## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(bayesrules) ## ----comment =""-------------------------------------------------------------- # Data generation example_data <- data.frame(x = sample(1:100, 20)) example_data$y <- example_data$x*3 + rnorm(20, 0, 5) # rstanreg model example_model <- rstanarm::stan_glm(y ~ x, data = example_data, refresh = FALSE) # Prediction Summary prediction_summary(example_model, example_data, prob_inner = 0.6, prob_outer = 0.80, stable = TRUE) ## ----comment =""-------------------------------------------------------------- prediction_summary_cv(model = example_model, data = example_data, k = 2, prob_inner = 0.6, prob_outer = 0.80) ## ----comment =""-------------------------------------------------------------- # Data generation x <- rnorm(20) z <- 3*x prob <- 1/(1+exp(-z)) y <- rbinom(20, 1, prob) example_data <- data.frame(x = x, y = y) # rstanreg model example_model <- rstanarm::stan_glm(y ~ x, data = example_data, family = binomial, refresh = FALSE) # Prediction Summary classification_summary(model = example_model, data = example_data, cutoff = 0.5) ## ----comment =""-------------------------------------------------------------- classification_summary_cv(model = example_model, data = example_data, k = 2, cutoff = 0.5) ## ----comment=""--------------------------------------------------------------- # Data data(penguins_bayes, package = "bayesrules") # naiveBayes model example_model <- e1071::naiveBayes(species ~ bill_length_mm, data = penguins_bayes) # Naive Classification Summary naive_classification_summary(model = example_model, data = penguins_bayes, y = "species") ## ----comment=""--------------------------------------------------------------- naive_classification_summary_cv(model = example_model, data = penguins_bayes, y = "species", k = 2)