- site_species_metrics( bioregionalization = vege_netclubip, bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", "IndVal", "NIndVal", "Rho", "CoreTerms", "Richness", "Rich_Endemics", "Prop_Endemics", "MeanSim", "SdSim"), # You can also simply write "all" bioregionalization_metrics = c("P", "Silhouette"), data_type = "both", cluster_on = "both", comat = vegemat, similarity = vegesim, index = "Simpson", verbose = FALSE) ## ----------------------------------------------------------------------------- all_metrics ## ----------------------------------------------------------------------------- summary(all_metrics) ## ----------------------------------------------------------------------------- str(all_metrics) ## ----------------------------------------------------------------------------- nsb <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", "IndVal", "NIndVal", "Rho", "CoreTerms"), bioregionalization_metrics = NULL, data_type = "occurrence", cluster_on = "site", comat = vegemat, similarity = NULL, index = NULL, # Name of similarity column verbose = FALSE) nsb ## ----------------------------------------------------------------------------- wsb <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", "IndVal", "NIndVal", "Rho", "CoreTerms"), bioregionalization_metrics = NULL, data_type = "abundance", cluster_on = "site", comat = vegemat, similarity = NULL, # Name of similarity column index = NULL, verbose = FALSE) wsb ## ----------------------------------------------------------------------------- sim_metrics <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = c("Richness", "Rich_Endemics", "Prop_Endemics"), bioregionalization_metrics = NULL, data_type = "occurrence", cluster_on = "site", comat = vegemat, similarity = vegesim, index = "Simpson", # Name of similarity column verbose = FALSE) sim_metrics ## ----------------------------------------------------------------------------- sim_metrics <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = c("MeanSim", "SdSim"), bioregionalization_metrics = NULL, data_type = "occurrence", cluster_on = "site", comat = vegemat, similarity = vegesim, index = "Simpson", # Name of similarity column verbose = FALSE) sim_metrics ## ----------------------------------------------------------------------------- gc <- site_species_metrics(bioregionalization = vege_netclubip, bioregion_metrics = c("Specificity", "NSpecificity", "Fidelity", "IndVal", "NIndVal", "Rho", "CoreTerms"), bioregionalization_metrics = "P", data_type = "both", cluster_on = "species", comat = vegemat, similarity = NULL, index = NULL, verbose = FALSE) gc ## ----------------------------------------------------------------------------- sil_metrics <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = NULL, bioregionalization_metrics = "Silhouette", data_type = "occurrence", cluster_on = "site", comat = vegemat, similarity = vegesim, index = "Simpson", # Name of similarity column verbose = FALSE) sil_metrics ## ----------------------------------------------------------------------------- p_occ_site <- site_species_metrics(bioregionalization = vege_netclubip, bioregion_metrics = NULL, bioregionalization_metrics = "P", data_type = "occurrence", cluster_on = "species", comat = vegemat, similarity = NULL, index = "Simpson", # Name of similarity column verbose = FALSE) p_occ_site ## ----------------------------------------------------------------------------- p_ab_site <- site_species_metrics(bioregionalization = vege_netclubip, bioregion_metrics = NULL, bioregionalization_metrics = "P", data_type = "abundance", cluster_on = "species", comat = vegemat, similarity = NULL, index = "Simpson", # Name of similarity column verbose = FALSE) p_ab_site ## ----------------------------------------------------------------------------- p_occ_sp <- site_species_metrics(bioregionalization = vege_netclubip, bioregion_metrics = NULL, bioregionalization_metrics = "P", data_type = "occurrence", cluster_on = "site", comat = vegemat, similarity = NULL, index = "Simpson", # Name of similarity column verbose = FALSE) p_occ_sp ## ----------------------------------------------------------------------------- p_ab_sp <- site_species_metrics(bioregionalization = vege_netclubip, bioregion_metrics = NULL, bioregionalization_metrics = "P", data_type = "abundance", cluster_on = "site", comat = vegemat, similarity = NULL, index = "Simpson", # Name of similarity column verbose = FALSE) p_ab_sp ## ----------------------------------------------------------------------------- ps <- site_species_metrics(bioregionalization = vege_nhclu, bioregion_metrics = NULL, bioregionalization_metrics = "P", data_type = "both", cluster_on = "site", comat = vegemat, similarity = NULL, index = NULL, verbose = FALSE) ps ## ----------------------------------------------------------------------------- bioregion_summary <- bioregion_metrics(bioregionalization = vege_nhclu, comat = vegemat) bioregion_summary ## ----------------------------------------------------------------------------- # Spatial coherence vegedissim <- dissimilarity(vegemat) hclu <- nhclu_kmeans(dissimilarity = vegedissim, n_clust = 4) vegemap <- map_bioregions(hclu, vegesf, write_clusters = TRUE, plot = FALSE) bioregion_metrics(bioregionalization = hclu, comat = vegemat, map = vegemap, col_bioregion = 2) ## ----------------------------------------------------------------------------- ggplot(vegemap) + geom_sf(aes(fill = as.factor(K_4))) + scale_fill_viridis_d("Bioregion") + theme_bw() + theme(legend.position = "bottom")