## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = TRUE ) ## ----setup-------------------------------------------------------------------- library(bayesplay) ## ----------------------------------------------------------------------------- norm_mod <- likelihood(family = "normal", mean = 5.5, sd = 32.35) norm_mod ## ----------------------------------------------------------------------------- plot(norm_mod) ## ----------------------------------------------------------------------------- t_mod <- likelihood(family = "student_t", mean = 10, sd = 5, df = 15) t_mod ## ----------------------------------------------------------------------------- plot(t_mod) ## ----------------------------------------------------------------------------- point_prior <- prior(family = "point", point = 0) plot(point_prior) ## ----------------------------------------------------------------------------- uniform_prior <- prior(family = "uniform", min = 10, max = 20) plot(uniform_prior) ## ----------------------------------------------------------------------------- normal_prior <- prior(family = "normal", mean = 10, sd = 10) plot(normal_prior) ## ----------------------------------------------------------------------------- half_normal_prior <- prior(family = "normal", mean = 10, sd = 10, range = c(10, Inf)) plot(half_normal_prior) ## ----------------------------------------------------------------------------- library(ggplot2) ## ----------------------------------------------------------------------------- plot(t_mod) + labs(x = "data", y = "likelihood", title = "t likelihood") ## ----------------------------------------------------------------------------- plot(uniform_prior) + xlim(-100,100) ## ----------------------------------------------------------------------------- plot(norm_mod) + labs(title = "normal likelihood") + theme_linedraw() ## ----------------------------------------------------------------------------- data_model <- likelihood("noncentral_d", d = 0, n = 20) d_model1 <- extract_predictions(data_model * prior("cauchy", 0, .707)) d_model2 <- extract_predictions(data_model * prior("point", 0)) visual_compare(d_model1, d_model2) ## ----------------------------------------------------------------------------- plot(extract_posterior(data_model * prior("cauchy", 0, .707)), add_prior = TRUE) ## ----------------------------------------------------------------------------- visual_compare(d_model1, d_model2) + scale_colour_manual(values = c("green", "blue"), labels = c("d_model1", "d_model2"), name = "Model") ## ----------------------------------------------------------------------------- plot(extract_posterior(data_model * prior("cauchy", 0, .707)), add_prior = TRUE) + scale_colour_manual(values = c("green", "blue"), labels = c("posterior", "prior"), name = NULL) ## ----------------------------------------------------------------------------- visual_compare(d_model1, d_model2) + scale_linetype_manual(values = c(1, 2), labels = c("d_model1", "d_model2"), name = "Model") ## ----------------------------------------------------------------------------- plot(extract_posterior(data_model * prior("cauchy", 0, .707)), add_prior = TRUE) + scale_linetype_manual(values = c(1, 2), labels = c("posterior", "prior"), name = NULL) ## ----------------------------------------------------------------------------- visual_compare(d_model1, d_model2) + scale_linetype_manual(values = c(1, 2), labels = c("d_model1", "d_model2"), name = NULL) + scale_colour_manual(values = c("grey", "black"), labels = c("d_model1", "d_model2"), name = NULL) ## ----------------------------------------------------------------------------- plot(extract_posterior(data_model * prior("cauchy", 0, .707)), add_prior = TRUE) + scale_linetype_manual(values = c(1, 2), labels = c("posterior", "prior"), name = NULL) + scale_colour_manual(values = c("black", "black"), labels = c("posterior", "prior"), name = NULL)