| Type: | Package | 
| Title: | Exploratory Regression 'Shiny' App | 
| Version: | 0.1.4 | 
| Date: | 2023-8-21 | 
| Author: | Catherine B. Hurley | 
| Maintainer: | Catherine B. Hurley <catherine.hurley@mu.ie> | 
| Description: | Constructs a 'shiny' app function with interactive displays for summary and analysis of variance regression tables, and parallel coordinate plots of data and residuals. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)] | 
| Encoding: | UTF-8 | 
| Imports: | shiny, miniUI,RColorBrewer, ggplot2, car, leaps, broom, dplyr, tidyr, purrr, combinat,stats, methods, rlang | 
| RoxygenNote: | 7.2.3 | 
| Suggests: | knitr, rmarkdown, testthat | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2023-08-21 11:49:44 UTC; catherine | 
| Repository: | CRAN | 
| Date/Publication: | 2023-08-21 12:20:02 UTC | 
ERSA: A package exploring regressions with a Shiny app
Description
The Exploratory Regression Shiny App (ERSA) package consists of a collection of functions for displaying the results of a regression calculation, which are then packaged together as a shiny app function.
Constructs a list of fits by adding predictors sequentially
Description
Constructs a list of fits by adding predictors sequentially
Usage
add1_models(model, preds, data = NULL)
Arguments
| model | A linear model | 
| preds | Predictors to be added sequentially | 
| data | The dataset (optional) | 
Value
A list of linear fits
A function which returns a shiny server for Exploratory Regression
Description
A function which returns a shiny server for Exploratory Regression
Usage
createERServer(
  ERfit,
  ERdata = NULL,
  ERbarcols = RColorBrewer::brewer.pal(4, "Set2"),
  ERnpcpCols = 4,
  pvalOrder = F
)
Arguments
| ERfit | the lm fit to be explored | 
| ERdata | the data used to fit the model. If NULL, attempts to extract from ERfit. | 
| ERbarcols | a vector of colours, one per term in lm. Will be expanded via colorRampPalette if not the correct length. | 
| ERnpcpCols | number of colours for the PCP | 
| pvalOrder | if TRUE, re-arranges predictors in order of p-value | 
Value
a function
Constructs UI for Exploratory Regression app
Description
Constructs UI for Exploratory Regression app
Usage
createERUI(tablesOnly = F, gadget = TRUE)
Arguments
| tablesOnly | if TRUE, shows Plots 1-3 only. | 
| gadget | If TRUE, constructs a gadget, otherwise a shinyApp | 
Value
the UI
Constructs a list of fits by dropping predictors from the supplied model
Description
Constructs a list of fits by dropping predictors from the supplied model
Usage
drop1_models(model, preds, data = NULL)
Arguments
| model | A linear model | 
| preds | Predictors to be dropped | 
| data | The dataset (optional) | 
Value
A list of linear fits
A function to launch the Exploratory Regression Shiny App
Description
A function to launch the Exploratory Regression Shiny App
Usage
exploreReg(
  ERmfull,
  ERdata = NULL,
  ERbarcols = RColorBrewer::brewer.pal(4, "Set2"),
  npcpCols = 4,
  pvalOrder = F,
  tablesOnly = F,
  displayHeight = NULL,
  gadget = TRUE,
  viewer = "dialogViewer"
)
Arguments
| ERmfull | the lm fit to be explored | 
| ERdata | the data used to fit the model. If NULL, attempts to extract from ERmfull. | 
| ERbarcols | a vector of colours, one per term in lm. Will be expanded via colorRampPalette if not the correct length. | 
| npcpCols | number of colours for the PCP | 
| pvalOrder | if TRUE, re-arranges predictors in order of p-value | 
| tablesOnly | if TRUE, shows Plots 1-3 only. | 
| displayHeight | supply a value for the display height | 
| gadget | If TRUE, constructs a gadget, otherwise a shinyApp. | 
| viewer | For gadget, defaults to "dialogViewer". May be "paneViewer" or "browserViewer" | 
Value
the result
Examples
f <- lm(mpg ~ hp+wt+disp, data=mtcars)
## Not run: exploreReg(f)
A PCP plot of the data, residuals or hat values from regression fits
Description
A PCP plot of the data, residuals or hat values from regression fits
Usage
pcpPlot(
  data,
  fit,
  type = "Variables",
  npcpCols = 4,
  resDiff = F,
  absResid = F,
  sequential = F,
  selnum = NULL
)
Arguments
| data | a data frame | 
| fit | a lm for the data frame | 
| type | one of "Variables", "Residuals", "Hatvalues" | 
| npcpCols | number of colours | 
| resDiff | difference residuals, TRUE or FALSE | 
| absResid | absolute residuals, TRUE or FALSE | 
| sequential | use sequential fits (TRUE) or drop1 fits (FALSE) | 
| selnum | row numbers of cases to be highlighted | 
Value
ggplot
Examples
f <- lm(mpg ~ wt+hp+disp, data=mtcars)
pcpPlot(mtcars, f, type="Residuals")
Plots barcharts of sequential sums of squares of lm
Description
Plots barcharts of sequential sums of squares of lm
Usage
plotSeqSS(fits, barcols = NULL, legend = F)
Arguments
| fits | list of lm objects | 
| barcols | a vector of colours, one per term in lms | 
| legend | TRUE or FALSE | 
Value
a ggplot
Examples
plotSeqSS(list(fit1= lm(mpg ~ wt+hp+disp, data=mtcars),
fit2=lm(mpg ~ wt*hp*disp, data=mtcars)))
Plots of model summaries
Description
Plots of model summaries
Usage
plotAnovaStats(
  fit0,
  barcols = NULL,
  preds = NULL,
  alpha = 0.05,
  type = "SS",
  width = 0.3
)
plottStats(fit0, barcols = NULL, preds = NULL, alpha = 0.05, width = 0.3)
plotCIStats(
  fit0,
  barcols = NULL,
  preds = NULL,
  alpha = 0.05,
  stdunits = FALSE,
  width = 0.3
)
Arguments
| fit0 | is an lm object | 
| barcols | a vector of colours, one per term in lm | 
| preds | terms to include in plot | 
| alpha | significance level | 
| type | "SS" or "F", from type 3 Anova | 
| width | bar width | 
| stdunits | TRUE or FALSE. If TRUE, coefficients refer to standardised predictor units. | 
Value
a ggplot
Functions
-  plotAnovaStats(): Plots barchart of F or SS from lm
-  plottStats(): Plots barchart of t stats from lm
-  plotCIStats(): Plots confidence intervals from lm
Examples
plotAnovaStats(lm(mpg ~ wt+hp+disp, data=mtcars))
plottStats(lm(mpg ~ wt+hp+disp, data=mtcars))
plotCIStats(lm(mpg ~ wt+hp+disp, data=mtcars))
Re-order model terms
Description
Re-order model terms
Usage
pvalOrder(m, d = NULL, refit = TRUE)
bselOrder(m, d = NULL, refit = TRUE, maxNPred = NULL)
fselOrder(m, d = NULL, refit = TRUE, maxNPred = NULL)
revPredOrder(m, d = NULL, refit = TRUE)
randomPredOrder(m, d = NULL, refit = TRUE)
regsubsetsOrder(m, d = NULL, refit = TRUE, collapse = TRUE)
Arguments
| m | an lm objecct | 
| d | the data frame. If NULL, attempts to extract from m. | 
| refit | TRUE or FALSE | 
| maxNPred | maximum number of predictors to use, defaults to all. | 
| collapse | TRUE or FALSE | 
Value
a vector of terms in order last to first, or an lm if refit=TRUE. regsubsetsOrder returns a list of predictor vectors, or a list of fits
Functions
-  pvalOrder(): Arranges model terms in order of increasing p-value
-  bselOrder(): Arranges model terms using backwards selection
-  fselOrder(): Forwards selection
-  revPredOrder(): Reverses order of terms in a fit
-  randomPredOrder(): Reorders terms in a fit randomly
-  regsubsetsOrder(): Best subsets regression.
Examples
bselOrder(lm(mpg~wt+hp+disp, data=mtcars))
fselOrder(lm(mpg~wt+hp+disp, data=mtcars))
revPredOrder(lm(mpg~wt+hp+disp, data=mtcars))
randomPredOrder(lm(mpg~wt+hp+disp, data=mtcars))
regsubsetsOrder(lm(mpg~wt+hp+disp, data=mtcars))
Constructs colour vector for model terms
Description
Constructs colour vector for model terms
Usage
termColours(f, pal = RColorBrewer::brewer.pal(4, "Set2"))
Arguments
| f | a model fit with term labels | 
| pal | use this palette | 
Value
a vector of colours. Residuals are given a grey color
Examples
termColours(lm(mpg ~ wt+hp, data=mtcars))