
Advanced case study options
GMSE: an R package for generalised management strategy evaluation (Supporting

Information 4)

A. Bradley Duthie13, Jeremy J. Cusack1, Isabel L. Jones1, Jeroen Minderman1,
Erlend B. Nilsen2, Rocío A. Pozo1, O. Sarobidy Rakotonarivo1,

Bram Van Moorter2, and Nils Bunnefeld1

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian
Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk

Fine-tuning simulation conditions using gmse_apply

Here we demonstrate how simulations in GMSE can be more fine-tuned to specific empirical situations
through the use of gmse_apply. To do this, we use the same scenario described in Example case study
in GMSE; we first recreate the basic scenario run in gmse using gmse_apply, and then build in additional
modelling details including (1) custom placement of user land, (2) parameterisation of individual user budgets,
and (3) density-dependent movement of resources. We emphasise that these simulations are provided only to
demonstrate the use of GMSE, and specifically to show the flexibility of the gmse_apply function, not to
accurately recreate the dynamics of a specific system or make management recommendations.

We reconsider the case of a protected waterfowl population that exploits agricultural land (e.g., Fox and
Madsen, 2017; Mason et al., 2017; Tulloch et al., 2017; Cusack et al., 2018). The manager attempts to keep
the watefowl at a target abundance, while users (farmers) attempt to maximise agricultural yield on the land
that they own. We again parameterise our model using demographic information from the Taiga Bean Goose
(Anser fabalis fabalis), as reported by Johnson et al. (2018) and AEWA (2016). Relevant parameter values
are listed in the table below.

Table 1: GMSE simulation parameter values inspired by Johnson
et al. (2018) and AEWA (2016)

Parameter Value Description
remove_pr 0.122 Goose density-independent mortality probability
lambda 0.275 Expected offspring production per time step
res_death_K 93870 Goose carrying capacity (on adult mortality)
RESOURCE_ini 35000 Initial goose abundance
manage_target 70000 Manager’s target goose abundance
res_death_type 3 Mortality (density and density-independent sources)

Additionally, we continue to use the following values for consistency, except in the case of stakeholders,
where we reduce the number of farmers to stakeholders = 8. This is done to for two reasons. First, it
speeds up simulations for the purpose of demonstration; second, it makes the presentation of our custom
landscape ownership easier to visualise (see below).

1

mailto:alexander.duthie@stir.ac.uk

Table 2: Non-default GMSE parameter values chosen by authors

Parameter Value Description
manager_budget 10000 Manager’s budget for setting policy options
user_budget 10000 Users’ budgets for actions
public_land 0.4 Proportion of the landscape that is public
stakeholders 8 Number of stakeholders
land_ownership TRUE Users own landscape cells
res_consume 0.02 Landscape cell output consumed by a resource
observe_type 3 Observation model type (survey)
agent_view 1 Cells managers can see when conducting a survey

All other values are set to GMSE defaults, except where specifically noted otherwise.

Re-creating gmse simulations using gmse_apply

We now recreate the simulations in Example case study in GMSE, which were run using the gmse function,
in gmse_apply. Doing so requires us to first initialise simulations using one call of gmse_apply, then loop
through multiple time steps that again call gmse_apply; results of interest are recorded in a data frame
(sim_sum_1). Following the protocol introduced in Use of the gmse_apply function, we can call the initialising
simulation sim_old, and use the code below to read in the relevant parameter values.
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_death_K = 93870, RESOURCE_ini = 35000,
manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 100000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200);

Note that the argument get_res = "Full" causes sim_old to retain all of the relevant data structures for
simulating a new time step and recording simulation results. This includes the key simulation output, which
is located in sim_old$basic_output, which is printed below.

$resource_results
[1] 34079
##
$observation_results
[1] 34079
##
$manager_results
resource_type scaring culling castration feeding help_offspring
policy_1 1 NA 512 NA NA NA
##
$user_results
resource_type scaring culling castration feeding help_offspring
Manager 1 NA 0 NA NA NA
user_1 1 NA 195 NA NA NA
user_2 1 NA 195 NA NA NA
user_3 1 NA 195 NA NA NA
user_4 1 NA 195 NA NA NA

2

user_5 1 NA 195 NA NA NA
user_6 1 NA 195 NA NA NA
user_7 1 NA 195 NA NA NA
user_8 1 NA 195 NA NA NA
tend_crops kill_crops
Manager NA NA
user_1 NA NA
user_2 NA NA
user_3 NA NA
user_4 NA NA
user_5 NA NA
user_6 NA NA
user_7 NA NA
user_8 NA NA

We can then loop over 30 time steps to recreate the simulations from Example case study in GMSE. In these
simulations, we are specifically interested in the resource and observation outputs, as well as the manager
policy and user actions for culling, which we record below in the data frame sim_sum_1. The inclusion of the
argument old_list tells gmse_apply to use parameters and values from the list sim_old in the new time
step.
sim_sum_1 <- matrix(data = NA, nrow = 30, ncol = 5);
for(time_step in 1:30){

sim_new <- gmse_apply(get_res = "Full", old_list = sim_old);
sim_sum_1[time_step, 1] <- time_step;
sim_sum_1[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_1[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_1[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_1[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_old <- sim_new;

}
colnames(sim_sum_1) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count");
print(sim_sum_1);

Time Pop_size Pop_est Cull_cost Cull_count
[1,] 1 32207 32207 1010 792
[2,] 2 31912 31912 1010 791
[3,] 3 32145 32145 1010 792
[4,] 4 32892 32892 1010 792
[5,] 5 37100 37100 1010 791
[6,] 6 38135 38135 1010 792
[7,] 7 39494 39494 1009 792
[8,] 8 40993 40993 1010 791
[9,] 9 43135 43135 1010 792
[10,] 10 45408 45408 1009 792
[11,] 11 48090 48090 1010 792
[12,] 12 50401 50401 1010 792
[13,] 13 53055 53055 1009 791
[14,] 14 55973 55973 1010 792
[15,] 15 58985 58985 1010 792
[16,] 16 62366 62366 1010 791
[17,] 17 66267 66267 1010 792
[18,] 18 69840 69840 1009 792
[19,] 19 73995 73995 230 3472

3

[20,] 20 75220 75220 176 4544
[21,] 21 75816 75816 158 5056
[22,] 22 75563 75563 165 4848
[23,] 23 75411 75411 170 4704
[24,] 24 75604 75604 164 4872
[25,] 25 75601 75601 164 4872
[26,] 26 75939 75939 154 5192
[27,] 27 75718 75718 160 5000
[28,] 28 75590 75590 164 4872
[29,] 29 75525 75525 166 4816
[30,] 30 75470 75470 168 4760

The above output from sim_sum_1 shows the data frame that holds the information we were interested
in pulling out of our simulation results. All of this information was available under the list element
sim_new$basic_output, but other list elements of sim_new might also be useful to record. It is important
to remember that this example of gmse_apply is using the default resource, observation, manager, and user
sub-models. Custom sub-models could produce different outputs in sim_new (see Use of the gmse_apply
function for examples). For default sub-models, there are some list elements that might be especially useful.
These elements can potentially be edited within the above loop to dynamically adjust simulations. For more
explanation of built-in GMSE data arrays, see Default GMSE data structures.

• sim_new$resource_array: A table holding all information on resources. Rows correspond to discrete
resources, and columns correspond to resource properties: (1) ID, (2-4) types (not currently in use),
(5) x-location, (6) y-location, (7) movement parameter, (8) time, (9) density independent mortality
parameter (remove_pr), (10) reproduction parameter (lambda), (11) offspring number, (12) age, (13-14)
observation columns, (15) consumption rate (res_consume), (16-20) recorded experiences of user actions
(e.g., was the resource culled or scared?), (21) how much yield has the resource consumed, and (22)
how many times the resource can consume yield in one time step.

• sim_new$AGENTS: A table holding basic information on agents (manager and users). Rows correspond
to a unique agent, and columns correspond to agent properties: (1) ID, (2) type (0 for the manager, 1
for users), (3-4) additional type options not currently in use, (5-6), x and y locations (usually ignored),
(7) movement parameter (usually ignored), (8) time, (9) agent’s viewing ability in cells (agent_view),
(10) error parameter, (11-12) values for holding marks and tallies of resources, (13-15) values for holding
observations, (16) yield from landscape cells, (17) baseline budget (manager_budget and user_budget),
(18-24) agent’s perception of the efficacy of scaring, culling, castrating, feeding, helping, tending crops,
and killing crops, (25-26) increments to budget, (27) unused.

• sim_new$observation_vector: Estimate of total resource number from the observation model
(observation_array also holds this information in a different way depending on observe_type)

• sim_new$LAND: The landscape on which interactions occur, which is stored as a 3D array with
land_dim_1 rows, land_dim_2 columns, and 3 layers. Layer 1 (sim_new$LAND[„1]) is not currently
used in default sub-models, but could be used to store values that affect resources and agents. Layer 2
(sim_new$LAND[„2]) stores crop yield from a cell, and layer 3 (sim_new$LAND[„3]) stores the owner of
the cell (value corresponds to the agent’s ID).

• sim_new$manage_vector: The cost of each action as set by the manager. For even more fine-tuning,
individual costs for the actions of each agent can be set for each user in sim_new$manager_array.

• sim_new$user_vector: The total number of actions performed by each user. A more detailed breakdown
of actions by individual users is held in sim_new$user_array.

Next, we show how to adjust the landscape to manually set land ownership in gmse_apply.

1. Custom placement of user land

By default, all farmers in GMSE are allocated roughly the same number of landscape cells, which are placed
on the landscape using a shortest-splitline algorithm that makes similar size rectangles. In the LAND array,

4

ownership is designated by the agent’s ID. Public land is produced by placing landscape cells that are
technically owned by the manager, and therefore have landscape cell values of 1. The image below shows this
landscape for the eight farmers from sim_old.
image(x = sim_old$LAND[,,3], col = topo.colors(9), xaxt = "n", yaxt = "n");

Figure 1: Default position of land ownership by farmers.

We can change the ownership of cells by manipulating sim_old$LAND[„3]. First we initialise a new sim_old
below.
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_death_K = 93870, RESOURCE_ini = 35000,
manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 10000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,

5

ga_mingen = 200);

Because we have not specified landscape dimensions in the above, the landscape reverts to the default size of
100 by 100 cells. We can then manually assign landscape cells to the eight farmers, whose IDs range from 2-9
(ID value 1 is the manager). Below we do this to make eight different sized farms.
sim_old$LAND[1:20, 1:20, 3] <- 2;
sim_old$LAND[1:20, 21:40, 3] <- 3;
sim_old$LAND[1:20, 41:60, 3] <- 4;
sim_old$LAND[1:20, 61:80, 3] <- 5;
sim_old$LAND[1:20, 81:100, 3] <- 6;
sim_old$LAND[21:40, 1:50, 3] <- 7;
sim_old$LAND[21:40, 51:100, 3] <- 8;
sim_old$LAND[41:60, 1:100, 3] <- 9;
sim_old$LAND[61:100, 1:100, 3] <- 1; # Public land
image(x = sim_old$LAND[,,3], col = topo.colors(9), xaxt = "n", yaxt = "n");

The above image shows the modified landscape stored in sim_old, which can now be incorporated into
simulations using gmse_apply. We can think of all the plots on the left side of the landscape as farms of
various sizes, while the blue area of the landscape on the right is public land.

2. Parameterisation of individual user budgets

Perhaps we want to assume that farmers have different baseline budgets, which are correlated in some way
to the number of landscape cells that they own. Custom user baseline budgets can be set by manipulating
sim_old$AGENTS, column 17 of which holds the budget for each user. Agent IDs (as stored on the landscape
above) correspond to rows of sim_old$AGENTS, so individual baseline budgets can be directly input as
desired. We can do this manually (e.g., sim_old$AGENTS[2, 17] <- 4000), or, alternatively, if farmer
budget positively correlates to landscape owned, we can use a loop to input values as below.
for(ID in 2:9){

cells_owned <- sum(sim_old$LAND[,,3] == ID);
sim_old$AGENTS[ID, 17] <- 10 * cells_owned;

}

The number of cells owned by the manager (1) and each farmer (2-8) is therefore listed in the table below.

ID 1 2 3 4 5 6 7 8 9
Budget 10000 4000 4000 4000 4000 4000 10000 10000 20000

As with sim_old$LAND values, changes to sim_old$AGENTS will be retained in simulations looped through
gmse_apply.

3. Density-dependent movement of resources

Lastly, we consider a more nuanced change to simulations, in which the rules for movement of resources
are modified to account for density-dependence. Assume that geese tend to avoid aggregating, such that if
a goose is located on the same cell as too many other geese, then it will move at the start of a time step.
Programming this movement rule can be accomplished by creating a new function to apply to the resource
data array sim_old$resource_array. Below, a custom function is defined that causes a goose to move up
to 5 cells in any direction if it finds itself on a cell with more than 10 other geese. As with default GMSE

6

Figure 2: Land ownership by farmers as customised in gmse_apply.

7

simulations, movement is based on a torus landscape (where no landscape edge exists, so that if resources
move off of one side of the landscape they appear on the opposite side). We will use this custom function to
modify sim_old$resource_array prior to running gmse_apply, thereby modelling a custom-built process
affecting resource distribution that is integrated into GMSE.
avoid_aggregation <- function(sim_resource_array, land_dim_1 = 100,

land_dim_2 = 100){
goose_number <- dim(sim_resource_array)[1] # How many geese are there?
for(goose in 1:goose_number){ # Loop through all rows of geese

x_loc <- sim_resource_array[goose, 5];
y_loc <- sim_resource_array[goose, 6];
shared <- sum(sim_resource_array[,5] == x_loc &

sim_resource_array[,6] == y_loc);
if(shared > 10){

new_x <- x_loc + sample(x = -5:5, size = 1);
new_y <- y_loc + sample(x = -5:5, size = 1);
if(new_x < 0){ # The 'if' statements below apply the torus

new_x <- land_dim_1 + new_x;
}
if(new_x >= land_dim_1){

new_x <- new_x - land_dim_1;
}
if(new_y < 0){

new_y <- land_dim_2 + new_x;
}
if(new_y >= land_dim_2){

new_y <- new_y - land_dim_2;
}
sim_resource_array[goose, 5] <- new_x;
sim_resource_array[goose, 6] <- new_y;

}
}
return(sim_resource_array);

}

With the above function written, we can apply the new movement rule along with our custom farm placement
and custom farmer budgets to the simulation of goose population dynamics.

Simulation with custom farms, budgets, and goose movement

Below shows an example of gmse_apply with custom landscapes, farmer budgets, and density-dependent
goose movement rules.
First initialise a simulation
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_death_K = 93870, RESOURCE_ini = 35000,
manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 10000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200, res_move_type = 0);

By setting `res_move_type = 0`, no resource movement will occur in gmse_apply
Adjust the landscape ownership below

8

sim_old$LAND[1:20, 1:20, 3] <- 2;
sim_old$LAND[1:20, 21:40, 3] <- 3;
sim_old$LAND[1:20, 41:60, 3] <- 4;
sim_old$LAND[1:20, 61:80, 3] <- 5;
sim_old$LAND[1:20, 81:100, 3] <- 6;
sim_old$LAND[21:40, 1:50, 3] <- 7;
sim_old$LAND[21:40, 51:100, 3] <- 8;
sim_old$LAND[41:60, 1:100, 3] <- 9;
sim_old$LAND[61:100, 1:100, 3] <- 1;
Change the budgets of each farmer based on the land they own
for(ID in 2:9){

cells_owned <- sum(sim_old$LAND[,,3] == ID);
sim_old$AGENTS[ID, 17] <- 10 * cells_owned;

}
Begin simulating time steps for the system
sim_sum_2 <- matrix(data = NA, nrow = 30, ncol = 5);
for(time_step in 1:30){

Apply the new movement rules at the beginning of the loop
sim_old$resource_array <- avoid_aggregation(sim_resource_array =

sim_old$resource_array);
Next, move on to simulate (old_list remembers that res_move_type = 0)
sim_new <- gmse_apply(get_res = "Full", old_list = sim_old);
sim_sum_2[time_step, 1] <- time_step;
sim_sum_2[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_2[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_2[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_2[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_old <- sim_new;

}
colnames(sim_sum_2) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count");
print(sim_sum_2);

Time Pop_size Pop_est Cull_cost Cull_count
[1,] 1 34284 34284 1007 52
[2,] 2 34828 34828 1010 52
[3,] 3 36104 36104 1001 52
[4,] 4 38119 38119 1009 52
[5,] 5 44011 44011 1010 52
[6,] 6 46361 46361 999 60
[7,] 7 48979 48979 1006 52
[8,] 8 52152 52152 1009 52
[9,] 9 55500 55500 1010 52
[10,] 10 59165 59165 1001 52
[11,] 11 62982 62982 1004 52
[12,] 12 66878 66878 1010 52
[13,] 13 71197 71197 51 1174
[14,] 14 74990 74990 14 4105
[15,] 15 75766 75766 11 5017
[16,] 16 75640 75640 11 5030
[17,] 17 75467 75467 12 4626
[18,] 18 75785 75785 11 4970
[19,] 19 75867 75867 11 5079
[20,] 20 75534 75534 12 4687

9

[21,] 21 75560 75560 12 4709
[22,] 22 75494 75494 11 4973
[23,] 23 75392 75392 12 4688
[24,] 24 75366 75366 12 4709
[25,] 25 75425 75425 12 4668
[26,] 26 75246 75246 12 4696
[27,] 27 75038 75038 13 4358
[28,] 28 75310 75310 13 4415
[29,] 29 75835 75835 11 5025
[30,] 30 75686 75686 11 5035

Conclusions

In this example, we showed how the built-in resource, observation, manager, and user sub-models can be
customised by manipulating the data within the data structures that they use. The goal was to show how
software users can work with these existing sub-models and data structures to customise GMSE simulations.
Readers seeking even greater flexibility (e.g., replacing an entire built-in sub-model with a custom sub-model)
should refer to Use of the gmse_apply function that introduces gmse_apply more generally. Future versions
of GMSE are likely to expand on the built-in options available for simulation; requests for such expansions,
or contributions, can be submitted to GitHub.

References
AEWA (2016). International single species action plan for the conservation of the Taiga Bean Goose (Anser
fabalis fabalis).

Cusack, J. J., Duthie, A. B., Rakotonarivo, S., Pozo, R. A., Mason, T. H. E., Månsson, J., Nilsson, L.,
Tombre, I. M., Eythórsson, E., Madsen, J., Tulloch, A., Hearn, R. D., Redpath, S., and Bunnefeld, N.
(2018). Time series analysis reveals synchrony and asynchrony between conflict management effort and
increasing large grazing bird populations in northern Europe. Conservation Letters, page e12450.

Fox, A. D. and Madsen, J. (2017). Threatened species to super-abundance: The unexpected international
implications of successful goose conservation. Ambio, 46(s2):179–187.

Johnson, F. A., Alhainen, M., Fox, A. D., Madsen, J., and Guillemain, M. (2018). Making do with less:
Must sparse data preclude informed harvest strategies for European waterbirds. Ecological Applications,
28(2):427–441.

Mason, T. H., Keane, A., Redpath, S. M., and Bunnefeld, N. (2017). The changing environment of conservation
conflict: geese and farming in Scotland. Journal of Applied Ecology, pages 1–12.

Tulloch, A. I. T., Nicol, S., and Bunnefeld, N. (2017). Quantifying the expected value of uncertain management
choices for over-abundant Greylag Geese. Biological Conservation, 214:147–155.

10

https://github.com/bradduthie/gmse/issues

	Fine-tuning simulation conditions using gmse_apply
	Re-creating gmse simulations using gmse_apply
	1. Custom placement of user land
	2. Parameterisation of individual user budgets
	3. Density-dependent movement of resources
	Simulation with custom farms, budgets, and goose movement
	Conclusions

