## ---- eval=F------------------------------------------------------------------ # readEQN( # file = "pathToFile.eqn", # relative or absolute path # restrictions = list("Dn=Do"), # equality constraints # paramOrder = TRUE # ) # show parameter order ## ---- eval=FALSE-------------------------------------------------------------- # restrictions <- list("Dn=Do", "g=0.5") ## ---- eval=FALSE-------------------------------------------------------------- # # load the package: # library(TreeBUGS) # # # fit the model: # fitHierarchicalMPT <- betaMPT( # eqnfile = "2htm.txt", # .eqn file # data = "data_ind.csv", # individual data # restrictions = list("Dn=Do"), # parameter restrictions (or path to file) # # ### optional MCMC input: # n.iter = 20000, # number of iterations # n.burnin = 5000, # number of burnin samples that are removed # n.thin = 5, # thinning rate of removing samples # n.chains = 3 # number of MCMC chains (run in parallel) # ) ## ---- eval=FALSE-------------------------------------------------------------- # # Default: Traceplot and density # plot(fitHierarchicalMPT, # fitted model # parameter = "mean" # which parameter to plot # ) # # further arguments are passed to ?plot.mcmc.list # # # Auto-correlation plots: # plot(fitHierarchicalMPT, parameter = "mean", type = "acf") # # # Gelman-Rubin plots: # plot(fitHierarchicalMPT, parameter = "mean", type = "gelman") ## ---- eval=FALSE-------------------------------------------------------------- # summary(fitHierarchicalMPT) ## ---- eval=FALSE-------------------------------------------------------------- # plotParam(fitHierarchicalMPT, # estimated parameters # includeIndividual = TRUE # whether to plot individual estimates # ) # plotDistribution(fitHierarchicalMPT) # estimated hierarchical parameter distribution # plotFit(fitHierarchicalMPT) # observed vs. predicted mean frequencies # plotFit(fitHierarchicalMPT, stat = "cov") # observed vs. predicted covariance # plotFreq(fitHierarchicalMPT) # individual and mean raw frequencies per tree # plotPriorPost(fitHierarchicalMPT) # comparison of prior/posterior (group level parameters) ## ---- eval=FALSE-------------------------------------------------------------- # # matrix for further use within R: # tt <- getParam(fitHierarchicalMPT, # parameter = "theta", # stat = "mean" # ) # tt # # # save complete summary of individual estimates to file: # getParam(fitHierarchicalMPT, # parameter = "theta", # stat = "summary", file = "parameter.csv" # )