## ---- eval=F------------------------------------------------------------------ # fitMPT <- traitMPT( # eqnfile = "2htm.txt", # data = "data_ind.csv", # restrictions = list("Dn=Do", "g=.5"), # covData = "data_covariates.csv", # corProbit = TRUE, # predStructure = list("Do ; IQ"), # IQ as predictor for Do=Dn # ... # ) ## ---- eval = FALSE------------------------------------------------------------ # fitMPT <- traitMPT( # eqnfile = "2htm.txt", # data = "data_ind.csv", # covData = "data_covariates.csv", # predStructure = list( # "Do ; factor1", # "Dn ; factor2" # ), # discrete factors # predType = c("c", "c", "f", "r") # ) ## ---- eval=F------------------------------------------------------------------ # getGroupMeans(fitMPT) ## ---- eval=FALSE-------------------------------------------------------------- # transformedParameters <- list( # "deltaG = G_1-G_2", # difference of parameters # "G1_larger = G_1>G_2" # ) # Bayesian p-value / testing order constraints ## ---- eval=FALSE-------------------------------------------------------------- # # beta-MPT # genBeta <- genBetaMPT( # N = 100, # number of participants # numItems = c(Target = 250, Lure = 250), # number of responses per tree # eqnfile = "2htm.eqn", # path to MPT file # mean = c(Do = .7, Dn = .7, g = .5), # true group-level parameters # sd = c(Do = .1, Dn = .1, g = .05) # ) # SD of individual parameters # # # latent-trait MPT # genTrait <- genTraitMPT( # N = 100, # number of participants # numItems = c(Target = 250, Lure = 250), # number of responses per tree # eqnfile = "2htm.eqn", # path to MPT file # mean = c(Do = .7, Dn = .7, g = .5), # true group-level parameters # sigma = c(Do = .25, Dn = .25, g = .05), # SD of latent (!) individual parameters # rho = diag(3) # ) # correlation matrix. here: no correlation