## ----------------------------------------------------------------------------- library(bdlp) source(system.file("dangl2014.R", package = "bdlp")) ## ----------------------------------------------------------------------------- dangl2014(info=T) ## ----------------------------------------------------------------------------- library(MASS) meta <- dangl2014(setnr=1) meta ## ----------------------------------------------------------------------------- library(MASS) data <- generateData(meta) head(data) ## ----------------------------------------------------------------------------- meta <- dangl2014(1, seedinfo = list(120, "4.0.3", c("Mersenne-Twister", "Inversion"))) data <- generateData(meta) head(data) ## ---- fig.width=5, fig.height=5, fig.align='center'--------------------------- meta <- dangl2014(setnr=1) plotMetadata(meta) ## ----eval=FALSE, message=FALSE, warning=FALSE, include=TRUE, results="hide"---- # generateDatabase(name = system.file("dangl2014.R", package = "bdlp"), setnr = 1, draws = 50) ## ----------------------------------------------------------------------------- dangl2014 <- function(setnr = NULL, seedinfo = list(100, paste(R.version$major, R.version$minor, sep = "."), RNGkind()), info = FALSE, metaseedinfo = list(100, paste(R.version$major, R.version$minor, sep = "."), RNGkind())){ inf <- data.frame(n = c(50, 40), k = c(2,2), shape = c("spherical", "spherical")) ref <- "Dangl R. (2014) A small simulation study. Journal of Simple Datasets 10(2), 1-10" if(info == T) return(list(summary = inf, reference = ref)) if(is.null(metaseedinfo)) metaseedinfo <- seedinfo set.seed(metaseedinfo[[1]]) RNGversion(metaseedinfo[[2]]) RNGkind(metaseedinfo[[3]][1], metaseedinfo[[3]][2]) if(setnr == 1) { return(new("metadata.metric", clusters = list(c1 = list(n = 25, mu = c(4,5), Sigma=diag(1,2)), c2 = list(n = 25, mu = c(-1,-2), Sigma=diag(1,2))), genfunc = MASS::mvrnorm, seedinfo = seedinfo)) } if(setnr == 2){ return(new("metadata.metric", clusters = list(c1 = list(n = 20, mu = c(0,2), Sigma=diag(1,2)), c2 = list(n = 20, mu = c(-1,-2), Sigma=diag(1,2))), genfunc = MASS::mvrnorm, seedinfo = seedinfo)) } } ## ----eval=FALSE, message=FALSE, warning=FALSE, include=TRUE, results="hide"---- # require(MASS) # m1 <- initializeObject(type = "metric", genfunc = mvrnorm, k = 2) # m1@clusters$cl1 <- list(n = 25, mu = c(4,5), Sigma = diag(1,2)) # m1@clusters$cl2 <- list(n = 25, mu = c(-1,-2), Sigma = diag(1,2)) # # m2 <- initializeObject(type = "metric", genfunc = mvrnorm, k = 2) # m2@clusters$cl1 <- list(n = 44, mu = c(1,2), Sigma = diag(1,2)) # m2@clusters$cl2 <- list(n = 66, mu = c(-5,-6), Sigma = diag(1,2)) # # saveSetup(name="miller2012.R", author="John Miller", mail="john.miller@edu.com", # inst="Example University", cit="Simple Data, pp. 23-24", objects=list(m1, m2), # table=data.frame(n = c(50, 110), k = c(2,2), shape = c("spherical", "spherical"))) # # generateDatabase(name = "miller2012.R", setnr = 1, draws = 20) ## ----------------------------------------------------------------------------- Fun1 <- function(x){x^2} Fun2 <- function(x){sqrt(x)} Fun3 <- function(x){sin(2*pi*x)} functions <- list(Fun1 = Fun1, Fun2 = Fun2, Fun3 = Fun3) interval <- c(0,1) gridPoints <- 30 sd <- 0.2 n <- 100 minTimePoints <- 5 maxTimePoints <- 10 regular <- FALSE grid <- sampleGrid(n, minTimePoints, maxTimePoints, gridPoints, regular) meta <- new("metadata.functional", functions = functions, gridMatrix = grid, sd=sd, sd_distribution="rnorm", interval = interval, resolution=gridPoints, total_n = n, minTimePoints = minTimePoints, maxTimePoints = maxTimePoints, regular=F) data <- generateData(meta) head(data)