## ---- eval = FALSE------------------------------------------------------------ # data(psid, package = "bife") # head(psid) ## ---- eval = FALSE------------------------------------------------------------ # ## ID LFP KID1 KID2 KID3 INCH AGE TIME # ## 1: 1 1 1 1 1 58807.81 26 1 # ## 2: 1 1 1 0 2 41741.87 27 2 # ## 3: 1 1 0 1 2 51320.73 28 3 # ## 4: 1 1 0 1 2 48958.58 29 4 # ## 5: 1 1 0 1 2 53634.62 30 5 # ## 6: 1 1 0 0 3 50983.13 31 6 ## ---- eval = FALSE------------------------------------------------------------ # library(alpaca) # stat <- feglm( # LFP ~ KID1 + KID2 + KID3 + log(INCH) | ID + TIME, # data = psid, # family = binomial("probit") # ) # summary(stat) ## ---- eval = FALSE------------------------------------------------------------ # ## binomial - probit link # ## # ## LFP ~ KID1 + KID2 + KID3 + log(INCH) | ID + TIME # ## # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## KID1 -0.676898 0.056301 -12.023 < 2e-16 *** # ## KID2 -0.344370 0.049897 -6.902 5.14e-12 *** # ## KID3 -0.007045 0.035344 -0.199 0.842 # ## log(INCH) -0.234128 0.054403 -4.304 1.68e-05 *** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # ## # ## residual deviance= 6069.65, # ## null deviance= 8152.05, # ## n= 5976, l= [664, 9] # ## # ## ( 7173 observation(s) deleted due to perfect classification ) # ## # ## Number of Fisher Scoring Iterations: 7 ## ---- eval = FALSE------------------------------------------------------------ # apes.stat <- getAPEs(stat) # summary(apes.stat) ## ---- eval = FALSE------------------------------------------------------------ # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## KID1 -0.0880155 0.0077937 -11.293 < 2e-16 *** # ## KID2 -0.0447776 0.0068196 -6.566 5.17e-11 *** # ## KID3 -0.0009161 0.0050062 -0.183 0.855 # ## log(INCH) -0.0304432 0.0077090 -3.949 7.85e-05 *** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 ## ---- eval = FALSE------------------------------------------------------------ # stat.bc <- biasCorr(stat) # summary(stat.bc) ## ---- eval = FALSE------------------------------------------------------------ # ## binomial - probit link # ## # ## LFP ~ KID1 + KID2 + KID3 + log(INCH) | ID + TIME # ## # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## KID1 -0.596285 0.055528 -10.738 < 2e-16 *** # ## KID2 -0.303346 0.049517 -6.126 9e-10 *** # ## KID3 -0.006117 0.035211 -0.174 0.862081 # ## log(INCH) -0.207061 0.053928 -3.840 0.000123 *** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # ## # ## residual deviance= 6069.65, # ## null deviance= 8152.05, # ## n= 5976, l= [664, 9] # ## # ## ( 7173 observation(s) deleted due to perfect classification ) # ## # ## Number of Fisher Scoring Iterations: 7 ## ---- eval = FALSE------------------------------------------------------------ # apes.stat.bc <- getAPEs(stat.bc) # summary(apes.stat.bc) ## ---- eval = FALSE------------------------------------------------------------ # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## KID1 -0.096501 0.007620 -12.664 < 2e-16 *** # ## KID2 -0.049093 0.006766 -7.255 4.01e-13 *** # ## KID3 -0.000990 0.004987 -0.198 0.843 # ## log(INCH) -0.033510 0.007588 -4.416 1.00e-05 *** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 ## ---- eval = FALSE------------------------------------------------------------ # library(data.table) # setDT(psid) # psid[, LLFP := shift(LFP), by = ID] ## ---- eval = FALSE------------------------------------------------------------ # dyn <- feglm( # LFP ~ LLFP + KID1 + KID2 + KID3 + log(INCH) | ID + TIME, # data = psid, # family = binomial("probit") # ) # dyn.bc <- biasCorr(dyn, L = 1L) # summary(dyn.bc) ## ---- eval = FALSE------------------------------------------------------------ # ## binomial - probit link # ## # ## LFP ~ LLFP + KID1 + KID2 + KID3 + log(INCH) | ID + TIME # ## # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## LLFP 1.01607 0.04759 21.350 < 2e-16 *** # ## KID1 -0.45387 0.06811 -6.664 2.67e-11 *** # ## KID2 -0.15736 0.06116 -2.573 0.01008 * # ## KID3 0.01561 0.04406 0.354 0.72315 # ## log(INCH) -0.18833 0.06231 -3.023 0.00251 ** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # ## # ## residual deviance= 4777.58, # ## null deviance= 6549.14, # ## n= 4792, l= [599, 8] # ## # ## ( 1461 observation(s) deleted due to missingness ) # ## ( 6896 observation(s) deleted due to perfect classification ) # ## # ## Number of Fisher Scoring Iterations: 6 ## ---- eval = FALSE------------------------------------------------------------ # apes.dyn.bc <- getAPEs(dyn.bc) # summary(apes.dyn.bc) ## ---- eval = FALSE------------------------------------------------------------ # ## Estimates: # ## Estimate Std. error z value Pr(> |z|) # ## LLFP 0.186310 0.006686 27.864 < 2e-16 *** # ## KID1 -0.072321 0.007832 -9.235 < 2e-16 *** # ## KID2 -0.025074 0.007003 -3.580 0.000343 *** # ## KID3 0.002487 0.005008 0.497 0.619447 # ## log(INCH) -0.030009 0.007002 -4.286 1.82e-05 *** # ## --- # ## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1