## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 7 ) set.seed(123) ## ----------------------------------------------------------------------------- library(OmicNetR) ## ----------------------------------------------------------------------------- omics_data <- generate_dummy_omics( n_samples = 60, n_genes = 800, n_metabolites = 150, n_linked = 20 ) X <- omics_data$X Y <- omics_data$Y ## ----------------------------------------------------------------------------- aligned <- align_omics(X, Y) X_aligned <- aligned$X Y_aligned <- aligned$Y ## ----------------------------------------------------------------------------- scca_model <- omic_scca( X = X_aligned, Y = Y_aligned, n_components = 2, penalty_X = 0.70, penalty_Y = 0.70 ) str(scca_model, max.level = 1) ## ----------------------------------------------------------------------------- net_data <- scca_to_network( scca_model, comp_select = 1, weight_threshold = 0.01 ) # Keep the strongest edges for readability net_data <- net_data[order(abs(net_data$Weight_Product), decreasing = TRUE), ] net_data <- head(net_data, 50) head(net_data) ## ----------------------------------------------------------------------------- plot_bipartite_network(net_data) ## ----------------------------------------------------------------------------- p <- plot_pathway_circle(scca_model, top_features = 30, pathway_db = "KEGG") p ## ----------------------------------------------------------------------------- plot_correlation_heatmap(scca_model = scca_model, X = X_aligned, Y = Y_aligned, top_n = 25)