Type: | Package |
Title: | Generalized Reporter Score-Based Enrichment Analysis for Omics Data |
Version: | 0.1.9 |
Description: | Inspired by the classic 'RSA', we developed the improved 'Generalized Reporter Score-based Analysis (GRSA)' method, implemented in the R package 'ReporterScore', along with comprehensive visualization methods and pathway databases. 'GRSA' is a threshold-free method that works well with all types of biomedical features, such as genes, chemical compounds, and microbial species. Importantly, the 'GRSA' supports multi-group and longitudinal experimental designs, because of the included multi-group-compatible statistical methods. |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Imports: | magrittr, dplyr, stats, ggplot2 (≥ 3.2.0), pcutils (≥ 0.2.5), utils, scales, ggnewscale, ggrepel, reshape2, stringr, foreach |
Suggests: | knitr, rmarkdown, plyr, e1071, factoextra, snow, doSNOW, pheatmap, readr, R.utils, KEGGREST, clusterProfiler, enrichplot, pathview, GSA, vegan, MetaNet, igraph, ggraph, PADOG, safe, rSEA, GSVA |
Depends: | R (≥ 4.2.0) |
VignetteBuilder: | knitr |
BugReports: | https://github.com/Asa12138/ReporterScore/issues |
URL: | https://github.com/Asa12138/ReporterScore |
NeedsCompilation: | no |
Packaged: | 2024-11-28 13:55:48 UTC; asa |
Author: | Chen Peng |
Maintainer: | Chen Peng <pengchen2001@zju.edu.cn> |
Repository: | CRAN |
Date/Publication: | 2024-11-28 14:10:06 UTC |
ReporterScore: Generalized Reporter Score-Based Enrichment Analysis for Omics Data
Description
Inspired by the classic 'RSA', we developed the improved 'Generalized Reporter Score-based Analysis (GRSA)' method, implemented in the R package 'ReporterScore', along with comprehensive visualization methods and pathway databases. 'GRSA' is a threshold-free method that works well with all types of biomedical features, such as genes, chemical compounds, and microbial species. Importantly, the 'GRSA' supports multi-group and longitudinal experimental designs, because of the included multi-group-compatible statistical methods.
Author(s)
Maintainer: Chen Peng pengchen2001@zju.edu.cn (ORCID)
See Also
Useful links:
Report bugs at https://github.com/Asa12138/ReporterScore/issues
Pipe operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
Arguments
lhs |
A value or the magrittr placeholder. |
rhs |
A function call using the magrittr semantics. |
Value
The result of calling 'rhs(lhs)'.
Examples
seq_len(5) %>% sum()
The CPDlist used for enrichment.
Description
an list contains two data.frame named pathway and module.
Format
four columns in each data.frame.
- id
"map0010" or "M00001"
- K_num
contians how many Compounds in this pathway or module
- KOs
Compounds name
- Description
the description of this pathway or module
See Also
Other data:
Compound_htable
,
GOlist
,
KO_htable
,
KOlist
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
Compound htable from 'KEGG'
Description
Compound htable from 'KEGG'
See Also
Other data:
CPDlist
,
GOlist
,
KO_htable
,
KOlist
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
The GOlist used for enrichment.
Description
an list contains three data.frame named BP, CC, MF.
Format
four columns in each data.frame.
- id
"map0010" or "M00001"
- K_num
contians how many Genes in this GO term
- KOs
Genes name
- Description
the description of this GO term
See Also
Other data:
CPDlist
,
Compound_htable
,
KO_htable
,
KOlist
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
The KOs abundance table and group table.
Description
The KOs abundance table and group table.
The KOs abundance table and group table.
See Also
Other test_data:
genedf
,
reporter_score_res
Perform enrichment analysis
Description
This function performs KO enrichment analysis using the 'clusterProfiler' package.
Usage
KO_enrich(
ko_stat,
padj_threshold = 0.05,
logFC_threshold = NULL,
add_mini = NULL,
p.adjust.method = "BH",
type = c("pathway", "module")[1],
feature = "ko",
modulelist = NULL,
verbose = TRUE
)
as.enrich_res(gsea_res)
Arguments
ko_stat |
ko_stat dataframe from |
padj_threshold |
p.adjust threshold to determine whether a feature significant or not. p.adjust < padj_threshold, default: 0.05 |
logFC_threshold |
logFC threshold to determine whether a feature significant or not. abs(logFC)>logFC_threshold, default: NULL |
add_mini |
add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance) |
p.adjust.method |
The method used for p-value adjustment (default: "BH"). |
type |
"pathway" or "module" for default KOlist_file. |
feature |
one of "ko", "gene", "compound" |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
verbose |
logical |
gsea_res |
gsea_res from KO_gsea |
Value
A data frame containing the enrichment results.
enrich_res object
See Also
Other common_enrich:
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Perform fisher's exact enrichment analysis
Description
Perform fisher's exact enrichment analysis
Usage
KO_fisher(
ko_stat,
padj_threshold = 0.05,
logFC_threshold = NULL,
add_mini = NULL,
p.adjust.method = "BH",
type = c("pathway", "module")[1],
feature = "ko",
modulelist = NULL,
verbose = TRUE
)
Arguments
ko_stat |
ko_stat dataframe from |
padj_threshold |
p.adjust threshold to determine whether a feature significant or not. p.adjust < padj_threshold, default: 0.05 |
logFC_threshold |
logFC threshold to determine whether a feature significant or not. abs(logFC)>logFC_threshold, default: NULL |
add_mini |
add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance) |
p.adjust.method |
The method used for p-value adjustment (default: "BH"). |
type |
"pathway" or "module" for default KOlist_file. |
feature |
one of "ko", "gene", "compound" |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
verbose |
logical |
Value
data.frame
See Also
Other common_enrich:
KO_enrich()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Examples
## use `fisher.test` from the `stats` package.
data("reporter_score_res")
fisher_res <- KO_fisher(reporter_score_res)
Perform gene set analysis
Description
Perform gene set analysis
Usage
KO_gsa(
reporter_res,
method = "Two class unpaired",
p.adjust.method = "BH",
verbose = TRUE,
perm = 1000,
...
)
Arguments
reporter_res |
reporter_res |
method |
Problem type: "quantitative" for a continuous parameter; "Two class unpaired" ; "Survival" for censored survival outcome; "Multiclass" : more than 2 groups, coded 1,2,3...; "Two class paired" for paired outcomes, coded -1,1 (first pair), -2,2 (second pair), etc |
p.adjust.method |
"BH" |
verbose |
TRUE |
perm |
1000 |
... |
additional parameters to |
Value
enrich_res object
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Examples
## use `GSA` from the `GSA` package.
if (requireNamespace("GSA")) {
data("reporter_score_res")
gsa_res <- KO_gsa(reporter_score_res, p.adjust.method = "none", perm = 200)
plot(gsa_res)
}
Perform gene set enrichment analysis
Description
Perform gene set enrichment analysis
Usage
KO_gsea(
ko_stat,
weight = "logFC",
add_mini = NULL,
p.adjust.method = "BH",
type = c("pathway", "module")[1],
feature = "ko",
modulelist = NULL,
verbose = TRUE
)
Arguments
ko_stat |
ko_stat dataframe from |
weight |
the metric used for ranking, default: logFC |
add_mini |
add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance) |
p.adjust.method |
The method used for p-value adjustment (default: "BH"). |
type |
"pathway" or "module" for default KOlist_file. |
feature |
one of "ko", "gene", "compound" |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
verbose |
logical |
Value
DOSE object
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Examples
message("The following example require some time to run:")
## use `GSEA` from the `clusterProfiler` package.
if (requireNamespace("clusterProfiler")) {
data("reporter_score_res")
gsea_res <- KO_gsea(reporter_score_res, p.adjust.method = "none")
enrichplot::gseaplot(gsea_res, geneSetID = data.frame(gsea_res)$ID[1])
gsea_res_df <- as.enrich_res(gsea_res)
plot(gsea_res_df)
}
Perform Gene Set Variation Analysis
Description
Perform Gene Set Variation Analysis
Usage
KO_gsva(
reporter_res,
verbose = TRUE,
method = "wilcox.test",
p.adjust.method = "BH",
...
)
Arguments
reporter_res |
reporter_res |
verbose |
verbose |
method |
see |
p.adjust.method |
p.adjust.method |
... |
additional parameters to |
Value
enrich_res
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_padog()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Examples
## use `gsva` from the `GSVA` package.
if (requireNamespace("GSVA")) {
data("reporter_score_res")
gsva_res <- KO_gsva(reporter_score_res, p.adjust.method = "none")
}
KO htable from 'KEGG'
Description
KO htable from 'KEGG'
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KOlist
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
Perform Pathway Analysis with Down-weighting of Overlapping Genes (PADOG)
Description
Perform Pathway Analysis with Down-weighting of Overlapping Genes (PADOG)
Usage
KO_padog(
reporter_res,
verbose = TRUE,
perm = 1000,
p.adjust.method = "BH",
...
)
Arguments
reporter_res |
The input reporter result. |
verbose |
If TRUE, print verbose messages. Default is TRUE. |
perm |
The number of permutations. Default is 1000. |
p.adjust.method |
Method for p-value adjustment. Default is "BH". |
... |
Additional parameters to be passed to |
Value
A data frame containing PADOG results for KO enrichment.
A data frame with columns "ID," "Description," "K_num," "Exist_K_num," "p.value," and "p.adjust."
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_safe()
,
KO_sea()
,
plot_enrich_res()
Examples
## use `PADOG` from the `PADOG` package.
if (requireNamespace("PADOG")) {
data("reporter_score_res")
padog_res <- KO_padog(reporter_score_res,
verbose = TRUE,
perm = 200, p.adjust.method = "none"
)
}
Perform Significance Analysis of Function and Expression
Description
Perform Significance Analysis of Function and Expression
Usage
KO_safe(
reporter_res,
verbose = TRUE,
perm = 1000,
C.matrix = NULL,
p.adjust.method = "BH",
...
)
Arguments
reporter_res |
The input reporter result. |
verbose |
If TRUE, print verbose messages. Default is TRUE. |
perm |
The number of permutations. Default is 1000. |
C.matrix |
The contrast matrix. Default is NULL, and it will be generated from the module list. |
p.adjust.method |
Method for p-value adjustment. Default is "BH". |
... |
Additional parameters to be passed to |
Value
A data frame containing SAFE results for KO enrichment.
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_sea()
,
plot_enrich_res()
Examples
## use `safe` from the `safe` package.
if (requireNamespace("safe")) {
data("reporter_score_res")
safe_res <- KO_safe(reporter_score_res,
verbose = TRUE,
perm = 200, p.adjust.method = "none"
)
}
Perform Simultaneous Enrichment Analysis
Description
Perform Simultaneous Enrichment Analysis
Usage
KO_sea(reporter_res, verbose = TRUE, ...)
Arguments
reporter_res |
The input reporter result. |
verbose |
If TRUE, print verbose messages. Default is TRUE. |
... |
Additional parameters to be passed to |
Value
enrich_res
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
plot_enrich_res()
Examples
## use `SEA` from the `rSEA` package.
if (requireNamespace("rSEA")) {
data("reporter_score_res")
sea_res <- KO_sea(reporter_score_res, verbose = TRUE)
}
The KOlist used for enrichment.
Description
an list contains two data.frame named pathway and module.
Format
four columns in each data.frame.
- id
"map0010" or "M00001"
- K_num
contians how many KOs in this pathway or module
- KOs
KOs name
- Description
the description of this pathway or module
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KO_htable
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
Module htable from 'KEGG'
Description
Module htable from 'KEGG'
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KO_htable
,
KOlist
,
Pathway_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
Pathway htable from 'KEGG'
Description
Pathway htable from 'KEGG'
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KO_htable
,
KOlist
,
Module_htable
,
hsa_kegg_pathway
,
mmu_kegg_pathway
Reporter score analysis after C-means clustering
Description
Reporter score analysis after C-means clustering
Extract one cluster from rs_by_cm object
Plot c_means result
Usage
RSA_by_cm(
kodf,
group,
metadata = NULL,
k_num = NULL,
filter_var = 0.7,
verbose = TRUE,
method = "pearson",
...
)
extract_cluster(rsa_cm_res, cluster = 1)
plot_c_means(
rsa_cm_res,
filter_membership,
mode = 1,
show.clust.cent = TRUE,
show_num = TRUE,
...
)
Arguments
kodf |
KO_abundance table, rowname is ko id (e.g. K00001),colnames is samples. |
group |
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order. |
metadata |
sample information data.frame contains group |
k_num |
if NULL, perform the cm_test_k, else an integer |
filter_var |
see c_means |
verbose |
verbose |
method |
method from |
... |
additional |
rsa_cm_res |
a cm_res object |
cluster |
integer |
filter_membership |
filter membership 0~1. |
mode |
1~2 |
show.clust.cent |
show cluster center? |
show_num |
show number of each cluster? |
Value
rs_by_cm
reporter_score object
ggplot
See Also
Other C_means:
cm_test_k()
Examples
message("The following example require some time to run:")
if (requireNamespace("e1071") && requireNamespace("factoextra")) {
data("KO_abundance_test")
rsa_cm_res <- RSA_by_cm(KO_abundance, "Group2", metadata,
k_num = 3,
filter_var = 0.7, method = "pearson", perm = 199
)
extract_cluster(rsa_cm_res, cluster = 1)
}
Test the proper clusters k for c_means
Description
Test the proper clusters k for c_means
C-means cluster
Usage
cm_test_k(otu_group, filter_var, fast = TRUE)
c_means(otu_group, k_num, filter_var)
Arguments
otu_group |
standardize data |
filter_var |
filter the highest var |
fast |
whether do the gap_stat? |
k_num |
cluster number |
Value
ggplot
ggplot
See Also
Other C_means:
RSA_by_cm()
Examples
if (requireNamespace("e1071") && requireNamespace("factoextra")) {
data(otutab, package = "pcutils")
pcutils::hebing(otutab, metadata$Group) -> otu_group
cm_test_k(otu_group, filter_var = 0.7)
cm_res <- c_means(otu_group, k_num = 3, filter_var = 0.7)
plot(cm_res, 0.8)
}
Combine the results of 'step by step GRSA'
Description
Combine the results of 'step by step GRSA'
Usage
combine_rs_res(kodf, group, metadata, ko_stat, reporter_s, modulelist = NULL)
Arguments
kodf |
KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples. |
group |
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order. |
metadata |
sample information data.frame contains group |
ko_stat |
result of |
reporter_s |
result of |
modulelist |
NULL or customized modulelist dataframe, must contain 'id','K_num','KOs','Description' columns. Take the 'KOlist' as example, use |
Value
reporter_score object
See Also
Other GRSA:
get_reporter_score()
,
ko.test()
,
pvalue2zs()
,
reporter_score()
Examples
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")
reporter_s1 <- get_reporter_score(ko_stat, perm = 499)
reporter_res <- combine_rs_res(KO_abundance, "Group", metadata, ko_stat, reporter_s1)
Build a custom modulelist
Description
Build a custom modulelist
Transform a modulelist to a list
Usage
custom_modulelist(pathway2ko, pathway2desc = NULL, verbose = TRUE)
transform_modulelist(mymodulelist, mode = 1)
Arguments
pathway2ko |
user input annotation of Pathway to KO mapping, a data.frame of 2 column with pathway and ko. |
pathway2desc |
user input of Pathway TO Description mapping, a data.frame of 2 column with pathway and description. |
verbose |
verbose |
mymodulelist |
mymodulelist |
mode |
1~2 |
Value
a custom modulelist
modulelist
See Also
Other modulelist:
custom_modulelist_from_org()
,
get_features()
Other modulelist:
custom_modulelist_from_org()
,
get_features()
Examples
mydat <- data.frame(pathway = paste0("PATHWAY", rep(seq_len(2), each = 5)), ko = paste0("K", 1:10))
mymodulelist <- custom_modulelist(mydat)
print(mymodulelist)
transform_modulelist(mymodulelist)
Custom modulelist from a specific organism
Description
Custom modulelist from a specific organism
Usage
custom_modulelist_from_org(
org = "hsa",
feature = "ko",
gene = "symbol",
verbose = TRUE
)
Arguments
org |
kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, default, "hsa" |
feature |
one of "ko", "gene", "compound" |
gene |
one of "symbol","id" |
verbose |
logical |
Value
modulelist
See Also
Other modulelist:
custom_modulelist()
,
get_features()
Examples
hsa_pathway <- custom_modulelist_from_org(org = "hsa", feature = "gene")
Export report score result tables
Description
Export report score result tables
Usage
export_report_table(reporter_res, dir_name, overwrite = FALSE)
Arguments
reporter_res |
a reporter_score object or rs_by_cm object |
dir_name |
the directory to save the report tables |
overwrite |
overwrite the existed files or not, default is FALSE. |
Value
No return value
Transfer gene symbol table to KO table
Description
You can use 'clusterProfiler::bitr()' to transfer your table from other gene_id to gene_symbol.
Usage
gene2ko(genedf, org = "hsa")
Arguments
genedf |
,rowname is gene symbol (e.g. PFKM), colnames is samples |
org |
kegg organism, listed in 'https://www.genome.jp/kegg/catalog/org_list.html', default, 'hsa' |
Value
kodf
Examples
data("genedf")
KOdf <- gene2ko(genedf, org = "hsa")
human gene table
Description
human gene table
See Also
Other test_data:
KO_abundance
,
reporter_score_res
get features in a modulelist
Description
get features in a modulelist
Usage
get_features(map_id = "map00010", ko_stat = NULL, modulelist = NULL)
Arguments
map_id |
map_id in modulelist |
ko_stat |
NULL or ko_stat result from |
modulelist |
NULL or customized modulelist dataframe, must contain 'id','K_num','KOs','Description' columns. Take the 'KOlist' as example, use |
Value
KOids, or data.frame with these KOids.
See Also
Other modulelist:
custom_modulelist_from_org()
,
custom_modulelist()
Examples
get_features(map_id = "map00010")
Calculate reporter score
Description
Calculate reporter score
Usage
get_reporter_score(
ko_stat,
type = c("pathway", "module")[1],
feature = "ko",
threads = 1,
modulelist = NULL,
perm = 4999,
verbose = TRUE,
p.adjust.method2 = "BH",
min_exist_KO = 3,
max_exist_KO = 600
)
Arguments
ko_stat |
ko_stat result from |
type |
'pathway' or 'module' for default KOlist for microbiome, 'CC', 'MF', 'BP', 'ALL' for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org_list.html' such as 'hsa' (if your kodf is come from a specific organism, you should specify type here). |
feature |
one of 'ko', 'gene', 'compound' |
threads |
default 1 |
modulelist |
NULL or customized modulelist dataframe, must contain 'id','K_num','KOs','Description' columns. Take the 'KOlist' as example, use |
perm |
permutation number, default: 4999. |
verbose |
logical |
p.adjust.method2 |
p.adjust.method for the correction of ReporterScore, see |
min_exist_KO |
min exist KO number in a pathway (default, 3, when a pathway contains KOs less than 3, there will be no RS) |
max_exist_KO |
max exist KO number in a pathway (default, 600, when a pathway contains KOs more than 600, there will be no RS) |
Value
reporter_res data.frame
See Also
Other GRSA:
combine_rs_res()
,
ko.test()
,
pvalue2zs()
,
reporter_score()
Examples
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")
reporter_s1 <- get_reporter_score(ko_stat, perm = 499)
pathway information for "hsa"
Description
pathway information for "hsa"
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KO_htable
,
KOlist
,
Module_htable
,
Pathway_htable
,
mmu_kegg_pathway
Differential analysis or Correlation analysis for KO-abundance table
Description
Differential analysis or Correlation analysis for KO-abundance table
Usage
ko.test(
kodf,
group,
metadata = NULL,
method = "wilcox.test",
pattern = NULL,
p.adjust.method1 = "none",
threads = 1,
verbose = TRUE
)
Arguments
kodf |
KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples. |
group |
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order. |
metadata |
sample information data.frame contains group |
method |
the type of test. Default is 'wilcox.test'. Allowed values include:
|
pattern |
a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the correlation analysis with specific pattern to calculate p-value. |
p.adjust.method1 |
p.adjust.method for 'ko.test', see |
threads |
default 1 |
verbose |
logical |
Value
ko_pvalue data.frame
See Also
Other GRSA:
combine_rs_res()
,
get_reporter_score()
,
pvalue2zs()
,
reporter_score()
Examples
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
Load the CARDinfo (from CARD database)
Description
Load the CARDinfo (from CARD database)
Usage
load_CARDinfo(verbose = TRUE)
Arguments
verbose |
logical |
Value
CARDinfo
Load the GOlist (from 'GO' database)
Description
Load the GOlist (from 'GO' database)
Load the GOinfo (from GO)
Usage
load_GOlist(verbose = TRUE)
load_GOinfo(verbose = TRUE)
Arguments
verbose |
logical |
Value
GOlist
GOinfo
Load the specific table (from 'KEGG')
Description
Load the specific table (from 'KEGG')
Load the KOlist (from 'KEGG')
Load the CPDlist (from 'KEGG')
Load the KO description (from 'KEGG')
Load the KO_htable (from 'KEGG')
Load the Pathway_htable (from 'KEGG')
Load the Module_htable (from 'KEGG')
Load the Compound_htable (from 'KEGG')
Load the pathway information for an organism (from 'KEGG')
Usage
load_htable(type, verbose = TRUE)
load_KOlist(verbose = TRUE)
load_CPDlist(verbose = TRUE)
load_KO_desc(verbose = TRUE)
load_KO_htable(verbose = TRUE)
load_Pathway_htable(verbose = TRUE)
load_Module_htable(verbose = TRUE)
load_Compound_htable(verbose = TRUE)
load_org_pathway(org = "hsa", verbose = TRUE)
Arguments
type |
"ko", "module", "pathway", "compound" ... |
verbose |
logical |
org |
kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, default, "hsa" |
Value
KO_htable
KOlist
CPDlist
KO description
KO_htable
Pathway_htable
Module_htable
Compound_htable
KOlist
Examples
Pathway_htable <- load_htable("pathway")
head(Pathway_htable)
pathway information for "mmu"
Description
pathway information for "mmu"
See Also
Other data:
CPDlist
,
Compound_htable
,
GOlist
,
KO_htable
,
KOlist
,
Module_htable
,
Pathway_htable
,
hsa_kegg_pathway
Modify the pathway description before plotting
Description
Modify the pathway description before plotting
Usage
modify_description(
reporter_res,
pattern = " - Homo sapiens (human)",
replacement = ""
)
Arguments
reporter_res |
reporter_res |
pattern |
str, like " - Homo sapiens (human)" |
replacement |
str, like "" |
Value
reporter_res
Examples
data("reporter_score_res")
modify_description(reporter_score_res, pattern = " - Homo sapiens (human)")
Plot c_means result
Description
Plot c_means result
Usage
## S3 method for class 'cm_res'
plot(
x,
filter_membership,
mode = 1,
show.clust.cent = TRUE,
show_num = TRUE,
...
)
Arguments
x |
a cm_res object |
filter_membership |
filter membership |
mode |
1~2 |
show.clust.cent |
show cluster center? |
show_num |
show number of each cluster? |
... |
additional |
Value
ggplot
plot_KEGG_map
Description
plot_KEGG_map
Usage
plot_KEGG_map(
ko_stat,
map_id = "map00780",
modulelist = NULL,
type = "pathway",
feature = "ko",
color_var = "Z_score",
save_dir,
color = c("seagreen", "grey", "orange")
)
Arguments
ko_stat |
ko_stat result from |
map_id |
the pathway or module id |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
type |
"pathway" or "module" for default KOlist for microbiome, "CC", "MF", "BP", "ALL" for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org_list.html' such as "hsa" (if your kodf is come from a specific organism, you should specify type here). |
feature |
one of "ko", "gene", "compound" |
color_var |
use which variable to color |
save_dir |
where to save the png files |
color |
color |
Value
png files
References
https://zhuanlan.zhihu.com/p/357687076
Examples
message("The following example will download some files, run yourself:")
if (requireNamespace("pathview")) {
output_dir <- tempdir()
data("reporter_score_res")
plot_KEGG_map(reporter_score_res$ko_stat,
map_id = "map00780", type = "pathway",
feature = "ko", color_var = "Z_score", save_dir = output_dir
)
}
Plot enrich_res
Description
Plot enrich_res
Plot enrich_res
Usage
plot_enrich_res(
enrich_res,
mode = 1,
padj_threshold = 0.05,
show_ID = FALSE,
Pathway_description = TRUE,
facet_level = FALSE,
facet_anno = NULL,
str_width = 50,
facet_str_width = 15,
...
)
## S3 method for class 'enrich_res'
plot(
x,
mode = 1,
padj_threshold = 0.05,
show_ID = FALSE,
Pathway_description = TRUE,
facet_level = FALSE,
facet_anno = NULL,
str_width = 50,
facet_str_width = 15,
...
)
Arguments
enrich_res |
enrich_res object |
mode |
plot style: 1~2 |
padj_threshold |
p.adjust threshold |
show_ID |
show pathway id |
Pathway_description |
show KO description rather than KO id. |
facet_level |
facet plot if the type is "pathway" or "module" |
facet_anno |
annotation table for facet, two columns, first is level summary, second is pathway id. |
str_width |
default: 50 |
facet_str_width |
str width for facet label |
... |
add |
x |
enrich_res object |
Value
ggplot
ggplot
See Also
Other common_enrich:
KO_enrich()
,
KO_fisher()
,
KO_gsa()
,
KO_gsea()
,
KO_gsva()
,
KO_padog()
,
KO_safe()
,
KO_sea()
Plot features boxplot
Description
Plot features boxplot
Usage
plot_features_box(
kodf,
group = NULL,
metadata = NULL,
map_id = "map00780",
select_ko = NULL,
only_sig = FALSE,
box_param = NULL,
modulelist = NULL,
KO_description = FALSE,
str_width = 50
)
Arguments
kodf |
KO_abundance table, rowname is ko id (e.g. K00001),colnames is samples. or result of 'get_reporter_score' |
group |
The compare group (two category) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. |
metadata |
metadata |
map_id |
the pathway or module id |
select_ko |
select which ko |
only_sig |
only show the significant features |
box_param |
parameters pass to |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
KO_description |
show KO description rather than KO id. |
str_width |
str_width to wrap |
Value
ggplot
Examples
data("reporter_score_res")
plot_features_box(reporter_score_res,
select_ko = c("K00059", "K00208", "K00647", "K00652", "K00833", "K01012"),
box_param = list(p_value1 = FALSE, trend_line = TRUE)
)
plot_features_box(reporter_score_res,
select_ko = "K00059", KO_description = TRUE,
box_param = list(p_value1 = FALSE, trend_line = TRUE)
)
plot the Z-score of features distribution
Description
plot the Z-score of features distribution
Usage
plot_features_distribution(
reporter_res,
map_id,
text_size = 4,
text_position = NULL,
rug_length = 0.04
)
Arguments
reporter_res |
result of 'reporter_score' |
map_id |
the pathway or module id |
text_size |
text_size=4 |
text_position |
text_position, e.g. c(x=3,y=0.4) |
rug_length |
rug_length=0.04 |
Value
ggplot
Examples
data("reporter_score_res")
plot_features_distribution(reporter_score_res, map_id = c("map05230", "map03010"))
Plot features heatmap
Description
Plot features heatmap
Usage
plot_features_heatmap(
kodf,
group = NULL,
metadata = NULL,
map_id = "map00780",
select_ko = NULL,
only_sig = FALSE,
columns = NULL,
modulelist = NULL,
KO_description = FALSE,
str_width = 50,
heatmap_param = list()
)
Arguments
kodf |
KO_abundance table, rowname is ko id (e.g. K00001),colnames is samples. or result of 'get_reporter_score' |
group |
The compare group (two category) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. |
metadata |
metadata |
map_id |
the pathway or module id |
select_ko |
select which ko |
only_sig |
only show the significant KOs |
columns |
change columns |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
KO_description |
show KO description rather than KO id. |
str_width |
str_width to wrap |
heatmap_param |
parameters pass to |
Value
ggplot
Examples
if (requireNamespace("pheatmap")) {
data("reporter_score_res")
plot_features_heatmap(reporter_score_res, map_id = "map00780")
}
Plot features trend in one pathway or module
Description
Plot features trend in one pathway or module
Usage
plot_features_in_pathway(
ko_stat,
map_id = "map00780",
modulelist = NULL,
select_ko = NULL,
box_color = reporter_color,
show_number = TRUE,
scale = FALSE,
feature_type = "KOs",
line_color = c(Depleted = "seagreen", Enriched = "orange", None = "grey", Significant =
"red2")
)
Arguments
ko_stat |
ko_stat result from |
map_id |
the pathway or module id |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
select_ko |
select which ko |
box_color |
box and point color, default: c("#e31a1c","#1f78b4") |
show_number |
show the numbers. |
scale |
scale the data by row. |
feature_type |
show in the title ,default: KOs |
line_color |
line color, default: c("Depleted"="seagreen","Enriched"="orange","None"="grey") |
Value
ggplot
Examples
data("reporter_score_res")
plot_features_in_pathway(ko_stat = reporter_score_res, map_id = "map00860")
Plot features network
Description
Plot features network
Usage
plot_features_network(
ko_stat,
map_id = "map00780",
near_pathway = FALSE,
modulelist = NULL,
kos_color = c(Depleted = "seagreen", Enriched = "orange", None = "grey", Significant =
"red2", Pathway = "#80b1d3"),
pathway_label = TRUE,
kos_label = TRUE,
pathway_description = FALSE,
kos_description = FALSE,
str_width = 50,
mark_module = FALSE,
mark_color = NULL,
return_net = FALSE,
...
)
Arguments
ko_stat |
ko_stat result from |
map_id |
the pathway or module id |
near_pathway |
show the near_pathway if any features exist. |
modulelist |
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the 'KOlist' as example, use |
kos_color |
default, c("Depleted"="seagreen","Enriched"="orange","None"="grey","Significant"="red2") |
pathway_label |
show pathway_label? |
kos_label |
show kos_label? |
pathway_description |
show the pathway description? |
kos_description |
show the kos description? |
str_width |
str width |
mark_module |
mark the modules? |
mark_color |
mark colors, default, c("Depleted"="seagreen","Enriched"="orange","None"="grey","Significant"="red2") |
return_net |
return the network |
... |
additional arguments for |
Value
network plot
Examples
if (requireNamespace("MetaNet")) {
data("reporter_score_res")
plot_features_network(reporter_score_res, map_id = "map05230")
plot_features_network(reporter_score_res, map_id = "map00780", near_pathway = TRUE)
}
Plot htable levels
Description
Plot htable levels
Usage
plot_htable(type = "ko", select = NULL, htable = NULL)
Arguments
type |
"ko", "module", "pathway", "compound" |
select |
select ids |
htable |
custom a htable |
Value
ggplot
Examples
data("KO_abundance_test")
plot_htable(select = rownames(KO_abundance))
Plot the reporter_res
Description
Plot the reporter_res
Usage
plot_report(
reporter_res,
rs_threshold = 1.64,
mode = 1,
y_text_size = 13,
str_width = 100,
show_ID = FALSE,
Pathway_description = TRUE,
facet_level = FALSE,
facet_anno = NULL,
facet_str_width = 15,
plot_line = TRUE,
reorder = FALSE
)
Arguments
reporter_res |
result of 'get_reporter_score' or 'reporter_score' |
rs_threshold |
plot threshold vector, default:1.64 |
mode |
1~3 plot style. |
y_text_size |
y_text_size |
str_width |
str_width to wrap |
show_ID |
show pathway id |
Pathway_description |
show KO description rather than KO id. |
facet_level |
facet plot if the type is "pathway" or "module" |
facet_anno |
annotation table for facet, two columns, first is level summary, second is pathway id. |
facet_str_width |
str width for facet label |
plot_line |
plot line or not |
reorder |
reorder the order of the pathways |
Value
ggplot
Examples
data("reporter_score_res")
plot_report(reporter_score_res, rs_threshold = c(2.5, -2.5), y_text_size = 10, str_width = 40)
Plot the reporter_res as circle_packing
Description
Plot the reporter_res as circle_packing
Usage
plot_report_circle_packing(
reporter_res,
rs_threshold = 1.64,
mode = 2,
facet_anno = NULL,
show_ID = FALSE,
Pathway_description = TRUE,
str_width = 10,
show_level_name = "all",
show_tip_label = TRUE
)
Arguments
reporter_res |
result of 'get_reporter_score' |
rs_threshold |
plot threshold vector, default:1.64 |
mode |
1~2 plot style. |
facet_anno |
annotation table for facet, more two columns, last is pathway name, last second is pathway id. |
show_ID |
show pathway id |
Pathway_description |
show KO description rather than KO id. |
str_width |
str_width to wrap |
show_level_name |
show the level name? |
show_tip_label |
show the tip label? |
Value
ggplot
Examples
data("reporter_score_res")
if (requireNamespace("igraph") && requireNamespace("ggraph")) {
plot_report_circle_packing(reporter_score_res, rs_threshold = c(2, -2), str_width = 40)
}
Plot the significance of pathway
Description
Plot the significance of pathway
Usage
plot_significance(reporter_res, map_id)
Arguments
reporter_res |
result of 'get_reporter_score' or 'reporter_score' |
map_id |
the pathway or module id |
Value
ggplot
Examples
data("reporter_score_res")
plot_significance(reporter_score_res, map_id = c("map05230", "map03010"))
Print reporter_score
Description
Print reporter_score
Usage
## S3 method for class 'reporter_score'
print(x, ...)
Arguments
x |
reporter_score |
... |
add |
Value
No value
Print rs_by_cm
Description
Print rs_by_cm
Usage
## S3 method for class 'rs_by_cm'
print(x, ...)
Arguments
x |
rs_by_cm |
... |
add |
Value
No value
Transfer p-value of KOs to Z-score
Description
Transfer p-value of KOs to Z-score
Usage
pvalue2zs(
ko_pvalue,
mode = c("directed", "mixed")[1],
p.adjust.method1 = "none"
)
Arguments
ko_pvalue |
data.frame from |
mode |
'mixed' or 'directed' (default, only for two groups differential analysis or multi-groups correlation analysis.), see details in |
p.adjust.method1 |
p.adjust.method for 'ko.test', see |
Details
'mixed' mode is the original reporter-score method from Patil, K. R. et al. PNAS 2005. In this mode, the reporter score is undirected, and the larger the reporter score, the more significant the enrichment, but it cannot indicate the up-and-down regulation information of the pathway! (Liu, L. et al. iMeta 2023.)
steps:
1. Use the Wilcoxon rank sum test to obtain the P value of the significance of each KO difference between the two groups (ie P_{koi}
, i represents a certain KO);
2. Using an inverse normal distribution, convert the P value of each KO into a Z value (Z_{koi}
), the formula:
Z_{koi}=\theta ^{-1}(1-P_{koi})
3. 'Upgrade' KO to pathway: Z_{koi}
, calculate the Z value of the pathway, the formula:
Z_{pathway}=\frac{1}{\sqrt{k}}\sum Z_{koi}
where k means A total of k KOs were annotated to the corresponding pathway;
4. Evaluate the degree of significance: permutation (permutation) 1000 times, get the random distribution of Z_{pathway}
, the formula:
Z_{adjustedpathway}=(Z_{pathway}-\mu _k)/\sigma _k
\mu _k
is The mean of the random distribution, \sigma _k
is the standard deviation of the random distribution.
Instead, 'directed' mode is a derived version of 'mixed', referenced from https://github.com/wangpeng407/ReporterScore
.
This approach is based on the same assumption of many differential analysis methods: the expression of most genes has no significant change.
steps:
1. Use the Wilcoxon rank sum test to obtain the P value of the significance of each KO difference between the two groups (ie P_{koi}
, i represents a certain KO), and then divide the P value by 2, that is, the range of (0,1] becomes (0,0.5], P_{koi}=P_{koi}/2
;
2. Using an inverse normal distribution, convert the P value of each KO into a Z value (Z_{koi}
), the formula:
Z_{koi}=\theta ^{-1}(1-P_{koi})
since the above P value is less than 0.5, all Z values will be greater than 0;
3. Considering whether each KO is up-regulated or down-regulated, calculate diff\_KO
,
Z_{koi}=-Z_{koi}\ \ \ \ (diff\_KO<0)
,
so Z_{koi}
is greater than 0 Up-regulation, Z_{koi}
less than 0 is down-regulation;
4. 'Upgrade' KO to pathway: Z_{koi}
, calculate the Z value of the pathway, the formula:
Z_{pathway}=\frac{1}{\sqrt{k}}\sum Z_{koi}
where k means A total of k KOs were annotated to the corresponding pathway;
5. Evaluate the degree of significance: permutation (permutation) 1000 times, get the random distribution of Z_{pathway}
, the formula:
Z_{adjustedpathway}=(Z_{pathway}-\mu _k)/\sigma _k
\mu _k
is The mean of the random distribution, \sigma _k
is the standard deviation of the random distribution.
The finally obtained Z_{adjustedpathway}
is the Reporter score value enriched for each pathway.
In this mode, the Reporter score is directed, and a larger positive value represents a significant up-regulation enrichment, and a smaller negative values represent significant down-regulation enrichment.
However, the disadvantage of this mode is that when a pathway contains about the same number of significantly up-regulates KOs and significantly down-regulates KOs, the final absolute value of Reporter score may approach 0, becoming a pathway that has not been significantly enriched.
Value
ko_stat data.frame
References
1. Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102, 2685–2689 (2005).
2. Liu, L., Zhu, R. & Wu, D. Misuse of reporter score in microbial enrichment analysis. iMeta n/a, e95.
3. https://github.com/wangpeng407/ReporterScore
See Also
Other GRSA:
combine_rs_res()
,
get_reporter_score()
,
ko.test()
,
reporter_score()
Examples
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")
One step to get the reporter score of your KO abundance table.
Description
One step to get the reporter score of your KO abundance table.
Usage
reporter_score(
kodf,
group,
metadata = NULL,
method = "wilcox.test",
pattern = NULL,
p.adjust.method1 = "none",
mode = c("directed", "mixed")[1],
verbose = TRUE,
feature = "ko",
type = c("pathway", "module")[1],
p.adjust.method2 = "BH",
modulelist = NULL,
threads = 1,
perm = 4999,
min_exist_KO = 3,
max_exist_KO = 600
)
Arguments
kodf |
KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples. |
group |
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order. |
metadata |
sample information data.frame contains group |
method |
the type of test. Default is 'wilcox.test'. Allowed values include:
|
pattern |
a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the correlation analysis with specific pattern to calculate p-value. |
p.adjust.method1 |
p.adjust.method for 'ko.test', see |
mode |
'mixed' or 'directed' (default, only for two groups differential analysis or multi-groups correlation analysis.), see details in |
verbose |
logical |
feature |
one of 'ko', 'gene', 'compound' |
type |
'pathway' or 'module' for default KOlist for microbiome, 'CC', 'MF', 'BP', 'ALL' for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org_list.html' such as 'hsa' (if your kodf is come from a specific organism, you should specify type here). |
p.adjust.method2 |
p.adjust.method for the correction of ReporterScore, see |
modulelist |
NULL or customized modulelist dataframe, must contain 'id','K_num','KOs','Description' columns. Take the 'KOlist' as example, use |
threads |
default 1 |
perm |
permutation number, default: 4999. |
min_exist_KO |
min exist KO number in a pathway (default, 3, when a pathway contains KOs less than 3, there will be no RS) |
max_exist_KO |
max exist KO number in a pathway (default, 600, when a pathway contains KOs more than 600, there will be no RS) |
Value
reporter_score object:
kodf |
your input KO_abundance table |
ko_stat |
ko statistics result contains p.value and z_score |
reporter_s |
the reporter score in each pathway |
modulelist |
default KOlist or customized modulelist dataframe |
group |
The comparison groups in your data |
metadata |
sample information dataframe contains group |
for the 'reporter_s' in result, whose columns represent:
ID |
pathway id |
Description |
pathway description |
K_num |
total number of KOs/genes in the pathway |
Exist_K_num |
number of KOs/genes in your inputdata that exist in the pathway |
Significant_K_num |
number of kos/genes in your inputdata that are significant in the pathway |
Z_score |
|
BG_Mean |
Background mean, |
BG_Sd |
Background standard deviation, |
ReporterScore |
ReporterScore of the pathway, |
p.value |
p.value of the ReporterScore |
p.adjust |
adjusted p.value by p.adjust.method2 |
See Also
Other GRSA:
combine_rs_res()
,
get_reporter_score()
,
ko.test()
,
pvalue2zs()
Examples
message("The following example require some time to run:")
data("KO_abundance_test")
reporter_score_res <- reporter_score(KO_abundance, "Group", metadata,
mode = "directed", perm = 499
)
head(reporter_score_res$reporter_s)
reporter_score_res2 <- reporter_score(KO_abundance, "Group2", metadata,
mode = "mixed",
method = "kruskal.test", p.adjust.method1 = "none", perm = 499
)
reporter_score_res3 <- reporter_score(KO_abundance, "Group2", metadata,
mode = "directed",
method = "pearson", pattern = c("G1" = 1, "G2" = 3, "G3" = 2), perm = 499
)
'reporter_score()' result from KO_abundance_test
Description
'reporter_score()' result from KO_abundance_test
'reporter_score()' result from KO_abundance_test
Format
a list contain 7 elements.
- kodf
your input KO_abundance table
- ko_stat
ko statistics result contains p.value and z_score
- reporter_s
the reporter score in each pathway
- modulelist
default KOlist or customized modulelist dataframe
- group
The compare group (two category) in your data
- metadata
sample information dataframe contains group
See Also
Other test_data:
KO_abundance
,
genedf
Upgrade the KO level
Description
Upgrade the KO level
Usage
up_level_KO(
KO_abundance,
level = "pathway",
show_name = FALSE,
modulelist = NULL,
verbose = TRUE
)
Arguments
KO_abundance |
KO_abundance |
level |
one of 'pathway', 'module', 'level1', 'level2', 'level3', 'module1', 'module2', 'module3'. |
show_name |
logical |
modulelist |
NULL or customized modulelist dataframe, must contain 'id','K_num','KOs','Description' columns. Take the 'KOlist' as example, use |
verbose |
logical |
Value
data.frame
Examples
data("KO_abundance_test")
KO_level1 <- up_level_KO(KO_abundance, level = "level1", show_name = TRUE)
update CARDinfo from (from 'CARD' database)
Description
update CARDinfo from (from 'CARD' database)
Usage
update_CARDinfo(download_dir = NULL, card_data = NULL)
Arguments
download_dir |
download_dir |
card_data |
card_data from https://card.mcmaster.ca/download/0/broadstreet-v3.2.8.tar.bz2 |
Value
No value
Update the GO2gene files (from 'GO' database)
Description
Download links:
http://geneontology.org/docs/download-ontology/
https://asa12138.github.io/FileList/GOlist.rda
Usage
update_GOlist(download_dir = NULL, GO_file = NULL)
update_GOinfo(download_dir = NULL, obo_file = NULL)
Arguments
download_dir |
download_dir |
GO_file |
GO_file |
obo_file |
obo_file from http://current.geneontology.org/ontology/go.obo |
Value
No value
Update files from 'KEGG'
Description
Download links:
https://rest.kegg.jp/list/pathway
https://rest.kegg.jp/link/pathway/ko
https://rest.kegg.jp/link/pathway/compound
https://rest.kegg.jp/list/module
https://rest.kegg.jp/link/module/ko
https://rest.kegg.jp/link/module/compound
Usage
update_KEGG(download_dir)
update_KO_file(download_dir, RDSfile = NULL)
update_htable(type, keg_file = NULL, download = FALSE, download_dir = NULL)
update_org_pathway(
org = "hsa",
RDS_file = NULL,
download = TRUE,
download_dir = NULL
)
Arguments
download_dir |
where to save the .keg file? |
RDSfile |
saved KO_files.RDS file |
type |
"ko", "module", "pathway", "compound" ... |
keg_file |
path of a .keg file, such as ko00001.keg from https://www.genome.jp/kegg-bin/download_htext?htext=ko00001&format=htext. |
download |
save the .keg file? |
org |
kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, default, "hsa" |
RDS_file |
path of a org.RDS file if you saved before. |
Value
No value