The package provides several robust estimation methods for linear
regression under both fixed and high dimesional settings. The methods
include Maximum Tangent Likelihood Estimator (MTE and
MTElasso) (Qin et al., 2017+), Least Absolute Deviance
Estimator (LAD and LADlasso) and Huber
estimator (huber.reg and huber.lasso).
devtools::install_github("shaobo-li/MTE")library(MTE)
set.seed(2017)
n=200; d=500
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, d-6))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
output.MTELasso=MTElasso(X, y, p=2, t=0.01)
beta.est=output.MTELasso$betaQin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. doi:10.48550/arXiv.1708.05439.