Type: Package
Title: Observational Health Data Sciences and Informatics Report Generator
Version: 1.1.1
Date: 2025-5-08
Maintainer: Jenna Reps <jreps@its.jnj.com>
Description: Extract results into R from the Observational Health Data Sciences and Informatics result database (see https://ohdsi.github.io/Strategus/results-schema/index.html) and generate reports/presentations via 'quarto' that summarize results in HTML format. Learn more about 'OhdsiReportGenerator' at https://ohdsi.github.io/OhdsiReportGenerator/.
License: Apache License 2.0
URL: https://ohdsi.github.io/OhdsiReportGenerator/, https://github.com/OHDSI/OhdsiReportGenerator
BugReports: https://github.com/OHDSI/OhdsiReportGenerator/issues
VignetteBuilder: knitr
Depends: R (≥ 3.3.0)
Imports: CirceR, DatabaseConnector, forestplot, dplyr, ggplot2, ggpubr, gt, htmltools, kableExtra, ParallelLogger, quarto, reactable, rlang, rmarkdown, tibble, tidyr
Suggests: knitr, markdown, ResultModelManager, RSQLite, testthat
RoxygenNote: 7.3.2
Encoding: UTF-8
NeedsCompilation: no
Packaged: 2025-05-22 19:14:23 UTC; jreps
Author: Jenna Reps [aut, cre], Anthony Sena [aut]
Repository: CRAN
Date/Publication: 2025-05-22 20:00:08 UTC

OhdsiReportGenerator

Description

A package for extracting analyses results and creating reports.

Author(s)

Maintainer: Jenna Reps jreps@its.jnj.com

Authors:

See Also

Useful links:


addTarColumn

Description

Finds the four TAR columns and creates a new column called tar that pastes the columns into a nice string

Usage

addTarColumn(data)

Arguments

data

The data.frame with the individual TAR columns that you want to combine into one column

Details

Create a friendly single tar column

Value

The data data.frame object with the tar column added if seperate TAR columns are found

See Also

Other helper: formatBinaryCovariateName(), getExampleConnectionDetails(), kableDark(), printReactable(), removeSpaces()

Examples

addTarColumn(data.frame(
tarStartWith = 'cohort start',
tarStartOffset = 1,
tarEndWith = 'cohort start',
tarEndOffset = 0
))


formatBinaryCovariateName

Description

Removes the long part of the covariate name to make it friendly

Usage

formatBinaryCovariateName(data)

Arguments

data

The data.frame with the covariateName column

Details

Makes the covariateName more friendly and shorter

Value

The data data.frame object with the ovariateName column changed to be more friendly

See Also

Other helper: addTarColumn(), getExampleConnectionDetails(), kableDark(), printReactable(), removeSpaces()

Examples

formatBinaryCovariateName(data.frame(
covariateName = c("fdfgfgf: dgdgff","made up test")
))


generateFullReport

Description

Generates a full report from a Strategus analysis

Usage

generateFullReport(
  server,
  username,
  password,
  dbms,
  resultsSchema = NULL,
  targetId = 1,
  outcomeIds = 3,
  comparatorIds = 2,
  indicationIds = "",
  cohortNames = c("target name", "outcome name", "comp name"),
  cohortIds = c(1, 3, 2),
  includeCI = TRUE,
  includeCharacterization = TRUE,
  includeCohortMethod = TRUE,
  includeSccs = TRUE,
  includePrediction = TRUE,
  webAPI = NULL,
  authMethod = NULL,
  webApiUsername = NULL,
  webApiPassword = NULL,
  outputLocation,
  outputName = paste0("full_report_", gsub(":", "_", gsub(" ", "_",
    as.character(date()))), ".html"),
  intermediateDir = tempdir(),
  pathToDriver = Sys.getenv("DATABASECONNECTOR_JAR_FOLDER")
)

Arguments

server

The server containing the result database

username

The username for an account that can access the result database

password

The password for an account that can access the result database

dbms

The dbms used to access the result database

resultsSchema

The result database schema

targetId

The cohort definition id for the target cohort

outcomeIds

The cohort definition id for the outcome

comparatorIds

The cohort definition id for any comparator cohorts

indicationIds

The cohort definition id for any indication cohorts (if no indication use ”)

cohortNames

Friendly names for any cohort used in the study

cohortIds

The corresponding Ids for the cohortNames

includeCI

Whether to include the cohort incidence slides

includeCharacterization

Whether to include the characterization slides

includeCohortMethod

Whether to include the cohort method slides

includeSccs

Whether to include the self controlled case series slides

includePrediction

Whether to include the patient level prediction slides

webAPI

The ATLAS web API to use for the characterization index breakdown (set to NULL to not include)

authMethod

The authorization method for the webAPI

webApiUsername

The username for the webAPI authorization

webApiPassword

The password for the webAPI authorization

outputLocation

The file location and name to save the protocol

outputName

The name of the html protocol that is created

intermediateDir

The work directory for quarto

pathToDriver

Path to a folder containing the JDBC driver JAR files.

Details

Specify the connection details to the result database and the schema name to generate the full report.

Value

An html document containing the full results for the target, comparators, indications and outcomes specified.

See Also

Other Reporting: generatePresentation(), generatePresentationMultiple()


generatePresentation

Description

Generates a presentation from a Strategus result

Usage

generatePresentation(
  server,
  username,
  password,
  dbms,
  resultsSchema = NULL,
  dbDetails = NULL,
  lead = "add name",
  team = "name 1 name 2",
  trigger = "A signal was found in spontaneous reports",
  safetyQuestion = "",
  objective = "",
  topline1 =
    "Very brief executive summary. You can copy-paste language from the conclusion.",
  topline2 =
    "If an estimation was requested but not feasible, this should be mentioned here.",
  topline3 =
    "If no estimation study was requested, this high-level summary might be skipped.",
  date = as.character(Sys.Date()),
  targetId = 1,
  outcomeIds = 3,
  cohortNames = c("target name", "outcome name"),
  cohortIds = c(1, 3),
  covariateIds = NULL,
  details = list(studyPeriod = "All Time", restrictions = "Age - None"),
  evaluationText = "",
  includeCI = TRUE,
  includeCharacterization = TRUE,
  includeCM = TRUE,
  includeSCCS = TRUE,
  includePLP = TRUE,
  outputLocation,
  outputName = paste0("presentation_", gsub(":", "_", gsub(" ", "_",
    as.character(date()))), ".html"),
  intermediateDir = tempdir(),
  pathToDriver = Sys.getenv("DATABASECONNECTOR_JAR_FOLDER")
)

Arguments

server

The server containing the result database

username

The username for an account that can access the result database

password

The password for an account that can access the result database

dbms

The dbms used to access the result database

resultsSchema

The result database schema

dbDetails

(Optional) a data.frame with the columns:

lead

The name of the presenter

team

A vector or all the team members

trigger

What triggered the request

safetyQuestion

What is the general safety question

objective

What is the request/objective of the work.

topline1

add a very brief executive summary for the topline slide

topline2

add estimation summary here for the topline slide

topline3

add any other statement summary here for the topline slide

date

The date of the presentation

targetId

The cohort definition id for the target cohort

outcomeIds

The cohort definition id for the outcome

cohortNames

Friendly names for any cohort used in the study

cohortIds

The corresponding Ids for the cohortNames

covariateIds

A vector of covariateIds to include in the characterization

details

a list with the studyPeriod and restrictions

evaluationText

a list of bullet points for the evaluation

includeCI

Whether to include the cohort incidence slides

includeCharacterization

Whether to include the characterization slides

includeCM

Whether to include the cohort method slides

includeSCCS

Whether to include the self controlled case series slides

includePLP

Whether to include the patient level prediction slides

outputLocation

The file location and name to save the protocol

outputName

The name of the html protocol that is created

intermediateDir

The work directory for quarto

pathToDriver

Path to a folder containing the JDBC driver JAR files.

Details

Specify the connection details to the result database and the schema name to generate a presentation.

Value

An named R list with the elements 'standard' and 'source'

See Also

Other Reporting: generateFullReport(), generatePresentationMultiple()


generatePresentationMultiple

Description

Generates a presentation from a Strategus result

Usage

generatePresentationMultiple(
  server,
  username,
  password,
  dbms,
  resultsSchema = NULL,
  targetId = 1,
  targetName = "target cohort",
  cmSubsetId = 2,
  sccsSubsetId = NULL,
  indicationName = NULL,
  outcomeIds = 3,
  outcomeNames = "outcome cohort",
  comparatorIds = c(2, 4),
  comparatorNames = c("comparator cohort 1", "comparator cohort 2"),
  covariateIds = NULL,
  details = list(studyPeriod = "All Time", restrictions = "Age - None"),
  title = "ASSURE 001 ...",
  lead = "add name",
  date = Sys.Date(),
  backgroundText = "",
  evaluationText = "",
  outputLocation,
  outputName = paste0("presentation_", gsub(":", "_", gsub(" ", "_",
    as.character(date()))), ".html"),
  intermediateDir = tempdir()
)

Arguments

server

The server containing the result database

username

The username for an account that can access the result database

password

The password for an account that can access the result database

dbms

The dbms used to access the result database

resultsSchema

The result database schema

targetId

The cohort definition id for the target cohort

targetName

A friendly name for the target cohort

cmSubsetId

Optional a subset ID for the cohort method/prediction results

sccsSubsetId

Optional a subset ID for the SCCS and characterization results

indicationName

A name for the indication if used or NULL

outcomeIds

The cohort definition id for the outcome

outcomeNames

Friendly names for the outcomes

comparatorIds

The cohort method comparator cohort id

comparatorNames

Friendly names for the comparators

covariateIds

A vector of covariateIds to include in the characterization

details

a list with the studyPeriod and restrictions

title

A title for the presentation

lead

The name of the presentor

date

The date of the presentation

backgroundText

a character with any background text

evaluationText

a list of bullet points for the evaluation

outputLocation

The file location and name to save the protocol

outputName

The name of the html protocol that is created

intermediateDir

The work directory for quarto

Details

Specify the connection details to the result database and the schema name to generate a presentation.

Value

An named R list with the elements 'standard' and 'source'

See Also

Other Reporting: generateFullReport(), generatePresentation()


A function to extract case series characterization results

Description

A function to extract case series characterization results

Usage

getBinaryCaseSeries(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetId = NULL,
  outcomeId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetId

An integer corresponding to the target cohort ID

outcomeId

Am integer corresponding to the outcome cohort ID

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

A data.frame with the characterization case series results

See Also

Other Characterization: getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cs <- getBinaryCaseSeries(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetId = 1, 
  outcomeId = 3
)


A function to extract non-case and case binary characterization results

Description

A function to extract non-case and case binary characterization results

Usage

getBinaryRiskFactors(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetId = NULL,
  outcomeId = NULL,
  analysisIds = c(3)
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetId

An integer corresponding to the target cohort ID

outcomeId

Am integer corresponding to the outcome cohort ID

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

A data.frame with the characterization results for the cases and non-cases

See Also

Other Characterization: getBinaryCaseSeries(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

rf <- getBinaryRiskFactors(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetId = 1, 
  outcomeId = 3
)


Extract the cohort method results

Description

This function extracts the single database cohort method estimates for results that can be unblinded and have a calibrated RR

Usage

getCMEstimation(
  connectionHandler,
  schema,
  cmTablePrefix = "cm_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL,
  comparatorIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cmTablePrefix

The prefix used for the cohort method results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

comparatorIds

A vector of integers corresponding to the comparator cohort IDs

Details

Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Estimation: getCmDiagnosticsData(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsEstimation(), getSccsMetaEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cmEst <- getCMEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract aggregate statistics of binary feature analysis IDs of interest for cases

Description

This function extracts the feature extraction results for cases corresponding to specified target and outcome cohorts.

Usage

getCaseBinaryFeatures(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL,
  analysisIds = c(3)
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cbf <- getCaseBinaryFeatures(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract aggregate statistics of continuous feature analysis IDs of interest for targets

Description

This function extracts the continuous feature extraction results for cases corresponding to specified target and outcome cohorts.

Usage

getCaseContinuousFeatures(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL,
  analysisIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

ccf <- getCaseContinuousFeatures(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract the outcome cohort counts result

Description

This function extracts outcome cohort counts across databases in the results for specified target and outcome cohorts.

Usage

getCaseCounts(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cc <- getCaseCounts(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract the binary age groups for the cases and targets

Description

This function extracts the age group feature extraction results for cases and targets corresponding to specified target and outcome cohorts.

Usage

getCharacterizationDemographics(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetId = NULL,
  outcomeId = NULL,
  type = "age"
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetId

An integer corresponding to the target cohort ID

outcomeId

Am integer corresponding to the outcome cohort ID

type

A character of 'age' or 'sex'

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

# example code

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

ageData <- getCharacterizationDemographics(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract the cohort method diagostic results

Description

This function extracts the cohort method diagnostics that examine whether the analyses were sufficiently powered and checks for different types of bias.

Usage

getCmDiagnosticsData(
  connectionHandler,
  schema,
  cmTablePrefix = "cm_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL,
  comparatorIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cmTablePrefix

The prefix used for the cohort method results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

comparatorIds

A vector of integers corresponding to the comparator cohort IDs

Details

Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Estimation: getCMEstimation(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsEstimation(), getSccsMetaEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cmDiag <- getCmDiagnosticsData(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract the cohort method meta analysis results

Description

This function extracts any meta analysis estimation results for cohort method.

Usage

getCmMetaEstimation(
  connectionHandler,
  schema,
  cmTablePrefix = "cm_",
  cgTablePrefix = "cg_",
  esTablePrefix = "es_",
  targetIds = NULL,
  outcomeIds = NULL,
  comparatorIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cmTablePrefix

The prefix used for the cohort method results tables

cgTablePrefix

The prefix used for the cohort generator results tables

esTablePrefix

The prefix used for the evidence synthesis results tables

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

comparatorIds

A vector of integers corresponding to the comparator cohort IDs

Details

Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getSccsDiagnosticsData(), getSccsEstimation(), getSccsMetaEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cmMeta <- getCmMetaEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract the cohort definition details

Description

This function extracts all cohort definitions for the targets of interest.

Usage

getCohortDefinitions(
  connectionHandler,
  schema,
  cgTablePrefix = "cg_",
  targetIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cgTablePrefix

The prefix used for the cohort generator results tables

targetIds

A vector of integers corresponding to the target cohort IDs

Details

Specify the connectionHandler, the schema and the target cohort IDs

Value

Returns a data.frame with the cohort details

See Also

Other Cohorts: getCohortSubsetDefinitions(), processCohorts()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cohortDef <- getCohortDefinitions(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract the cohort subset definition details

Description

This function extracts all cohort subset definitions for the subsets of interest.

Usage

getCohortSubsetDefinitions(
  connectionHandler,
  schema,
  cgTablePrefix = "cg_",
  subsetIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cgTablePrefix

The prefix used for the cohort generator results tables

subsetIds

A vector of subset cohort ids or NULL

Details

Specify the connectionHandler, the schema and the subset IDs

Value

Returns a data.frame with the cohort subset details

See Also

Other Cohorts: getCohortDefinitions(), processCohorts()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

subsetDef <- getCohortSubsetDefinitions(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


A function to extract case series continuous feature characterization results

Description

A function to extract case series continuous feature characterization results

Usage

getContinuousCaseSeries(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetId = NULL,
  outcomeId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetId

An integer corresponding to the target cohort ID

outcomeId

Am integer corresponding to the outcome cohort ID

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

A data.frame with the characterization case series results

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cs <- getContinuousCaseSeries(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetId = 1, 
  outcomeId = 3
)


A function to extract non-case and case continuous characterization results

Description

A function to extract non-case and case continuous characterization results

Usage

getContinuousRiskFactors(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetId = NULL,
  outcomeId = NULL,
  analysisIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetId

An integer corresponding to the target cohort ID

outcomeId

Am integer corresponding to the outcome cohort ID

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

A data.frame with the characterization results for the cases and non-cases

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

rf <- getContinuousRiskFactors(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetId = 1, 
  outcomeId = 3
)


Extract the dechallenge rechallenge results

Description

This function extracts all dechallenge rechallenge results across databases for specified target and outcome cohorts.

Usage

getDechallengeRechallenge(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

dcrc <- getDechallengeRechallenge(
connectionHandler = connectionHandler, 
schema = 'main'
)


create a connection detail for an example OHDSI results database

Description

This returns an object of class 'ConnectionDetails' that lets you connect via 'DatabaseConnector::connect()' to the example result database.

Usage

getExampleConnectionDetails(exdir = tempdir())

Arguments

exdir

a directory to unzip the example result data into. Default is tempdir().

Details

Finds the location of the example result database in the package and calls 'DatabaseConnector::createConnectionDetails' to create a 'ConnectionDetails' object for connecting to the database.

Value

An object of class 'ConnectionDetails' with the details to connect to the example OHDSI result database

See Also

Other helper: addTarColumn(), formatBinaryCovariateName(), kableDark(), printReactable(), removeSpaces()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)


Extract the cohort incidence result

Description

This function extracts all incidence rates across databases in the results for specified target and outcome cohorts.

Usage

getIncidenceRates(
  connectionHandler,
  schema,
  ciTablePrefix = "ci_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

ciTablePrefix

The prefix used for the cohort incidence results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

ir <- getIncidenceRates(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract a complete set of cohorts used in the prediction results

Description

This function extracts the target and outcome cohorts used to develop any model in the results

Usage

getPredictionCohorts(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  cgTablePrefix = "cg_"
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

cgTablePrefix

The prefix used for the cohort generator results tables

Details

Specify the connectionHandler, the resultDatabaseSettings and any targetIds or outcomeIds to restrict models to

Value

Returns a data.frame with the columns:

See Also

Other Prediction: getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

predCohorts <- getPredictionCohorts(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract specific diagnostic table

Description

This function extracts the specified diagnostic table

Usage

getPredictionDiagnosticTable(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  table = "diagnostic_participants",
  diagnosticId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

table

The table to extract

diagnosticId

(optional) restrict to the input diagnosticId

Details

Specify the connectionHandler, the resultDatabaseSettings, the table of interest and (optionally) a diagnosticId to filter to

Value

Returns a data.frame with the specified table

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

diagPred <- getPredictionDiagnosticTable(
  connectionHandler = connectionHandler, 
  schema = 'main',
  table = 'diagnostic_predictors'
)


Extract the model design diagnostics for a specific development database

Description

This function extracts the PROBAST diagnostics

Usage

getPredictionDiagnostics(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  databaseTablePrefix = "",
  modelDesignId = NULL,
  threshold1_2 = 0.9
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

databaseTablePrefix

The prefix for the database table either ” or 'plp_'

modelDesignId

The identifier for a model design to restrict results to

threshold1_2

A threshold for probast 1.2

Details

Specify the connectionHandler, the resultDatabaseSettings and (optionally) a modelDesignId and threshold1_2 a threshold value to use for the PROBAST 1.2

Value

Returns a data.frame with the columns:

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

diag <- getPredictionDiagnostics(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract hyper parameters details

Description

This function extracts the hyper parameters details

Usage

getPredictionHyperParamSearch(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  modelDesignId = NULL,
  databaseId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

modelDesignId

The identifier for a model design to restrict to

databaseId

The identifier for the development database to restrict to

Details

Specify the connectionHandler, the resultDatabaseSettings, the modelDesignId and the databaseId

Value

Returns a data.frame with the columns:

plus columns for all the hyperparameters and their values

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

hyperParams <- getPredictionHyperParamSearch(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract model interception (for logistic regression)

Description

This function extracts the interception value

Usage

getPredictionIntercept(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  modelDesignId = NULL,
  databaseId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

modelDesignId

The identifier for a model design to restrict to

databaseId

The identifier for the development database to restrict to

Details

Specify the connectionHandler, the resultDatabaseSettings, the modelDesignId and the databaseId

Value

Returns a single value corresponding to the model intercept or NULL if not a logistic regression model

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

intercepts <- getPredictionIntercept(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract the model designs and aggregate performances for the prediction results

Description

This function extracts the model design settings and min/max/mean AUROC values of the models developed using the model design across databases

Usage

getPredictionModelDesigns(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  cgTablePrefix = "cg_",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

cgTablePrefix

The prefix used for the cohort generator results tables

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the resultDatabaseSettings and (optionally) any targetIds or outcomeIds to restrict model designs to

Value

Returns a data.frame with the columns:

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionPerformanceTable(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

modDesign <- getPredictionModelDesigns(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract specific results table

Description

This function extracts the specified table

Usage

getPredictionPerformanceTable(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  table = "attrition",
  performanceId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

table

The table to extract

performanceId

(optional) restrict to the input performanceId

Details

Specify the connectionHandler, the resultDatabaseSettings, the table of interest and (optionally) a performanceId to filter to

Value

Returns a data.frame with the specified table

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformances(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

attrition <- getPredictionPerformanceTable(
  connectionHandler = connectionHandler, 
  schema = 'main',
  table = 'attrition'
)


Extract the model performances

Description

This function extracts the model performances

Usage

getPredictionPerformances(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  databaseTablePrefix = "",
  modelDesignId = NULL,
  developmentDatabaseId = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

databaseTablePrefix

A prefix to the database table, either ” or 'plp_'

modelDesignId

The identifier for a model design to restrict results to

developmentDatabaseId

The identifier for the development database to restrict results to

Details

Specify the connectionHandler, the resultDatabaseSettings and (optionally) a modelDesignId and/or developmentDatabaseId to restrict models to

Value

Returns a data.frame with the columns:

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionTopPredictors()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

perf <- getPredictionPerformances(
  connectionHandler = connectionHandler, 
  schema = 'main'
)


Extract the top N predictors per model

Description

This function extracts the top N predictors per model from the prediction results tables

Usage

getPredictionTopPredictors(
  connectionHandler,
  schema,
  plpTablePrefix = "plp_",
  cgTablePrefix = "cg_",
  targetIds = NULL,
  outcomeIds = NULL,
  numberPredictors = 100
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

plpTablePrefix

The prefix used for the patient level prediction results tables

cgTablePrefix

The prefix used for the cohort generator results tables

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

numberPredictors

the number of predictors per model to return

Details

Specify the connectionHandler, the resultDatabaseSettings and (optionally) any targetIds or outcomeIds to restrict models to

Value

Returns a data.frame with the columns:

See Also

Other Prediction: getPredictionCohorts(), getPredictionDiagnosticTable(), getPredictionDiagnostics(), getPredictionHyperParamSearch(), getPredictionIntercept(), getPredictionModelDesigns(), getPredictionPerformanceTable(), getPredictionPerformances()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

topPreds <- getPredictionTopPredictors(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract the self controlled case series (sccs) diagostic results

Description

This function extracts the sccs diagnostics that examine whether the analyses were sufficiently powered and checks for different types of bias.

Usage

getSccsDiagnosticsData(
  connectionHandler,
  schema,
  sccsTablePrefix = "sccs_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

sccsTablePrefix

The prefix used for the cohort generator results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getCmMetaEstimation(), getSccsEstimation(), getSccsMetaEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

sccsDiag <- getSccsDiagnosticsData(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract the self controlled case series (sccs) results

Description

This function extracts the single database sccs estimates

Usage

getSccsEstimation(
  connectionHandler,
  schema,
  sccsTablePrefix = "sccs_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

sccsTablePrefix

The prefix used for the cohort generator results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsMetaEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

sccsEst <- getSccsEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract the self controlled case series (sccs) meta analysis results

Description

This function extracts any meta analysis estimation results for sccs.

Usage

getSccsMetaEstimation(
  connectionHandler,
  schema,
  sccsTablePrefix = "sccs_",
  cgTablePrefix = "cg_",
  esTablePrefix = "es_",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

sccsTablePrefix

The prefix used for the cohort generator results tables

cgTablePrefix

The prefix used for the cohort generator results tables

esTablePrefix

The prefix used for the evidence synthesis results tables

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the targetoutcome cohort IDs

Value

Returns a data.frame with the columns:

#'

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsEstimation(), plotCmEstimates(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

sccsMeta <- getSccsMetaEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)


Extract aggregate statistics of binary feature analysis IDs of interest for targets

Description

This function extracts the feature extraction results for targets corresponding to specified target and outcome cohorts.

Usage

getTargetBinaryFeatures(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL,
  analysisIds = c(3)
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

tbf <- getTargetBinaryFeatures (
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract aggregate statistics of continuous feature analysis IDs of interest for targets

Description

This function extracts the continuous feature extraction results for targets corresponding to specified target cohorts.

Usage

getTargetContinuousFeatures(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  analysisIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

analysisIds

The feature extraction analysis ID of interest (e.g., 201 is condition)

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

tcf <- getTargetContinuousFeatures(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract the target cohort counts result

Description

This function extracts target cohort counts across databases in the results for specified target and outcome cohorts.

Usage

getTargetCounts(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTimeToEvent(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

tc <- getTargetCounts(
connectionHandler = connectionHandler, 
schema = 'main'
)


Extract the time to event result

Description

This function extracts all time to event results across databases for specified target and outcome cohorts.

Usage

getTimeToEvent(
  connectionHandler,
  schema,
  cTablePrefix = "c_",
  cgTablePrefix = "cg_",
  databaseTable = "database_meta_data",
  targetIds = NULL,
  outcomeIds = NULL
)

Arguments

connectionHandler

A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'.

schema

The result database schema (e.g., 'main' for sqlite)

cTablePrefix

The prefix used for the characterization results tables

cgTablePrefix

The prefix used for the cohort generator results tables

databaseTable

The name of the table with the database details (default 'database_meta_data')

targetIds

A vector of integers corresponding to the target cohort IDs

outcomeIds

A vector of integers corresponding to the outcome cohort IDs

Details

Specify the connectionHandler, the schema and the target/outcome cohort IDs

Value

Returns a data.frame with the columns:

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), plotAgeDistributions(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

tte <- getTimeToEvent(
connectionHandler = connectionHandler, 
schema = 'main'
)
 

output a nicely formatted html table

Description

This returns a html table with the input data

Usage

kableDark(data, caption = NULL, position = NULL)

Arguments

data

A data.frame containing data of interest to show via a table

caption

A caption for the table

position

The position for the table if used within a quarto document. This is the "real" or say floating position for the latex table environment. The kable only puts tables in a table environment when a caption is provided. That is also the reason why your tables will be floating around if you specify captions for your table. Possible choices are h (here), t (top, default), b (bottom) and p (on a dedicated page).

Details

Input the data that you want to be shown via a dark html table

Value

An object of class 'knitr_kable' that will show the data via a nice html table

See Also

Other helper: addTarColumn(), formatBinaryCovariateName(), getExampleConnectionDetails(), printReactable(), removeSpaces()

Examples

kableDark(
data = data.frame(a=1,b=4), 
caption = 'A made up table to demonstrate this function',
position = 'h'
)


Plots the age distributions using the binary age groups

Description

Creates bar charts for the target and case age groups.

Usage

plotAgeDistributions(
  ageData,
  riskWindowStart = "1",
  riskWindowEnd = "365",
  startAnchor = "cohort start",
  endAnchor = "cohort start"
)

Arguments

ageData

The age data extracted using 'getCharacterizationDemographics(type = 'age')'

riskWindowStart

The time at risk window start

riskWindowEnd

The time at risk window end

startAnchor

The anchor for the time at risk start

endAnchor

The anchor for the time at risk end

Details

Input the data returned from 'getCharacterizationDemographics(type = 'age')' and the time-at-risk

Value

Returns a ggplot with the distributions

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotSexDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

ageData <- getCharacterizationDemographics(
connectionHandler = connectionHandler, 
schema = 'main',
targetId = 1, 
outcomeId = 3, 
type = 'age'
)

plotAgeDistributions(ageData = ageData)


Plots the cohort method results for one analysis

Description

Creates nice cohort method plots

Usage

plotCmEstimates(
  cmData,
  cmMeta = NULL,
  targetName,
  comparatorName,
  selectedAnalysisId
)

Arguments

cmData

The cohort method data

cmMeta

(optional) The cohort method evidence synthesis data

targetName

A friendly name for the target cohort

comparatorName

A friendly name for the comparator cohort

selectedAnalysisId

The analysis ID of interest to plot

Details

Input the cohort method data

Value

Returns a ggplot with the estimates

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsEstimation(), getSccsMetaEstimation(), plotSccsEstimates()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cmEst <- getCMEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)
plotCmEstimates(
  cmData = cmEst, 
  cmMeta = NULL, 
  targetName = 'target', 
  comparatorName = 'comp', 
  selectedAnalysisId = 1
)


Plots the self controlled case series results for one analysis

Description

Creates nice self controlled case series plots

Usage

plotSccsEstimates(sccsData, sccsMeta = NULL, targetName, selectedAnalysisId)

Arguments

sccsData

The self controlled case series data

sccsMeta

(optional) The self controlled case seriesd evidence synthesis data

targetName

A friendly name for the target cohort

selectedAnalysisId

The analysis ID of interest to plot

Details

Input the self controlled case series data

Value

Returns a ggplot with the estimates

See Also

Other Estimation: getCMEstimation(), getCmDiagnosticsData(), getCmMetaEstimation(), getSccsDiagnosticsData(), getSccsEstimation(), getSccsMetaEstimation(), plotCmEstimates()

Examples


conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

sccsEst <- getSccsEstimation(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetIds = 1,
  outcomeIds = 3
)
plotSccsEstimates(
  sccsData = sccsEst, 
  sccsMeta = NULL, 
  targetName = 'target', 
  selectedAnalysisId = 1
)


Plots the sex distributions using the sex features

Description

Creates bar charts for the target and case sex.

Usage

plotSexDistributions(
  sexData,
  riskWindowStart = "1",
  riskWindowEnd = "365",
  startAnchor = "cohort start",
  endAnchor = "cohort start"
)

Arguments

sexData

The sex data extracted using 'getCharacterizationDemographics(type = 'sex')'

riskWindowStart

The time at risk window start

riskWindowEnd

The time at risk window end

startAnchor

The anchor for the time at risk start

endAnchor

The anchor for the time at risk end

Details

Input the data returned from 'getCharacterizationDemographics(type = 'sex')' and the time-at-risk

Value

Returns a ggplot with the distributions

See Also

Other Characterization: getBinaryCaseSeries(), getBinaryRiskFactors(), getCaseBinaryFeatures(), getCaseContinuousFeatures(), getCaseCounts(), getCharacterizationDemographics(), getContinuousCaseSeries(), getContinuousRiskFactors(), getDechallengeRechallenge(), getIncidenceRates(), getTargetBinaryFeatures(), getTargetContinuousFeatures(), getTargetCounts(), getTimeToEvent(), plotAgeDistributions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

sexData <- getCharacterizationDemographics(
  connectionHandler = connectionHandler, 
  schema = 'main',
  targetId = 1, 
  outcomeId = 3, 
  type = 'sex'
)
plotSexDistributions(sexData = sexData)


prints a reactable in a quarto document

Description

This function lets you print a reactable in a quarto document

Usage

printReactable(
  data,
  columns = NULL,
  groupBy = NULL,
  defaultPageSize = 20,
  highlight = TRUE,
  striped = TRUE,
  searchable = TRUE,
  filterable = TRUE
)

Arguments

data

The data for the table

columns

The formating for the columns

groupBy

A column or columns to group the table by

defaultPageSize

The number of rows in the table

highlight

whether to highlight the row of interest

striped

whether the rows change color to give a striped appearance

searchable

whether you can search in the table

filterable

whether you can filter the table

Details

Input the values for reactable::reactable

Value

Nothing but the html code for the table is printed (to be used in a quarto document)

See Also

Other helper: addTarColumn(), formatBinaryCovariateName(), getExampleConnectionDetails(), kableDark(), removeSpaces()

Examples

printReactable(
data = data.frame(a=1,b=4)
)


Extract the cohort parents and children cohorts (cohorts derieved from the parent cohort)

Description

This function lets you split the cohort data.frame into the parents and the children per parent.

Usage

processCohorts(cohort)

Arguments

cohort

The data.frame extracted using 'getCohortDefinitions()'

Details

Finds the parent cohorts and children cohorts

Value

Returns a list containing parents: a named vector of all the parent cohorts and cohortList: a list the same length as the parent vector with the first element containing all the children of the first parent cohort, the second element containing the children of the second parent, etc.

See Also

Other Cohorts: getCohortDefinitions(), getCohortSubsetDefinitions()

Examples

conDet <- getExampleConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

cohortDef <- getCohortDefinitions(
  connectionHandler = connectionHandler, 
  schema = 'main'
)

parents <- processCohorts(cohortDef)


removeSpaces

Description

Removes spaces and replaces with under scroll

Usage

removeSpaces(x)

Arguments

x

A string

Details

Removes spaces and replaces with under scroll

Value

A string without spaces

See Also

Other helper: addTarColumn(), formatBinaryCovariateName(), getExampleConnectionDetails(), kableDark(), printReactable()

Examples

removeSpaces(' made up.   string')