Version: | 1.3.6-4 |
Title: | Simulation and Estimation of the Neyman-Scott Type Spatial Cluster Models |
Depends: | R (≥ 3.0.0) |
Imports: | graphics, stats, utils, methods |
Description: | Simulation and estimation for Neyman-Scott spatial cluster point process models and their extensions, based on the methodology in Tanaka, Ogata, and Stoyan (2008) <doi:10.1002/bimj.200610339>. To estimate parameters by the simplex method, parallel computation using 'OpenMP' application programming interface is available. For more details see Tanaka, Saga and Nakano <doi:10.18637/jss.v098.i06>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Contact: | ismrp@jasp.ism.ac.jp |
NeedsCompilation: | yes |
Packaged: | 2025-04-29 05:50:03 UTC; msaga |
Author: | Ushio Tanaka [aut] (Fortran original), Masami Saga [aut, cre], Junji Nakano [aut] |
Maintainer: | Masami Saga <msaga@mtb.biglobe.ne.jp> |
Repository: | CRAN |
Date/Publication: | 2025-04-30 07:30:05 UTC |
Simulation and Estimation of the Neyman-Scott Type Spatial Cluster Models
Description
NScluster involves the maximum Palm likelihood estimation procedure for Neyman-Scott cluster point process models and their extensions with parallel computation using OpenMP technology. The maximum Palm likelihood estimates (MPLEs for short) are those that maximize the log-Palm likelihood function. The computation of MPLEs is implemented by simplex maximization with parallel computation via OpenMP. Together with the likelihood estimation procedure, NScluster also provides a simulation procedure for cluster point process models.
Details
The documentation 'A Guide to NScluster: R Package for Maximum Palm Likelihood
Estimation for Cluster Point Process Models using OpenMP' is available in the
package vignette using the vignette
function (e.g.,
vignette("NScluster")
).
The package NScluster comprises of four tasks: simulation, parameter estimation (MPLE), confidence interval estimation, and non-parametric and parametric Palm intensity comparison.
Simulation:
The
sim.cppm
function simulates the five cluster point process models: the Thomas and Inverse-power type models, and the extended Thomas models of type A, B, and C.Parameter estimation (MPLE):
The
mple.cppm
function improves the given initial parameters using the simplex method to maximize the log-Palm likelihood function.The expensive calculation of the estimation for calculating the parameters can be parallelized to reduce calculation time. The package is implemented to employ OpenMP, which is a simple framework for shared memory parallel computation.
Confidence interval of parameter estimates:
The
boot.mple
function carries out the bootstarp replicates for an object generated bymple.cppm
and computes confidence intervals and standard errors.Palm intensity comparison:
The package can depict non-parametric and parametric normalized Palm intensity function of the five cluster point process models using the
palm.cppm
function.
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/
Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43-57.
Tanaka, U., Saga, M. and Nakano, J. (2021) NScluster: An R Package for Maximum Palm Likelihood Estimation for Cluster Point Process Models Using OpenMP. Journal of Statistical Software, 98(6), 1-22. doi:10.18637/jss.v098.i06.
Bootstrap resampling for MPLE
Description
Carry out bootstrap replicates of MPLE on simulated data.
Usage
boot.mple(mple.out, n = 100, conf.level = 0.95, se = TRUE, trace = FALSE)
## S3 method for class 'boot.mple'
summary(object, ...)
Arguments
mple.out |
an object of class "mple", usually the result of a call to
|
n |
number of bootstrap replicates performed. |
conf.level |
the confidence level required. |
se |
logical. If |
trace |
logical: if |
object |
an object of class |
... |
ignored. |
Value
boot.mple
returns an object of class "boot.mple"
containing the
following components:
boot.mples |
a matrix of |
confint |
confidence intervals for MPLEs. |
mple |
MPLE of |
Examples
### Thomas Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
## Not run: # estimation (need long CPU time)
init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05)
t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars)
t.boot <- boot.mple(t.mple)
summary(t.boot)
## End(Not run)
MPLE of Neyman-Scott Cluster Point Process Models and Their Extensions
Description
MPLE of the five cluster point process models.
Usage
mple.cppm(model = "Thomas", xy.points, pars = NULL, eps = 0.001, uplimit = 0.3,
skip = 1)
## S3 method for class 'mple'
coef(object, ...)
## S3 method for class 'mple'
summary(object, ...)
Arguments
model |
a character string indicating each cluster point process model:
|
xy.points |
a matrix containing the coordinates |
pars |
a named vector containing a given initial guess of each
parameter. If |
eps |
the sufficiently small number to implement the optimization
procedure for the log-Palm likelihood function. The procedure is iterated
at most 1000 times until the |
uplimit |
upper limit in place of |
skip |
the variable enables one to obtain speedily the initial MPLEs, but
rough approximation. The |
object |
an object of class |
... |
ignored. |
Details
"Thomas"
(Thomas model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \mu\nu + \frac{\nu}{4\pi \sigma^2} \exp \left( -\frac{r^2}{4 \sigma^2} \right).
The log-Palm likelihood function is given by
\log L(\mu,\nu,\sigma) = \sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \nu \left\{ \mu + \frac{1}{4 \pi \sigma^2} \exp \left( -\frac{{r_{ij}}^2}{4 \sigma^2} \right) \right\}
- N(W)\nu \left\{ \frac{\pi \mu}{4} + 1 - \exp \left( -\frac{1}{16 \sigma^2} \right) \right\}.
"TypeB"
(Type B model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \lambda + \frac{\nu}{4 \pi} \left\{ \frac{a}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right)+ \frac{(1-a)}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},
where
\lambda = \nu(\mu_1+\mu_2)
anda = \mu_1/(\mu_1+\mu_2)
are the total intensity and the ratio of the intensity of the parent points of the smaller cluster to the total one, respectively.The log-Palm likelihood function is given by
\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)
=\sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1}{4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]
- N(W) \left[ \frac{\pi \lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],
where
\alpha = a\nu
and\beta = (1-a)\nu
.
"TypeC"
(Type C model)The Palm intensity function is given as follows:
For all
r \ge 0
,\lambda_{\bm{o}}(r) = \lambda + \frac{1}{4 \pi} \left\{ \frac{a\nu_1}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right) + \frac{(1-a)\nu_2}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},
where
\lambda = \mu_1\nu_1 + \mu_2\nu_2
anda = \mu_1\nu_1/\lambda
are the total intensity and the ratio of the intensity of the smaller cluster to the total one, respectively.The log-Palm likelihood function is given by
\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)
= \sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1} {4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]
-N(W) \left[ \frac{\pi\lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],
where
\alpha = a\nu_1
and\beta = (1-a)\nu_2
.
For the inverse-power model and the Type A models, we need to take the alternative form without explicit representation of the Palm intensity function. See the second reference below for details.
Value
mple.cppm
returns an object of class "mple"
containing the
following main components:
mple |
MPLE (maximum Palm likelihood estimate). |
log.mpl |
the log maximum Palm likelihood. |
aic |
AIC. |
process1 |
a list with following components.
|
process2 |
a list with following components.
|
There are other methods plot.mple
and print.mple
for this class.
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43-57.
Examples
## Not run:
# The computation of MPLEs takes a long CPU time in the minimization procedure,
# especially for the Inverse-power type and the Type A models.
### Thomas Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
## estimation
init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05)
t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars)
coef(t.mple)
### Inverse-Power Type Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005)
ip.sim <- sim.cppm("IP", pars, seed = 353)
## estimation
init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01)
ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100)
coef(ip.mple)
### Type A Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
a.sim <- sim.cppm("TypeA", pars, seed = 575)
## estimation
init.pars <- c(mu = 60.0, nu = 40.0, a = 0.5, sigma1 = 0.01, sigma2 = 0.1)
a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip = 100)
coef(a.mple)
### Type B Model
# simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
b.sim <- sim.cppm("TypeB", pars, seed = 257)
## estimation
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars)
coef(b.mple)
### Type C Model
# simulation
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
c.sim <- sim.cppm("TypeC", pars, seed = 555)
## estimation
init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0,
sigma1 = 0.03, sigma2 = 0.03)
c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars)
coef(c.mple)
## End(Not run)
Non-parametric and Parametric Estimation for Palm Intensity
Description
Compute the non-parametric and the parametric Palm intensity function of the Neyman-Scott cluster point process models and their extensions.
Usage
palm.cppm(mple, pars = NULL, delta = 0.001, uplimit = 0.3)
## S3 method for class 'Palm'
print(x, ...)
Arguments
mple |
an object of class "mple". |
pars |
a named vector of the true parameters, if any. |
delta |
a width for the non-parametric Palm intensity function. |
uplimit |
upper limit in place of |
x |
an object of class |
... |
ignored. |
Value
An object of class "Palm"
containing the following components:
r |
the distance |
np.palm |
the corresponding values of the non-parametric Palm intensity
function, which is normalized by the total intensity estimate (the mean
number of points in |
norm.palm |
the corresponding values of the normalized Palm intensity
function, i.e., |
There is another method plot.Palm
for this class.
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
See Also
See sim.cppm
and mple.cppm
to simulate the
Neyman-Scott cluster point process models and their extensions and to compute
the MPLEs, respectively.
Examples
## Not run:
# The computation of MPLEs takes a long CPU time in the minimization procedure,
# especially for the Inverse-power type and the Type A models.
### Thomas Model
#simulation
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
## estimation => Palm intensity
init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05)
t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars)
t.palm <- palm.cppm(t.mple, pars)
plot(t.palm)
### Inverse-Power Type Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005)
ip.sim <- sim.cppm("IP", pars, seed = 353)
## estimation => Palm intensity
init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01)
ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100)
ip.palm <- palm.cppm(ip.mple, pars)
plot(ip.palm)
### Type A Model
# simulation
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
a.sim <- sim.cppm("TypeA", pars, seed=575)
## estimation => Palm intensity
init.pars <- c(mu=60.0, nu=40.0, a=0.5, sigma1=0.01, sigma2=0.1)
a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip=100)
a.palm <- palm.cppm(a.mple, pars)
plot(a.palm)
### Type B Model
# simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
b.sim <- sim.cppm("TypeB", pars, seed = 257)
## estimation => Palm intensity
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars)
b.palm <- palm.cppm(b.mple, pars)
plot(b.palm)
### Type C Model
# simulation
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
c.sim <- sim.cppm("TypeC", pars, seed = 555)
## estimation => Palm intensity
init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0,
sigma1 = 0.03, sigma2 = 0.03)
c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars)
c.palm <- palm.cppm(c.mple, pars)
plot(c.palm)
## End(Not run)
Plot Non-Parametric and Parametric Normalized Palm Intensity
Description
Plot method for objects of class "Palm"
.
Usage
## S3 method for class 'Palm'
plot(x, ..., log = "xy")
Arguments
x |
an object of class |
... |
optional. At most 4 additional objects of class "Palm". |
log |
a character string indicating if logarithmic axes are to be used. |
Show the Process for Optimizing Parameter Set
Description
Plot method for object of class "mple"
shows process for optimizing the
normalized parameters depending on a given initial guess of each parameter.
Usage
## S3 method for class 'mple'
plot(x, ...)
Arguments
x |
an object of class |
... |
further graphical parameters from |
Print Process for Maximizing Log-Palm Likelihood Function
Description
Print the process for minimizing the negative log-Palm likelihood function and/or the process for optimizing the normalized parameters depending on a given initial guess of each parameter by the simplex method.
Usage
## S3 method for class 'mple'
print(x, print.level = 0, ...)
Arguments
x |
an object of class |
print.level |
We have the following processes:
|
... |
ignored. |
Simulation for Neyman-Scott Cluster Point Process Models and Their Extensions
Description
Simulation for the Thomas and Inverse-power type models, and the extended Thomas models of type A, B, and C.
Usage
sim.cppm(model = "Thomas", pars, seed = NULL)
## S3 method for class 'sim.cpp'
print(x, ...)
## S3 method for class 'sim.cpp'
plot(x, parents.distinct = FALSE, ...)
Arguments
model |
a character string indicating each cluster point process model:
|
pars |
a named vector giving the values of each parameter. See 'Details'. |
seed |
arbitrary positive integer to generate a sequence of uniform random numbers. The default seed is based on the current time. |
x |
an object of class |
parents.distinct |
logical. If |
... |
further graphical parameters from |
Details
We consider the five cluster point process models: the Thomas and Inverse-power type models, and the extended Thomas models of type A, B, and C.
"Thomas"
(Thomas model)The parameters of the model are as follows:
-
mu
: the intensity of parent points. -
nu
: the expectation of a random number of descendant points of each parent point. -
sigma
: the parameter set of the dispersal kernel.
Let a random variable
U
be independently and uniformly distributed in [0,1].Consider
U = \int_0^r q_\sigma(t)dt = 1 - \exp \left( -\frac{r^2}{2\sigma^2} \right),
where
r
is the random variable of the distance between each parent point and the descendant points associated with the given parent. The distance is distributed independently and identically according to the dispersal kernel.We have
r = \sigma \sqrt{-2 \log(1-U)}.
Let
(x_i^p, y_i^p), i=1,2,\dots, I,
be a coordinate of each parent point where the integerI
is generated from the Poisson random variablePoisson(\mu)
with mean\mu
from now on. Then, for eachi
, the number of offspringJ_i
is generated by the random variablePoisson(\nu)
with mean\nu
. Then, using series of different uniform random numbers\{U\}
for differenti
andj
, each of the offspring coordinates(x_j^i, y_j^i), j=1,2,\dots,J_i
is given byx_j^i = x_i^p + r \cos(2 \pi U),
y_j^i = y_i^p + r \sin(2 \pi U),
owing to the isotropy condition of the distribution.
Given a positive number
\nu
and let a sequence of a random variable\{U_k\}
be independently and uniformly distributed in [0,1], the Poisson random numberM
is the smallest integer such that\sum_{k=1}^{M+1} - \log U_k > \nu,
where
\log
represents natural logarithm.-
"IP"
(Inverse-power type model)The parameters of the model are as follows:
-
mu
: the intensity of parent points. -
nu
: the expectation of a random number of descendant points of each parent point. -
p
,c
: the set of parameters of the dispersal kernel, wherep
> 1 andc
> 0.
Let
U
be as above.For all
r \ge 0
,Q_{p,c}(r) := \int_0^r q_{p,c}(t)dt
= c^{p-1}(p-1) \frac{(r+c)^{1-p} - c^{1-p}}{1-p}
= 1 - c^{p-1} (r+c)^{1-p}.
Here, we put
Q_{p,c}(r) = U
. From this, we haver = c\{(1-U)^{1/(1-p)} - 1\}.
The parent points and their descendant points are generated the same as the Thomas model.
-
"TypeA"
(Type A model)The parameters of the model are as follows:
-
mu
: the intensity of parent points. -
nu
: the expectation of a random number of descendant points of each parent point. -
a
,sigma1
,sigma2
: the set of parameters of the dispersal kernel, where wherea
is a mixture ratio parameter with 0 <a
< 1.
Let each random variable
U_k, k=1,2
, be independently and uniformly distributed in [0,1].Then
r
satisfies as follows:r = \sigma_1 \sqrt{-2 \log(1-U_1)}, \quad U_2 \le a ,
r = \sigma_2 \sqrt{-2 \log(1-U_1)}, \quad \mathrm{otherwise.}
The parent points and their descendant points are generated the same as the Thomas model.
-
"TypeB"
(Type B model)The TypeB is a superposed Thomas model. The parameters of the model are as follows:
-
mu1
,mu2
: the corresponding intensity of parent points of each Thomas model. -
nu
: the expectation of a random number of descendant points of each parent point. -
sigma1
,sigma2
: the corresponding set of parameters of the dispersal kernel of each Thomas model.
Consider the two types of the Thomas model with parameters
(\mu_1, \nu, \sigma_1)
and(\mu_2, \nu, \sigma_2)
. Parents' configuration and numbers of the descendant cluster sizes are generated by the two types of uniformly distributed parents(x_i^k, y_i^k)
withi=1,2,\dots,Poisson(\mu_k)
fork=1,2
, respectively.Then, using series of different uniform random numbers
\{U\}
for differenti
andj
, each of the descendant coordinates(x_j^{k,i}, y_j^{k,i})
of the parents(x_i^k, y_i^k)
,k=1,2
,j=1,2,\dots,Poisson(\nu)
, is given byx_j^{k,i} = x_i^k + r_k \cos (2 \pi U),
y_j^{k,i} = y_i^k + r_k \sin (2 \pi U),
where
r_k = \sigma_k \sqrt{-2 \log (1-U_k)}, \quad k = 1, 2,
with different random numbers
\{U_k, U\}
for differentk, i
, andj
.-
"TypeC"
(Type C model)The TypeC is a superposed Thomas model. The parameters of the model are as follows:
-
mu1
,mu2
: the corresponding intensity of parent points of each Thomas model. -
nu1
,nu2
: the corresponding expectation of a random number of descendant points of each Thomas model. -
sigma1
,sigma2
: the corresponding set of parameters of the dispersal kernel of each Thomas model.
The parent points and their descendant points are generated the same as the Type B model.
-
Value
sim.cppm
returns an object of class "sim.cpp"
containing the
following components which has print
and plot
methods.
parents |
a list containing two components named " |
offspring |
a list containing two components named " |
References
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
Examples
## Thomas Model
pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
t.sim <- sim.cppm("Thomas", pars, seed = 117)
t.sim
plot(t.sim)
## Inverse-Power Type Model
pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005)
ip.sim <- sim.cppm("IP", pars, seed = 353)
ip.sim
plot(ip.sim)
## Type A Model
pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1)
a.sim <- sim.cppm("TypeA", pars, seed = 575)
a.sim
plot(a.sim)
## Type B Model
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
b.sim <- sim.cppm("TypeB", pars, seed = 257)
b.sim
plot(b.sim, parents.distinct = TRUE)
## Type C Model
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
c.sim <- sim.cppm("TypeC", pars, seed = 555)
c.sim
plot(c.sim, parents.distinct = FALSE)