| Type: | Package | 
| Title: | Robust Tail Dependence Estimation | 
| Version: | 0.2-2 | 
| Description: | Robust tail dependence estimation for bivariate models. This package is based on two papers by the authors:'Robust and bias-corrected estimation of the coefficient of tail dependence' and 'Robust and bias-corrected estimation of probabilities of extreme failure sets'. This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416). | 
| Depends: | R (≥ 3.0.0), parallel, methods | 
| Suggests: | tseries | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| Packaged: | 2024-10-16 13:42:03 UTC; dutang | 
| Author: | Christophe Dutang | 
| Maintainer: | Christophe Dutang <dutangc@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-10-16 14:30:05 UTC | 
The Extended Pareto Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dEPD(x, eta, delta, rho, tau, log = FALSE)
pEPD(q, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE)
qEPD(p, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE,
    control=list())
rEPD(n, eta, delta, rho, tau)    
Arguments
| x,q | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| eta | first shape parameter. | 
| delta | nuisance parameter. | 
| rho,tau | second shape parameter. | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are
 | 
| control | A list of control paremeters. See section Details. | 
Details
The extended Pareto distribution is defined by the following density
        f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{-\tau})]^{-1/\eta-1}[1+\delta(1-(1-\tau)x^{-\tau})]
    
for all x>1 when parametrized by \tau.
However, a typical parametrization is obtained by
setting \tau=-\rho/\eta, i.e.
        f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{\rho/\eta})]^{-1/\eta-1}[1+\delta(1-(1+\rho/\eta)x^{\rho/\eta})]
    
for all x>1 when parametrized by \rho.
The control argument is a list that can supply any of the
following components:
- upperbound
- The upperbound used in the - optimizefunction when computing numerical quantiles, default to- 1e6.
- tol
- the desired accuracy used in the - optimizefunction when computing numerical quantiles, default to- 1e-9.
Value
dEPD gives the density,
pEPD gives the distribution function,
qEPD gives the quantile function, and
rEPD generates random deviates.
The length of the result is determined by n for
rEPD, and is the maximum of the lengths of the
numerical parameters for the other functions.  
The numerical parameters other than n are recycled to the
length of the result.  Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
J. Beirlant, E. Joossens, J. Segers (2009), Second-order refined peaks-over-threshold modelling for heavy-tailed distributions, Journal of Statistical Planning and Inference, Volume 139, Issue 8, Pages 2800-2815.
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dEPD(x, 1/2, 1/4, -1))
#####
# (2) distribution function
cbind(x, pEPD(x, 1/2, 1/4, -1, lower=FALSE))
		
The Eyraud Farlie Gumbel Morgenstern Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dFGM(u, v, alpha, log = FALSE)
pFGM(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qFGM(p, alpha, lower.tail=TRUE, log.p = FALSE)
rFGM(n, alpha)
Arguments
| u,v | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| alpha | shape parameter. | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are
 | 
Details
The FGM is defined by the following distribution function
        C(u,v) = u*v*(1+\alpha*(1-u)*(1-v))
    
for all u,v in [0,1] and \alpha in [0,1].
When lower.tail=FALSE, pFGM returns the survival copula 
P(U > u, V > v).
Value
dFGM gives the density,
pFGM gives the distribution function,
qFGM gives the quantile function, and
rFGM generates random deviates.
The length of the result is determined by n for
rFGM, and is the maximum of the lengths of the
numerical parameters for the other functions.  
The numerical parameters other than n are recycled to the
length of the result.  Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.
Examples
#####
# (1) density function
u <- v <- seq(0, 1, length=25)
cbind(u, v, dFGM(u, v, 1/2))
cbind(u, v, outer(u, v, dFGM, alpha=1/2))
#####
# (2) distribution function
cbind(u, v, pFGM(u, v, 1/2))
cbind(u, v, outer(u, v, pFGM, alpha=1/2))
		
The Frank Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dfrank(u, v, alpha, log = FALSE)
pfrank(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qfrank(p, alpha, lower.tail=TRUE, log.p = FALSE)
rfrank(n, alpha)
Arguments
| u,v | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| alpha | shape parameter. | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are
 | 
Details
The Frank is defined by the following distribution function
        C(u,v) = - \frac{1}{\alpha} \log\left[1-\frac{(1-e^{-\alpha u})(1-e^{-\alpha v}) }{ 1-e^{-\alpha}}\right],
    
for all u,v in [0,1].
When lower.tail=FALSE, pfrank returns the survival copula 
P(U > u, V > v).
Value
dfrank gives the density,
pfrank gives the distribution function,
qfrank gives the quantile function, and
rfrank generates random deviates.
The length of the result is determined by n for
rfrank, and is the maximum of the lengths of the
numerical parameters for the other functions.  
The numerical parameters other than n are recycled to the
length of the result.  Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.
Examples
#####
# (1) density function
u <- v <- seq(0, 1, length=25)
cbind(u, v, dfrank(u, v, 1/2))
cbind(u, v, outer(u, v, dfrank, alpha=1/2))
#####
# (2) distribution function
cbind(u, v, pfrank(u, v, 1/2))
cbind(u, v, outer(u, v, pfrank, alpha=1/2))
		
The Frechet Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dfrechet(x, shape, xmin, log = FALSE)
pfrechet(q, shape, xmin, lower.tail=TRUE, log.p = FALSE)
qfrechet(p, shape, xmin, lower.tail=TRUE, log.p = FALSE)
rfrechet(n, shape, xmin)
dufrechet(x, log = FALSE)
pufrechet(q, lower.tail=TRUE, log.p = FALSE)
qufrechet(p, lower.tail=TRUE, log.p = FALSE)
rufrechet(n)
Arguments
| x,q | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| shape | shape parameter. | 
| xmin | lower bound parameter. | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are
 | 
Details
The Frechet distribution is defined by the following density
        f(x) = shape * (x - xmin)^{(-shape-1)} * exp(-(x - xmin)^{(-shape)})
    
for all x>xmin.
The unit Frechet distribution corresponds to xmin=0 and 
shape=1.
Value
dfrechet, dufrechet give the density,
pfrechet, pufrechet give the distribution function,
qfrechet, qufrechet give the quantile function, and
rfrechet, rufrechet generate random deviates.
The length of the result is determined by n for
rfrechet, rufrechet, and is the maximum of the lengths of the
numerical parameters for the other functions.  
The numerical parameters other than n are recycled to the
length of the result.  Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Kotz, S. and Nadarajah, S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press.
Beirlant, J., Goegebeur, Y., Teugels, J., Segers (2004), Statistics of Extremes: Theory and Applications, John Wiley and Sons.
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dfrechet(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, pfrechet(x, 1/2, 1/4))
		
The Minimum Distance Power Divergence statistics
Description
Computes the power divergence statistics then used a minimization problem.
Usage
MDPD(theta, densfun, obs, alpha, ..., control=list())
Arguments
| theta | the parameter of the distribution given as a vector. | 
| densfun | a function computing the theoretical density function. | 
| obs | a numeric vector of observations | 
| alpha | a numeric for the power divergence parameter. | 
| ... | further arguments to be passed to the density function. | 
| control | A list of control paremeters. See section Details. | 
Details
The Power Divergence for a density function f and
observations X_1,...,X_n is defined as
        \Delta(f,\alpha) = \int_{R} f^{1+\alpha}(x)dx-\left ( 1+\frac{1}{\alpha} \right )
        \frac{1}{n} \sum_{i=1}^n f^\alpha(X_i)
    
for \alpha> 0
        \Delta(f,0) = -\frac{1}{n}\sum_{i=1}^n \log f(X_i)
    
for \alpha = 0.
The control argument is a list that can supply any of the
following components:
- eps
- a small positive floating-point number used when - integratestalled, default to- 1e-3.
- tol
- the desired accuracy used in the - integratefunction when computing the power divergence, default to- 1e-3.
- lower
- the lower bound of the domain of the density function, default to 1. 
- upper
- the lower bound of the domain of the density function, default to infinity. 
Value
MDPD returns the power divergence against the density function densfun
as a numeric.
Author(s)
Christophe Dutang
References
Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., (1998). Robust and efficient estimation by minimizing a density power divergence, Biometrika, 85, 549-559.
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) small example
omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#unit Pareto transform
z <- zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")
MDPD(c(1/2, 1/4), dEPD, z$Z, alpha=0, rho=-1)
		
Data object used for a Tail Dependence model
Description
Data object used for a Tail Dependence model.
Usage
RTDE(obs=NULL, simu=list(), contamin=list(),
    nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1),
    boundary.method="log", core=1, keepdata, control=list())
## S3 method for class 'RTDE'
print(x, ...)
## S3 method for class 'RTDE'
summary(object, ...)
## S3 method for class 'RTDE'
plot(x, which=1:3, FUN=mean, main, ...)
prob(object, q, ...)
## Default S3 method:
prob(object, q, ...)
## S3 method for class 'RTDE'
prob(object, q, ...)
Arguments
| obs | bivariate numeric dataset. | 
| simu | a names list with components:
 | 
| contamin | a names list with components:
 | 
| nbpoint | a numeric for the number of largest points to be selected. | 
| alpha | a numeric for the power divergence parameter. | 
| omega | a numeric for omega, see section Details. | 
| method | a character string equals to  | 
| fix.arg | a named list of fixed arguments:
either  | 
| boundary.method | a character string: either "log" or "simple", see section Details. | 
| core | a numeric for the number of core to be used, only relevant for simulated data. | 
| keepdata | a logical whether to return or not the dataset. | 
| control | A list of control paremeters for  | 
| x,object | an R object inheriting from  | 
| ... | arguments to be passed to subsequent methods. | 
| which | an integer to specify what to plot: 1 eta, 2 delta, 3 probability estimates. | 
| FUN | the function to be applied, default to  | 
| main | a main title for the plot. | 
| q | vector of quantiles. | 
Details
The function RTDE handles (empirical or simulated) data 
(cf. dataRTDE)
and then fits a bivariate tail model using a method criterion
(cf. fitRTDE and MDPD) based
on an extended Pareto distribution approximation (EPD).
Typical distributions for simulated data and/or contaminations are
For a good introduction, please refer to references.
Value
RTDE returns an object of class "RTDE"
having the following components:
- obs.type
- see - dataRTDE.
- data
- see - dataRTDE.
- fit
- see - fitRTDE.
- simu
- see - dataRTDE.
- contamin
- see - dataRTDE.
- setting
- a list summarizing the computation. 
Author(s)
Christophe Dutang
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See Also
See fitRTDE for the fitting process and
dataRTDE for the data-handling process.
Examples
#####
# (1) simulation
n <- 100
x <- RTDE(simu=list(nb=n, marg="ufrechet", cop="indep", replicate=1),
	nbpoint=10:11, alpha=0, omega=1/2)
x	
summary(x)
Data object used for a Tail Dependence model
Description
Data object used for a Tail Dependence model.
Usage
dataRTDE(obs, simu.nb, simu.marg=c("ufrechet", "upareto"), 
    simu.cop=c("indep", "FGM", "Frank"), simu.cop.par=NULL,
    contamin.eps=NULL, contamin.method=c("NA","max+","+"),
    contamin.marg=c("ufrechet", "upareto"),
    contamin.cop=c("indep", "FGM", "Frank"),
    contamin.cop.par=NULL, control=list())
## S3 method for class 'dataRTDE'
print(x, ...)
## S3 method for class 'dataRTDE'
summary(object, ...)
## S3 method for class 'dataRTDE'
plot(x, which=1:2, ...)
Arguments
| obs | bivariate numeric dataset. | 
| simu.nb | a numeric for the sample size of simulated data. | 
| simu.marg | a character string for the marginal distribution: 
either  | 
| simu.cop | a character string ofr the copula: 
either  | 
| simu.cop.par | a numeric for the copula parameter, default to  | 
| contamin.eps | a numeric for the percentage (of  | 
| contamin.method | a character string for the contamination method:
either  | 
| contamin.marg | a character string for the marginal distribution:
either  | 
| contamin.cop | a character string ofr the copula:
either  | 
| contamin.cop.par | a numeric for the copula parameter, default to  | 
| control | A list of control paremeters. Unused. | 
| x,object | an R object inheriting from  | 
| ... | arguments to be passed to subsequent methods. | 
| which | an integer (1 or 2) to specify whether to plot in original scale or unit-Pareto scale, respectively. | 
Details
The function dataRTDE handles empirical or simulated data and may 
add a contamination. 
- Empirical data
- When - obsis provided,- dataRTDEjust wraps the two-column matrix- (X_i, Y_i)_i.
- Simulated data
- When - simu.XXXare provided,- dataRTDEsimulates random vectors- (X_i, Y_i)_ifrom the copula- simu.copwith parameter- simu.cop.parand marginal- simu.marg.
Note that end-user must choose between empirical data (obs is provided) and simulated
data (simu.XXX are provided). Not both can be provided.
In addition to data handling (X_i, Y_i)_i, 
a contamination can be processed by adding new simulated points (\tilde X_i, \tilde Y_i)_i
when contamin.method != "NA".
Those points (\tilde X_i, \tilde Y_i)_i are simulated from the copula 
contamin.cop with parameter contamin.cop.par and marginal contamin.cop.par.
If contamin.method != "+", the points (\tilde X_i, \tilde Y_i)_i are the contaminations,
while if contamin.method != "max+" the contaminations are obtained by adding the
component-wise maximum of the data: (\tilde X_i + X_{n,n}, \tilde Y_i)_i + Y_{n,n},
where X_{n,n}=max(X_1,...,X_n), idem for Y_{n,n}.
Value
dataRTDE returns an object of class "dataRTDE"
having the following components:
- n
- rownumber of - data.
- n0
- rownumber of - contamin.
- data
- original or simulated data. 
- contamin
- contaminated data. 
Author(s)
Christophe Dutang
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See Also
See fitRTDE for the fitting process and
zvalueRTDE for the z-value computation.
Examples
#####
# (1) simulation
n <- 100
x <- dataRTDE(simu.nb=n, simu.marg="ufrechet", simu.cop="indep")
print(x)
summary(x)
plot(x, xlab="x", ylab="y")
#####
# (2) part of the workers' compensation dataset
x1 <- c(
  21.798086,  22.640528,  22.572010,  24.789710,  25.876764,  28.033613,
  22.525887,  12.004031,  12.713178,  13.596610,  14.811727,  12.774073,
  20.245789,  24.242468,  50.216515,  56.099793,  58.109747,  67.807105,
  73.852437,  84.208474,  83.604216,  19.507341,  20.810822,  23.838122,
  24.212193,  25.367578,  35.401344,  37.580989,  12.428727,  13.492474,
  23.471988,  24.101833,  24.766193,  26.078216)
x2 <- c(
 0.538707, 0.439184, 1.059775, 0.560013, 1.004997, 1.097314, 0.609833, 0.270222,
 0.229566, 0.596850, 0.196539, 0.134248, 0.489312, 0.418218, 0.769208, 0.649707,
 0.503919, 0.675466, 0.545745, 1.562266, 0.931762, 0.291125, 0.499927, 0.151084,
 0.141910, 0.300373, 0.119761, 0.141300, 0.377662, 0.169574, 0.243585, 0.061215,
 0.055272, 0.312816, 0.160196, 0.623029, 0.280707, 0.174422, 0.176666, 0.153907,
 0.605122, 0.664457, 0.348918, 0.370878)
obs <- dataRTDE(cbind(x1, x2))
obs
summary(obs)
plot(obs)
Fitting a Tail Dependence model with a Robust Estimator
Description
Fit a Tail Dependence model with a Robust Estimator.
Usage
fitRTDE(obs, nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1),
    boundary.method="log", control=list())
## S3 method for class 'fitRTDE'
print(x, ...)
## S3 method for class 'fitRTDE'
summary(object, ...)
## S3 method for class 'fitRTDE'
plot(x, which=1:2, main, ...)
Arguments
| obs | bivariate numeric dataset. | 
| nbpoint | a numeric for the number of largest points to be selected. | 
| alpha | a numeric for the power divergence parameter. | 
| omega | a numeric for omega, see section Details. | 
| method | a character string equals to  | 
| fix.arg | a named list of fixed arguments:
either  | 
| boundary.method | a character string: either "log" or "simple", see section Details. | 
| control | A list of control paremeters. See section Details. | 
| x,object | an R object inheriting from  | 
| ... | arguments to be passed to subsequent methods. | 
| which | an integer (1 or 2) to specify whether to plot eta or delta, respectively. | 
| main | a main title for the plot. | 
Details
The function fitRTDE fits an extended Pareto distribution 
(\eta,\tau are fitted while \rho is fixed)
on the relative excess of Z_\omega (see zvalueRTDE)
using a robust estimator based on the minimum distance power 
divergence criterion (see MDPD).
The boundary enforcement on \eta,\tau is either done
by the bounded BFGS algorithm (see optim with 
method="L-BFGS-B") or by the bounded Nelder-Mead
algorithm (see constrOptim with
method="Nelder-Mead") .
Value
fitRTDE returns an object of class "fitRTDE"
having the following components:
- n
- rownumber of - data.
- n0
- rownumber of - contamin.
- alpha
- a vector of - alphaparameters.
- omega
- a vector of - omegaparameters.
- m
- a vector of - nbpoint.
- rho
- a numeric for - rho.
- eta
- estimate of - eta.
- delta
- estimate of - delta.
- Ztilde
- see - zvalueRTDE.
Author(s)
Christophe Dutang
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Examples
#####
# (1) simulation 
omega <- 1/2
m <- 48
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#function of m
system.time(
x <- fitRTDE(obs, nbpoint=m:(n-m), 0, 1/2)
)
x
summary(x)
plot(x, which=1)
plot(x, which=2)
The QQ Pareto plot
Description
Plot the quantile-quantile Pareto plot
Usage
qqparetoplot(x, ..., highlight=c("red","cross"))
Arguments
| x | data vector. | 
| highlight | character string used in  | 
| ... | further arguments for  | 
Details
qqparetoplot plots the quantile-quantile Pareto plot
and may highlight some points having name "new".
Value
Invisible list with component x for the x-coordinates
and y for the y-coordinates.
Author(s)
Christophe Dutang
Examples
#####
# (1) small examples
set.seed(1234)
x <- rupareto(100)
qqparetoplot(x)
x <- rexp(100)
qqparetoplot(x)
		
The unit Pareto Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dupareto(x, log = FALSE)
pupareto(q, lower.tail=TRUE, log.p = FALSE)
qupareto(p, lower.tail=TRUE, log.p = FALSE)
rupareto(n)
Arguments
| x,q | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are
 | 
Details
The extended Pareto distribution is defined by the following density and distribution function
        f(x) = \frac{1}{x^2}, F(x) = 1-\frac{1}{x},
    
for all x>0.
Value
dupareto gives the density,
pupareto gives the distribution function,
qupareto gives the quantile function, and
rupareto generates random deviates.
The length of the result is determined by n for
rupareto, and is the maximum of the lengths of the
numerical parameters for the other functions.  
The numerical parameters other than n are recycled to the
length of the result.  Only the first elements of the logical
parameters are used.
Author(s)
Christophe Dutang
References
Johnson, N.L., Kotz, S. and Balakrishnan, N. (2000), Continuous Univariate Distributions, Volume 1, Second Edition, John Wiley and Sons.
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dupareto(x))
#####
# (2) distribution function
cbind(x, pupareto(x))
		
The Z-value random variable
Description
Compute the Z-value variable from a bivariate dataset.
Usage
zvalueRTDE(obs, omega, nbpoint, output=c("orig", "relexcess"), 
    marg=c("upareto", "ufrechet", "uunif"))
## S3 method for class 'zvalueRTDE'
print(x, ...)
## S3 method for class 'zvalueRTDE'
summary(object, ...)
relexcess(x, nbpoint, ...)
## Default S3 method:
relexcess(x, nbpoint, ...)
## S3 method for class 'zvalueRTDE'
relexcess(x, nbpoint, ...)
Arguments
| obs | bivariate numeric dataset. | 
| omega | a numeric for omega, see Details. | 
| nbpoint | a numeric for the number of largest points to be selected. | 
| output | a character string for the output: 
either  | 
| marg | a character string for the empirical margin transformation:
either  | 
| x,object | an R object inheriting from  | 
| ... | arguments to be passed to subsequent methods. | 
Details
Given a bivariate dataset (X_i, Y_i)_i of n points,
two variables are defined:
(1) for output="orig", the \tilde Z_{\omega,i} variable
\tilde Z_{\omega,i} = \min \left(
        f\left(\frac{R_i^X}{n+1}\right),
        \frac{\omega}{1-\omega} f\left(\frac{R_i^Y}{n+1}\right) \right)
    
where f(x) is the margin transformation and i=1,...,n;
(2) for output="relexcess", the Z_{j} variable
        \frac{\widetilde Z_{\omega,n-m+j,n}}{\widetilde Z_{\omega,n-m,n}}
    
where m equals nbpoint, j=1,\dots, m,
and \widetilde Z_{\omega,1,n},...,
     \widetilde Z_{\omega,n,n} are the order statistics of 
\widetilde Z_{\omega,1},...,\widetilde Z_{\omega,n}.
The margin transformation is 
    f(x) = \frac{1}{1-x}, f(x) = \frac{1}{-\log(x)}, f(x) = x,
    
respectively for unit Pareto (marg="upareto"),
unit Frechet (marg="ufrechet") and unit uniform margin
(marg="uunif").
Value
zvalueRTDE computes the Z-variable and
returns an object of class "zvalueRTDE"
having the following components type (either
"orig" or "relexcess"), omega,
Ztilde or Z, n, possibly m.
relexcess computes the relative excesses
from a Z-variable and returns an object of class "zvalueRTDE"
of type "relexcess".
Author(s)
Christophe Dutang
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See Also
See fitRTDE for the fitting process and
dataRTDE for the data-handling process.
Examples
#####
# (1) example
omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#unit Pareto transform
zvalueRTDE(obs, omega, output="orig")
relexcess(zvalueRTDE(obs, omega, output="orig"), m)
zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")