Type: | Package |
Title: | Compute least squares estimates of one bounded or two ordered isotonic regression curves |
Version: | 1.0.3 |
Date: | 2011-11-30 |
Author: | Fadoua Balabdaoui, Kaspar Rufibach, Filippo Santambrogio |
Maintainer: | Kaspar Rufibach <kaspar.rufibach@gmail.com> |
Description: | We consider the problem of estimating two isotonic regression curves g1* and g2* under the constraint that they are ordered, i.e. g1* <= g2*. Given two sets of n data points y_1, ..., y_n and z_1, ..., z_n that are observed at (the same) deterministic design points x_1, ..., x_n, the estimates are obtained by minimizing the Least Squares criterion L(a, b) = sum_{i=1}^n (y_i - a_i)^2 w1(x_i) + sum_{i=1}^n (z_i - b_i)^2 w2(x_i) over the class of pairs of vectors (a, b) such that a and b are isotonic and a_i <= b_i for all i = 1, ..., n. We offer two different approaches to compute the estimates: a projected subgradient algorithm where the projection is calculated using a PAVA as well as Dykstra's cyclical projection algorithm. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://www.ceremade.dauphine.fr/~fadoua, http://www.kasparrufibach.ch, http://www.math.u-psud.fr/~santambr/ |
Packaged: | 2011-11-30 18:13:43 UTC; rufibach |
Repository: | CRAN |
Date/Publication: | 2011-12-01 08:00:09 |
NeedsCompilation: | no |
Compute least squares estimates of one bounded or two ordered antitonic regression curves
Description
We consider the problem of estimating two isotonic regression curves g^\circ_1
and g^\circ_2
under the
constraint that g^\circ_1 \le g^\circ_2
. Given two sets of n
data points y_1, \ldots, y_n
and z_1, \ldots, z_n
that are observed at (the same) deterministic design points x_1, \ldots, x_n
, the estimates are obtained by
minimizing the Least Squares criterion
L(a, b) = \sum_{i=1}^n (y_i - a_i)^2 w_1(x_i) + \sum_{i=1}^n (z_i - b_i)^2 w_2(x_i)
over the class of pairs of vectors (a, b)
such that a
and b
are isotonic and
a_i \le b_i
for all i = {1, \ldots, n}
. We offer two different approaches to compute the estimates: a
projected subgradient algorithm where the projection is calculated using a pool-adjacent-violaters algorithm (PAVA)
as well as Dykstra's cyclical projection algorithm..
Additionally, functions to solve the bounded isotonic regression problem described in Barlow et al. (1972, p. 57) are provided.
Details
Package: | OrdMonReg |
Type: | Package |
Version: | 1.0.3 |
Date: | 2011-11-30 |
License: | GPL (>=2) |
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., Brunk, H. D. (1972). Statistical inference under order restrictions. The theory and application of isotonic regression. John Wiley and Sons, London - New York - Sydney.
Dykstra, R.L. (1983). An Algorithm for Restricted Least Squares Regression. J. Amer. Statist. Assoc., 78, 837–842.
See Also
Other versions of bounded regression are implemented in the packages cir,
Iso, monreg. The function
BoundedIsoMean
is a generalization of the function isoMean
in the package
logcondens.
Examples
## examples are provided in the help files of the main functions of this package:
?BoundedAntiMean
?BoundedAntiMeanTwo
Compute least square estimate of an iso- or antitonic function, bounded below and above by fixed functions
Description
This function computes the bounded least squares isotonic regression estimate, where the bounds are two functions such that the estimate is above the lower and below the upper function. To find the solution, we use the pool-adjacent-violaters algorithm for a suitable set function M, as discussed in Balabdaoui et al. (2009). The problem was initially posed in Barlow et al. (1972), including a remark (on p. 57) that the PAVA can be used to solve it. However, a formal proof is not given in Barlow et al. (1972). A short note detailing this proof is available from the authors of Balabdaoui et al. (2009) on request.
Usage
BoundedIsoMean(y, w, a = NA, b = NA)
BoundedAntiMean(y, w, a = NA, b = NA)
Arguments
y |
Vector in |
w |
Vector in |
a |
Vector in |
b |
Vector in |
Details
The bounded isotonic regression problem is given by: For x_1 \le \ldots \le x_n
let y_i, i = 1, \ldots, n
be measurements of some quantity at the x_i
's, with true mean function
g^\circ(x)
.
The goal is to estimate g^\circ
using least squares, i.e. to minimize
L(a) = \sum_{i=1}^n w_i(y_i - a_i)^2
over the class of vectors a
that are isotonic and satisfy
a_{L, i} \le a_i \le a_{U, i} \ \ \mathrm{for} \ \ \mathrm{all} \ \ i = 1, \ldots, n
and two fixed isotonic vectors a_L
and a_U
.
This problem can be solved using a suitable modification of the pool-adjacent-violaters algorithm, see
Barlow et al. (1972, p. 57) and Balabdaoui et al. (2009).
The function BoundedAntiMean
solves the same problem for antitonic curves, by simply invoking BoundedIsoMean
flipping some of the arguments.
Value
The bounded isotonic (antitonic) estimate (\hat g^\circ)_{i=1}^n
.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., Brunk, H. D. (1972). Statistical inference under order restrictions. The theory and application of isotonic regression. John Wiley and Sons, London - New York - Sydney.
See Also
The functions BoundedAntiMeanTwo
and BoundedIsoMeanTwo
for the problem of
estimating two ordered antitonic (isotonic) regression
functions. The function BoundedIsoMean
depends on the function MA
.
Examples
## --------------------------------------------------------
## generate data
## --------------------------------------------------------
set.seed(23041977)
n <- 35
x <- 1:n / n
f0 <- - 3 * x + 5
g0 <- 1 / (x + 0.5) ^ 2 + 1
g <- g0 + 3 * rnorm(n)
## --------------------------------------------------------
## compute estimate
## --------------------------------------------------------
g_est <- BoundedAntiMean(g, w = rep(1 / n, n), a = -rep(Inf, n), b = f0)
## --------------------------------------------------------
## plot observations and estimate
## --------------------------------------------------------
par(mar = c(4.5, 4, 3, 0.5))
plot(0, 0, type = 'n', main = "Observations, upper bound and estimate
for bounded antitonic regression", xlim = c(0, max(x)), ylim =
range(c(f0, g)), xlab = expression(x), ylab = "observations and estimate")
points(x, g, col = 1)
lines(x, g0, col = 1, lwd = 2, lty = 2)
lines(x, f0, col = 2, lwd = 2, lty = 2)
lines(x, g_est, col = 3, lwd = 2)
legend("bottomleft", c("truth", "data", "upper bound", "estimate"),
lty = c(1, 0, 1, 1), lwd = c(2, 1, 2, 2), pch = c(NA, 1, NA, NA),
col = c(1, 1:3), bty = 'n')
## Not run:
## --------------------------------------------------------
## 'BoundedIsoMean' is a generalization of 'isoMean' in the
## package 'logcondens'
## --------------------------------------------------------
library(logcondens)
n <- 50
y <- sort(runif(n, 0, 1)) ^ 2 + rnorm(n, 0, 0.2)
isoMean(y, w = rep(1 / n, n))
BoundedIsoMean(y, w = rep(1 / n, n), a = -rep(Inf, n), b = rep(Inf, n))
## End(Not run)
Compute solution to the problem of two ordered isotonic or antitonic curves
Description
See details below.
Usage
BoundedIsoMeanTwo(g1, w1, g2, w2, K1 = 1000, K2 = 400,
delta = 10^(-4), errorPrec = 10, output = TRUE)
BoundedAntiMeanTwo(g1, w1, g2, w2, K1 = 1000, K2 = 400,
delta = 10^(-4), errorPrec = 10, output = TRUE)
Arguments
g1 |
Vector in |
w1 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
K1 |
Upper bound on number of iterations. |
K2 |
Number of iterations where step length is changed from the inverse of the norm of the subgradient to a diminishing function of the norm of the subgradient. |
delta |
Upper bound on the error, defines stopping criterion. |
errorPrec |
Computation of stopping criterion is expensive. Therefore, the stopping criterion is
only evaluated at every |
output |
Should intermediate results be output? |
Details
We consider the problem of estimating two isotonic (antitonic) regression curves g_1^\circ
and
g_2^\circ
under the
constraint that g_1^\circ \le g_2^\circ
. Given two sets of n
data points y_1, \ldots, y_n
and z_1, \ldots, z_n
that are observed at (the same) deterministic design points x_1, \ldots, x_n
with weights
w_{1,i}
and w_{2,i}
, respectively, the estimates are obtained by
minimizing the Least Squares criterion
L_2(a, b) = \sum_{i=1}^n (y_i - a_i)^2 w_{1,i} + \sum_{i=1}^n (z_i - b_i)^2 w_{2,i}
over the class of pairs of vectors (a, b)
such that a
and b
are isotonic (antitonic) and
a_i \le b_i
for all i = {1, \ldots, n}
. The estimates are computed with a projected
subgradient algorithm where the projection is calculated using a suitable version of the pool-adjacent-violaters
algorithm (PAVA).
The algorithm is implemented for antitonic curves in the function BoundedAntiMeanTwo
.
The function BoundedIsoMeanTwo
solves the same problem for isotonic curves, by simply invoking
BoundedAntiMeanTwo
and suitably flipping some of the arguments.
Value
g1 |
The estimated function |
g2 |
The estimated function |
L |
Value of the least squares criterion at the minimum. |
error |
Value of error. |
k |
Number of iterations performed. |
tau |
Step length at final iteration. |
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
See Also
The functions BoundedAntiMean
and BoundedIsoMean
for the problem of
estimating one antitonic (isotonic) regression
function bounded above and below by fixed functions. The function BoundedAntiMeanTwo
depends
on the functions BoundedAntiMean
, bstar_n
,
LSfunctional
, and Subgradient
.
Examples
## ========================================================
## The first example uses simulated data
## For the analysis of the mechIng dataset see below
## ========================================================
## --------------------------------------------------------
## initialization
## --------------------------------------------------------
set.seed(23041977)
n <- 100
x <- 1:n
g1 <- 1 / x^2 + 2
g1 <- g1 + 3 * rnorm(n)
g2 <- 1 / log(x+3) + 2
g2 <- g2 + 4 * rnorm(n)
w1 <- runif(n)
w1 <- w1 / sum(w1)
w2 <- runif(n)
w2 <- w2 / sum(w2)
## --------------------------------------------------------
## compute estimates
## --------------------------------------------------------
shor <- BoundedAntiMeanTwo(g1, w1, g2, w2, errorPrec = 20,
delta = 10^(-10))
## corresponding isotonic problem
shor2 <- BoundedIsoMeanTwo(-g2, w2, -g1, w1, errorPrec = 20,
delta = 10^(-10))
## the following vectors are equal
shor$g1 - -shor2$g2
shor$g2 - -shor2$g1
## --------------------------------------------------------
## for comparison, compute estimates via cyclical projection
## algorithm due to Dykstra (1983) (isotonic problem)
## --------------------------------------------------------
dykstra1 <- BoundedIsoMeanTwoDykstra(-g2, w2, -g1, w1,
delta = 10^(-10))
## the following vectors are equal
shor2$g1 - dykstra1$g1
shor2$g2 - dykstra1$g2
## --------------------------------------------------------
## Checking of solution
## --------------------------------------------------------
# This compares the first component of shor$g1 with a^*_1:
c(shor$g1[1], astar_1(g1, w1, g2, w2))
## --------------------------------------------------------
## plot original functions and estimates
## --------------------------------------------------------
par(mfrow = c(1, 1), mar = c(4.5, 4, 3, 0.5))
plot(x, g1, col = 2, main = "Original observations and estimates in problem
two ordered antitonic regression functions", xlim = c(0, max(x)), ylim =
range(c(shor$g1, shor$g2, g1, g2)), xlab = expression(x),
ylab = "measurements and estimates")
points(x, g2, col = 3)
lines(x, shor$g1 + 0.01, col = 2, type = 's', lwd = 2)
lines(x, shor$g2 - 0.01, col = 3, type = 's', lwd = 2)
legend("bottomleft", c(expression("upper estimated function g"[1]*"*"),
expression("lower estimated function g"[2]*"*")), lty = 1, col = 2:3,
lwd = 2, bty = "n")
## ========================================================
## Analysis of the mechIng dataset
## ========================================================
## --------------------------------------------------------
## input data
## --------------------------------------------------------
data(mechIng)
x <- mechIng$x
n <- length(x)
g1 <- mechIng$g1
g2 <- mechIng$g2
w1 <- rep(1, n)
w2 <- w1
## --------------------------------------------------------
## compute unordered estimates
## --------------------------------------------------------
g1_pava <- BoundedIsoMean(y = g1, w = w1, a = NA, b = NA)
g2_pava <- BoundedIsoMean(y = g2, w = w2, a = NA, b = NA)
## --------------------------------------------------------
## compute estimates via cyclical projection algorithm due to
## Dysktra (1983)
## --------------------------------------------------------
dykstra1 <- BoundedIsoMeanTwoDykstra(g1, w1, g2, w2,
delta = 10^-10, output = TRUE)
## --------------------------------------------------------
## compute smoothed versions
## --------------------------------------------------------
g1_mon <- dykstra1$g1
g2_mon <- dykstra1$g2
kernel <- function(x, X, h, Y){
tmp <- dnorm((x - X) / h)
res <- sum(Y * tmp) / sum(tmp)
return(res)
}
h <- 0.1 * n^(-1/5)
g1_smooth <- rep(NA, n)
g2_smooth <- g1_smooth
for (i in 1:n){
g1_smooth[i] <- kernel(x[i], X = x, h, g1_mon)
g2_smooth[i] <- kernel(x[i], X = x, h, g2_mon)
}
## --------------------------------------------------------
## plot original functions and estimates
## --------------------------------------------------------
par(mfrow = c(2, 1), oma = c(0, 0, 2, 0), mar = c(4.5, 4, 2, 0.5),
cex.main = 0.8, las = 1)
plot(0, 0, type = 'n', xlim = c(0, max(x)), ylim =
range(c(g1, g2, g1_mon, g2_mon)), xlab = "x", ylab =
"measurements and estimates", main = "ordered antitonic estimates")
points(x, g1, col = grey(0.3), pch = 20, cex = 0.8)
points(x, g2, col = grey(0.6), pch = 20, cex = 0.8)
lines(x, g1_mon + 0.1, col = 2, type = 's', lwd = 3)
lines(x, g2_mon - 0.1, col = 3, type = 's', lwd = 3)
legend(0.2, 10, c(expression("upper isotonic function g"[1]*"*"),
expression("lower isotonic function g"[2]*"*")), lty = 1, col = 2:3,
lwd = 3, bty = "n")
plot(0, 0, type = 'n', xlim = c(0, max(x)), ylim =
range(c(g1, g2, g1_mon, g2_mon)), xlab = "x", ylab = "measurements and
estimates", main = "smoothed ordered antitonic estimates")
points(x, g1, col = grey(0.3), pch = 20, cex = 0.8)
points(x, g2, col = grey(0.6), pch = 20, cex = 0.8)
lines(x, g1_smooth + 0.1, col = 2, type = 's', lwd = 3)
lines(x, g2_smooth - 0.1, col = 3, type = 's', lwd = 3)
legend(0.2, 10, c(expression("upper isotonic smoothed function "*tilde(g)[1]*"*"),
expression("lower isotonic smoothed function "*tilde(g)[2]*"*")),
lty = 1, col = 2:3, lwd = 3, bty = "n")
par(cex.main = 1)
title("Original observations and estimates in mechanical engineering example",
line = 0, outer = TRUE)
Compute solution to the problem of two ordered isotonic or antitonic curves
Description
See details below.
Usage
BoundedIsoMeanTwoDykstra(g1, w1, g2, w2, K1 = 1000,
delta = 10^(-8), output = TRUE)
Arguments
g1 |
Vector in |
w1 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
K1 |
Upper bound on number of iterations. |
delta |
Upper bound on the error, defines stopping criterion. |
output |
Should intermediate results be output? |
Details
See BoundedIsoMeanTwo
for a description of the problem. This function computes the estimates
via Dykstra's (see Dykstra, 1983) cyclical projection algorithm.
The algorithm is implemented for isotonic curves.
Value
g1 |
The estimated function |
g2 |
The estimated function |
L |
Value of the least squares criterion at the minimum. |
error |
Value of error (norm of difference two consecutive projections). |
k |
Number of iterations performed. |
Warning
Note that we have chosen a very simply stopping criterion here, namely the algorithm stops
if the norm of two consecutive projections is smaller than \delta
. If n
is very small, it may happen
that two consecutive projections are equal although L
is not yet minimal (note that this typically happens
if g1
= g2
). If that is the case, we suggest to set \delta < 0
and let the algorithm run
a sufficient number of iterations (specified by K1
) to verify that the least squares criterion value
can not be decreased anymore.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
Dykstra, R.L. (1983). An Algorithm for Restricted Least Squares Regression. J. Amer. Statist. Assoc., 78, 837–842.
See Also
The functions BoundedAntiMean
and BoundedIsoMean
for the problem of
estimating one antitonic (isotonic) regression
function bounded above and below by fixed functions. The function BoundedAntiMeanTwoDykstra
depends
on the functions discussed in minK
.
Examples
## examples are provided in the help file of the main function of this package:
?BoundedIsoMeanTwo
Compute least squares criterion for two ordered isotonic regression functions
Description
Computes the value of the least squares criterion in the problem of two ordered isotonic regression functions.
Usage
LSfunctional(f1, g1, w1, f2, g2, w2)
Arguments
f1 |
Vector in |
g1 |
Vector in |
w1 |
Vector in |
f2 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
Details
This function simply computes for the above vectors
L(f1, f2) \ = \ \sum_{i=1}^n w1_i(f1_i - g1_i)^2 + \sum_{i=1}^n w2_i(f2_i - g2_i)^2.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
See Also
This function is used by BoundedAntiMeanTwo
.
Compute bounded weighted average
Description
This function computes the bounded weighted mean for any subset of indices.
Usage
MA(g, w, A = NA, a, b)
Arguments
g |
Vector in |
w |
Vector in |
A |
Subset of |
a |
Vector in |
b |
Vector in |
Details
This function computes the bounded average
MA[A] = \max\{\min\{Av[A], \min_{x \in A} b(x)\}, \max_{x \in A} a(x)\},
see Balabdaoui et al. (2009) for details.
Value
The bounded weighted average is returned.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
See Also
This function is used by BoundedIsoMean
.
Computes a subgradient for the projected subgradient algorithm
Description
This function computes a subgradient of the function \Psi
.
Usage
Subgradient(b, g1, w1, g2, w2, B, Gsi)
Arguments
b |
Vector in |
g1 |
Vector in |
w1 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
B |
Value of |
Gsi |
Matrix in |
Value
The subgradient at b
.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered antitonic regression curves. Preprint.
See Also
This function is used by BoundedAntiMeanTwo
.
Computes explicitly known values of the estimates in the two ordered functions antitonic regression problem
Description
These functions compute the values a_1^*
and b_n^*
, the value of the estimate of the
upper function at x_1
and the value of the lower estimated function at x_n
in the two ordered
antitonic regression functions problem. These values can be computed via explicit formulas, unlike the values at
x \in {x_2, \ldots, x_{n-1}}
, which are received via a projected subgradient algorithm. However,
b_n^*
enters this algorithm as an auxiliary quantity.
Usage
astar_1(g1, w1, g2, w2)
bstar_n(g1, w1, g2, w2)
Arguments
g1 |
Vector in |
w1 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
Value
Values of a_1^*
and b_n^*
are returned.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
See Also
This function is used by BoundedAntiMeanTwo
.
Function to display numbers in outputs
Description
Function that facilitates output of numbers
Mechanical engineering dataset used to illustrate ordered isotonic regression
Description
Dataset that contains the data analyzed in Balabdaoui et al. (2009).
Usage
data(mechIng)
Format
A data frame with 1495 observations on the following 3 variables.
x
Location of measurements.
g1
Measurements of the upper isotonic curve.
g2
Measurements of the lower isotonic curve.
Details
In Balabdaoui et al. (2009), ordered isotonic regression is illustrated using stress-strain curves from dynamical material tests.
Source
The data was taken from Shim and Mohr (2009).
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
Shim, J. and Mohr, D. (2009). Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. International Journal of Impact Engineering, 36(9), 1116–1127.
See Also
See the examples in BoundedIsoMeanTwo
for the analysis of this data.
Compute projections on restriction cones in Dykstra's algorithm.
Description
Internal functions for Dykstra's algorithm to compute bounded monotone regression estimates.
Details
These functions are not intended to be called by the user.
minK1
Compute projection of(a, b)
on the set\{(a, b) \ : \ a
is increasing.}.minK2
Compute projection of(a, b)
on the set\{(a, b) \ : \ b
is increasing.}.minK3
Compute projection of(a, b)
on the set\{(a, b) \ : \ a \le b\}
.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered antitonic regression curves. Preprint.
Dykstra, R.L. (1983). An Algorithm for Restricted Least Squares Regression. J. Amer. Statist. Assoc., 78, 837–842.
See Also
This functions are used by BoundedIsoMeanTwoDykstra
.