## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----------------------------------------------------------------------------- library(aweSOM) full.data <- iris ## Select variables train.data <- full.data[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")] ### Scale training data train.data <- scale(train.data) ### RNG Seed (for reproducibility) set.seed(1465) ### Initialization (PCA grid) init <- somInit(train.data, 4, 4) ## Train SOM iris.som <- kohonen::som(train.data, grid = kohonen::somgrid(4, 4, "hexagonal"), rlen = 100, alpha = c(0.05, 0.01), radius = c(2.65,-2.65), dist.fcts = "sumofsquares", init = init) ## ----------------------------------------------------------------------------- somQuality(iris.som, train.data) ## ----------------------------------------------------------------------------- superclust_pam <- cluster::pam(iris.som$codes[[1]], 3) superclasses_pam <- superclust_pam$clustering superclust_hclust <- hclust(dist(iris.som$codes[[1]]), "complete") superclasses_hclust <- cutree(superclust_hclust, 3) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Cloud", data = full.data, variables = c("Species", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Hitmap", superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "UMatrix", superclass = superclasses_pam) ## ---- fig.width=8, fig.height=7----------------------------------------------- aweSOMsmoothdist(iris.som) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Circular", data = full.data, variables = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Barplot", data = full.data, variables = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam, values = "prototypes") ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Boxplot", data = full.data, variables = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam, scales = "same") ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Line", data = full.data, variables = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam, values = "median") ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Radar", data = full.data, variables = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Color", data = full.data, variables = "Sepal.Length", superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "CatBarplot", data = full.data, variables = "Species", superclass = superclasses_pam) ## ----------------------------------------------------------------------------- aweSOMplot(som = iris.som, type = "Pie", data = full.data, variables = "Species", superclass = superclasses_pam) ## ---- fig.width=7, fig.height=4----------------------------------------------- aweSOMscreeplot(som = iris.som, method = "pam", nclass = 3) ## ---- fig.width=7, fig.height=6----------------------------------------------- aweSOMsilhouette(iris.som, superclasses_pam) ## ---- fig.width=7, fig.height=4----------------------------------------------- aweSOMdendrogram(clust = superclust_hclust, nclass = 3)