## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(adaptDiag) ss <- binom_sample_size(alpha = 0.05, power = 0.9, p0 = 0.7, p1 = 0.824) ss ## ----p_thresh----------------------------------------------------------------- p_thresh <- seq(0.95, 0.995, 0.005) ## ----simulate, eval=FALSE----------------------------------------------------- # tab <- NULL # # for (i in 1:length(p_thresh)) { # fit_p <- multi_trial( # sens_true = 0.7, # spec_true = 0.963, # prev_true = 0.20, # endpoint = "sens", # sens_pg = 0.7, # spec_pg = NULL, # prior_sens = c(0.1, 0.1), # prior_spec = c(0.1, 0.1), # prior_prev = c(0.1, 0.1), # succ_sens = p_thresh[i], # n_at_looks = seq(100, 600, 50), # n_mc = 10000, # n_trials = 5000, # ncores = 8L) # # out <- summarise_trials(fit_p, min_pos = 35, fut = 0.05) # tab <- rbind(tab, out) # } ## ----load_results, echo=FALSE------------------------------------------------- load("vignette-sims.rda") ## ----results, fig.height=5, fig.width=5--------------------------------------- plot(p_thresh, tab$power, xlab = "Probability success threshold", ylab = "Type I error", main = "", type = "b", bty = "n") grid() abline(h = 0.05, col = 2) abline(h = 0.05 + 1.96 * sqrt(0.05 * 0.95 / 5000), col = 2, lty = 2) abline(h = 0.05 - 1.96 * sqrt(0.05 * 0.95 / 5000), col = 2, lty = 2) ## ----simulate_power, eval=FALSE----------------------------------------------- # power <- multi_trial( # sens_true = 0.824, # spec_true = 0.963, # prev_true = 0.20, # endpoint = "sens", # sens_pg = 0.7, # spec_pg = NULL, # prior_sens = c(0.1, 0.1), # prior_spec = c(0.1, 0.1), # prior_prev = c(0.1, 0.1), # succ_sens = 0.985, # n_at_looks = seq(100, 600, 50), # n_mc = 10000, # n_trials = 5000, # ncores = 8L) ## ----------------------------------------------------------------------------- summarise_trials(power, min_pos = 35, fut = 0.05)