## ----include = FALSE---------------------------------------------------------- Sys.setenv(OMP_THREAD_LIMIT = 2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(accessibility) data_dir <- system.file("extdata", package = "accessibility") travel_matrix <- readRDS(file.path(data_dir, "travel_matrix.rds")) land_use_data <- readRDS(file.path(data_dir, "land_use_data.rds")) access <- cumulative_cutoff( travel_matrix, land_use_data, opportunity = "jobs", travel_cost = "travel_time", cutoff = 30 ) head(access) ## ----------------------------------------------------------------------------- palma <- palma_ratio( access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population", income = "income_per_capita" ) palma ## ----------------------------------------------------------------------------- gini <- gini_index( access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population" ) gini ## ----------------------------------------------------------------------------- ci <- concentration_index( access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population", income = "income_per_capita", type = "corrected" ) ci ## ----------------------------------------------------------------------------- theil_without_groups <- theil_t( access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population" ) theil_without_groups # some cells are classified as in the decile NA because their income per capita # is NaN, as they don't have any population. we filter these cells from our # accessibility data, otherwise the output would include NA values (note that # subsetting the data like this doesn't affect the assumption that groups are # completely exhaustive, because cells with NA income decile don't have any # population) na_decile_ids <- land_use_data[is.na(land_use_data$income_decile), ]$id no_na_access <- access[! access$id %in% na_decile_ids, ] sociodem_data <- land_use_data[! land_use_data$id %in% na_decile_ids, ] theil_with_groups <- theil_t( no_na_access, sociodemographic_data = sociodem_data, opportunity = "jobs", population = "population", socioeconomic_groups = "income_decile" ) theil_with_groups ## ----------------------------------------------------------------------------- poverty <- fgt_poverty( access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population", poverty_line = 95368 ) poverty