## ---- fig.show='hold'--------------------------------------------------------- library(bayesAB) A_binom <- rbinom(250, 1, .25) B_binom <- rbinom(250, 1, .2) ## ---- fig.width=7.3----------------------------------------------------------- plotBeta(100, 200) # looks a bit off plotBeta(65, 200) # perfect ## ---- fig.show='hold'--------------------------------------------------------- AB1 <- bayesTest(A_binom, B_binom, priors = c('alpha' = 65, 'beta' = 200), n_samples = 1e5, distribution = 'bernoulli') ## ---- fig.width=7.3----------------------------------------------------------- print(AB1) summary(AB1) plot(AB1) ## ---- fig.width=7.3----------------------------------------------------------- A_pois <- rpois(250, 6.5) B_pois <- rpois(250, 5.5) plotGamma(30, 5) # 5-6 seem likely enough ## ---- fig.width=7.3----------------------------------------------------------- AB2 <- bayesTest(A_pois, B_pois, priors = c('shape' = 30, 'rate' = 5), n_samples = 1e5, distribution = 'poisson') print(AB2) summary(AB2) plot(AB2) ## ----------------------------------------------------------------------------- AB3 <- combine(AB1, AB2, f = `*`, params = c('Probability', 'Lambda'), newName = 'Expectation') # also equivalent with %>% if you like piping library(magrittr) AB3 <- AB1 %>% combine(AB2, f = `*`, params = c('Probability', 'Lambda'), newName = 'Expectation') ## ---- fig.width=7.3----------------------------------------------------------- print(AB3) summary(AB3) plot(AB3)