## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(collapse=TRUE) ## ----------------------------------------------------------------------------- library("bayesmeta") data("Rubin1981") print(Rubin1981) ## ----------------------------------------------------------------------------- data("CrinsEtAl2014") print(CrinsEtAl2014[,c(1,10,12,13,15)]) ## ----message=FALSE------------------------------------------------------------ library("metafor") crins.es <- escalc(measure="OR", ai=exp.AR.events, n1i=exp.total, ci=cont.AR.events, n2i=cont.total, slab=publication, data=CrinsEtAl2014) print(crins.es[,c("publication", "yi", "vi")]) ## ----------------------------------------------------------------------------- data("Rubin1981") taupriordensity <- function(t){dhalfcauchy(t, scale=25)} schools.example.1 <- bayesmeta(y = Rubin1981[,"effect"], sigma = Rubin1981[,"stderr"], label = Rubin1981[,"school"], mu.prior.mean=0, mu.prior.sd=50, tau.prior=taupriordensity) ## ----------------------------------------------------------------------------- print(schools.example.1) ## ----fig.width=6.0, fig.height=3.5-------------------------------------------- forestplot(schools.example.1) ## ----eval=FALSE--------------------------------------------------------------- # plot(schools.example.1, prior=TRUE) ## ----fig.width=6.0, fig.height=7.0, echo=FALSE-------------------------------- par(mfrow=c(2,2)) plot(schools.example.1, prior=TRUE) par(mfrow=c(1,1)) ## ----------------------------------------------------------------------------- schools.example.2 <- bayesmeta(y = Rubin1981[,"effect"], sigma = Rubin1981[,"stderr"], label = Rubin1981[,"school"]) ## ----------------------------------------------------------------------------- print(schools.example.1$summary) print(schools.example.2$summary) ## ----fig.width=5.0, fig.height=5.0-------------------------------------------- # evaluate posterior densities: x <- seq(from=-10, to=30, length=100) plot(x, schools.example.1$dposterior(mu=x), type="l", col="red", xlab=expression("effect "*mu), ylab="posterior density") lines(x, schools.example.2$dposterior(mu=x), type="l", col="blue", lty="dashed") abline(h=0, col="darkgrey") ## ----------------------------------------------------------------------------- # posterior probability of mu > 0: 1 - schools.example.1$pposterior(mu=0) ## ----------------------------------------------------------------------------- # 95% posterior upper limit on the effect mu: schools.example.1$qposterior(mu.p=0.95) ## ----------------------------------------------------------------------------- # 95% posterior upper limit on the heterogeneity tau: schools.example.1$qposterior(tau.p=0.95) ## ----------------------------------------------------------------------------- # 95% credible intervals for the effect mu: schools.example.1$post.interval(mu.level=0.95) ## ----------------------------------------------------------------------------- # 95% credible intervals for the effect mu: schools.example.1$post.interval(tau.level=0.95) schools.example.1$post.interval(tau.level=0.95, method="central") schools.example.1$qposterior(tau.p=c(0.025, 0.975)) ## ----------------------------------------------------------------------------- schools.example.1$theta[,c("A","G","H")]