## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----logo, echo=FALSE, out.width="25%"---------------------------------------- knitr::include_graphics("./actuaRE.png") ## ----hMLF, fig.align = 'center', fig.cap = "Figure 1: Hierarchical structure of a hypothetical example", fig.topcaption = TRUE, echo = FALSE, out.width="100%"---- knitr::include_graphics("./HierarchicalStructureAdj.png") ## ----------------------------------------------------------------------------- capture.output(library(actuaRE), file = tempfile()) # suppress startup message data("hachemeisterLong") fitHC = hierCredibility(ratio, weight, cohort, state, hachemeisterLong) fitHC ## ---- eval = FALSE------------------------------------------------------------ # fitHCMult = hierCredibility(ratio, weight, cohort, state, hachemeisterLong, type = "multiplicative") # fitHCMult ## ----------------------------------------------------------------------------- summary(fitHC) ## ----------------------------------------------------------------------------- fitted(fitHC) ## ----------------------------------------------------------------------------- ranef(fitHC) ## ---- fig.show = 'hold'------------------------------------------------------- ggPlots = plotRE(fitHC, plot = FALSE) ggPlots[[1]] ggPlots[[2]] ## ----------------------------------------------------------------------------- newDt = hachemeisterLong[sample(1:nrow(hachemeisterLong), 5, F), ] predict(fitHC, newDt) ## ----------------------------------------------------------------------------- data("dataCar") fit = hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w) summary(fit) ## ----------------------------------------------------------------------------- fixef(fit) ranef(fit) ## ----------------------------------------------------------------------------- head(fitted(fit)) predict(fit, newdata = dataCar[1:2, ], type = "response") ggPlots = plotRE(fit, plot = FALSE) ## ---- eval = FALSE------------------------------------------------------------ # fitGLMM = tweedieGLMM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, verbose = TRUE) ## ----------------------------------------------------------------------------- fitnoBP = hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, balanceProperty = F) yHatnoBP = fitted(fitnoBP) w = weights(fitnoBP, "prior") y = fitnoBP$y fitBP = hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, balanceProperty = T) yHatBP = fitted(fitBP) sum(w * y) / sum(w * yHatnoBP) sum(w * y) / sum(w * yHatBP) ## ----------------------------------------------------------------------------- BalanceProperty(fitnoBP) BalanceProperty(fitBP)