## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, fig.height = 5, fig.width = 7) library(bestNormalize) ## ----------------------------------------------------------------------------- ## Define user-function cuberoot_x <- function(x, a = NULL, standardize = TRUE, ...) { stopifnot(is.numeric(x)) min_a <- max(0, -(min(x, na.rm = TRUE))) if(!length(a)) a <- min_a if(a < min_a) { warning("Setting a < max(0, -(min(x))) can lead to transformation issues", "Standardize set to FALSE") standardize <- FALSE } x.t <- (x + a)^(1/3) mu <- mean(x.t, na.rm = TRUE) sigma <- sd(x.t, na.rm = TRUE) if (standardize) x.t <- (x.t - mu) / sigma # Get in-sample normality statistic results ptest <- nortest::pearson.test(x.t) val <- list( x.t = x.t, x = x, mean = mu, sd = sigma, a = a, n = length(x.t) - sum(is.na(x)), norm_stat = unname(ptest$statistic / ptest$df), standardize = standardize ) # Assign class class(val) <- c('cuberoot_x', class(val)) val } ## ----------------------------------------------------------------------------- predict.cuberoot_x <- function(object, newdata = NULL, inverse = FALSE, ...) { # If no data supplied and not inverse if (is.null(newdata) & !inverse) newdata <- object$x # If no data supplied and inverse if (is.null(newdata) & inverse) newdata <- object$x.t # Actually performing transformations # Perform inverse transformation as estimated if (inverse) { # Reverse-standardize if (object$standardize) newdata <- newdata * object$sd + object$mean # Reverse-cube-root (cube) newdata <- newdata^3 - object$a # Otherwise, perform transformation as estimated } else if (!inverse) { # Take cube root newdata <- (newdata + object$a)^(1/3) # Standardize to mean 0, sd 1 if (object$standardize) newdata <- (newdata - object$mean) / object$sd } # Return transformed data unname(newdata) } ## ----------------------------------------------------------------------------- print.cuberoot_x <- function(x, ...) { cat(ifelse(x$standardize, "Standardized", "Non-Standardized"), 'cuberoot(x + a) Transformation with', x$n, 'nonmissing obs.:\n', 'Relevant statistics:\n', '- a =', x$a, '\n', '- mean (before standardization) =', x$mean, '\n', '- sd (before standardization) =', x$sd, '\n') } ## ----------------------------------------------------------------------------- # Store custom functions into list custom_transform <- list( cuberoot_x = cuberoot_x, predict.cuberoot_x = predict.cuberoot_x, print.cuberoot_x = print.cuberoot_x ) set.seed(123129) x <- rgamma(100, 1, 1) (b <- bestNormalize(x = x, new_transforms = custom_transform, standardize = FALSE)) ## ----------------------------------------------------------------------------- all.equal(x^(1/3), b$chosen_transform$x.t) all.equal(x^(1/3), predict(b)) ## ----------------------------------------------------------------------------- bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$stat) ## ----------------------------------------------------------------------------- (dont_do_this <- bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$p)) ## ----------------------------------------------------------------------------- best_transform <- names(which.max(dont_do_this$norm_stats)) (do_this <- dont_do_this$other_transforms[[best_transform]]) ## ----------------------------------------------------------------------------- (do_this <- bestNormalize(x, norm_stat_fn = function(x) 1-nortest::lillie.test(x)$p))