Package ‘EQUALPrognosis’

January 28, 2026
Title Analysing Prognostic Studies
Version 0.1.0
Date 2026-01-16
Author Kurinchi Gurusamy [aut, cre]
Maintainer Kurinchi Gurusamy <k.gurusamy@ucl.ac.uk>
Depends stats, ggplot2, survival
Imports base64enc, CalibrationCurves, mime, predtools, pROC, stringr

Description Functions that help with analysis of prognostic study data. This allows users with lit-
tle experience of developing models to develop models and assess the performance of the prog-
nostic models. This also summarises the information, so the performance of multiple mod-
els can be displayed simultaneously. Gu-
rusamy, K (2026)<https://github.com/kurinchi2k/EQUALPrognosis>.

License GPL (>= 3)
Encoding UTF-8

URL https://sites.google.com/view/equal-group/home
RoxygenNote 7.3.2

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-28 18:40:16 UTC

Contents
calculate_actual_predicted 2
calculate_performance 9
compile_results 13
create_generic_input_parameters e e e e e e 16
create_specific_input_parametersol e 19
get_outcome_status_at_specific_time Lo oL 21
guess_data_types e e e e e e e e e e e 22
perform_analysis L 23
prepare_datasets e e e e e e e 27
process_datal e e e e e 29

https://github.com/kurinchi2k/EQUALPrognosis
https://sites.google.com/view/equal-group/home

2 calculate_actual_predicted

Index 32

calculate_actual_predicted
Calculate actual and predicted values

Description

This takes the datasets, prepared using the prepare_datasets function and the input parameters
described below, creates a model, runs the model, and predicts the outcome.

Usage

calculate_actual_predicted(prepared_datasets, outcome_name, outcome_type,
outcome_time, outcome_count, develop_model, predetermined_model_text,
mandatory_predictors, optional_predictors, mandatory_interactions,
optional_interactions, model_threshold_method, scoring_system,
predetermined_threshold, higher_values_event, each_simulation,
bootstrap_sample, verbose)

Arguments

prepared_datasets
Datasets prepared using the prepare_datasets.

outcome_name Name of the colummn that contains the outcome data. This must be a column
name in the ’df’ provided as input.

outcome_type One of ’binary’, 'time-to-event’, ’quantitative’. Count outcomes are included in
’quantitative’ outcome type and can be differentiated from continuous outcomes
by specifying outcome_count as TRUE. Please see examples below.

outcome_time The name of the column that provides the follow-up time. This is applicable
only for 'time-to-event’ outcome. For other outcome types, enter NA.

outcome_count TRUE if the outcome was a count outcome and FALSE otherwise.

develop_model TRUE, if you want to develop a model; FALSE, if you want to use a scoring
system with a predetermined threshold (if applicable).

predetermined_model_text
You can create the model text from the mandatory and optional predictors and
interactions or finer control of the model, you can provide the model text di-
rectly.

mandatory_predictors
Predictors that must be included in the model. These should be provided even if
you provide the "predetermined_model_text’.

optional_predictors
Optional predictors that may be included in the model by step. These should
be provided even if you provide the ’predetermined_model_text’.

calculate_actual_predicted 3

mandatory_interactions
Interactions that must be included in the model. These should be provided even
if you provide the ’predetermined_model_text’.

optional_interactions
Optional interactions that may be included in the model by step. These should
be provided even if you provide the ’predetermined_model_text’.

model_threshold_method
One of ’youden’, 'topleft’, "heuristic’. Please see description below.

scoring_system Name of the pre-existing scoring system. This is ignored if develop_model is
TRUE.

predetermined_threshold
Pre-determined threshold of the pre-existing scoring system. This is mandatory
when develop_model is FALSE and when the outcome_type is 'binary’ or ’time-
to-event’. This is ignored if develop_model is TRUE or when the outcome_type
is ’quantitative’.

higher_values_event
TRUE if higher values of the pre-existing system indicates event and FALSE
otherwise. This is mandatory when develop_model is FALSE and when the out-
come_type is 'binary’ or 'time-to-event’. This is ignored if develop_model is
TRUE or when the outcome_type is ’quantitative’.

each_simulation
The number of the simulation in the prepared datasets. Please see prepare_datasets.

bootstrap_sample
TRUE if you are calculating the bootstrap and test performance and FALSE if
you are calculating the apparent performance. Please see below and Collins et
al, 2024.

verbose TRUE if the progress must be displayed and FALSE otherwise.

Details

General comment Most of the input parameters are already available from the generic and specific

input parameters created using create_generic_input_parameters and create_specific_input_parameters.

This function is used by the perform_analysis function which provides the correct input parame-

ters based on the entries provided in create_generic_input_parameters and create_specific_input_parameters.

Overview This is a form of enhanced bootstrapping internal validation approach to calculate the
optimism-corrected performance measures described by Collins et al., 2024. This involves calcu-
lating the apparent performance by developing the model in the entire dataset, repeated sampling
with replacement (bootstrap sample), evaluating the performance of the model in each simulation of
the bootstrap sample (bootstrap performance), evaluating the performance of the model (developed
in the bootstrap sample of each simulation) on the ‘test sample’ i.e., all the subjects in the dataset
from which the bootstrap sample was obtained (test performance), calculating the optimism as the
difference between bootstrap performance and test performance in each simulation, calculating the
average optimism, and finally subtracting the average optimism from the apparent performance to
calculate the optimism-corrected performance measures (Collins et al, 2024).

The model development is performed using glm for all outcomes other than time-to-event outcomes
and coxph for time-to-event outcomes. You can either provide a model text that you have developed

calculate_actual_predicted

for finer control of the interactions to be considered or included or you can let the computer build
the model text based on the mandatory and optional predictors and interactions.

Linear predictors The linear predictor describes the relationship between the outcome and the
predictors, and is a function of the covariate (predictor) values and coefficients of the regression. It
can be described by the following relation. Linear predictor = alpha + beta_predictors * predictors
+ beta_(predictors_interactions) (if interactions between predictors are included) + error.

However, except for linear regression, the linear predictor must be transformed to obtain the out-
come. This is because of the way generalised linear regression attempts to create a linear relation-
ship between the outcome and predictors.

If 'Y’ is the outcome, the linear predictor is 'logit Y’ for binary outcomes; therefore, inverse logit
transformation must be performed to convert the linear predictor to obtain the probability of an
outcome. For count outcomes, the linear predictor is ’log Y’; therefore, exponential transformation
is required to obtain the predicted number of events.

For time-to-event outcomes, the linear predictor gives the hazard of an event at various time points
for a subject at the given covariate levels. The function basehaz provides a more clinically mean-
ingful cumulative hazard of an event by time ’#’, denoted as "H(t)’. The function basehaz provides
the cumulative hazard of the event at each time point denoted as '#’ for each subject in the ’train-
ing’ set. The cumulative hazard of the event by time 't’ of a new subject can be calculated using
the relation mentioned in the description of basehaz (please see the section on calculating H(t;x)).
Using this relation, one can find the closest time point of a 'new’ subject to the time points in the
output of basehaz, the corresponding cumulative hazard for the *first’ subject (or any other subject
for whom the cumulative hazard at each time point is available), and the differences in covariate
values between the 'new’ subject and the ’first’ subject to calculate the cumulative hazard of event
by the follow-up time of the new subject. The survival probability is exp(-H(t)) (Simon et al. 2024);
therefore, one can calculate the probability of event by time '#’ as I - exp(-H(t)).

For continous outcomes, no transformation of linear predictor is required to obtain the outcome.

Obtaining linear predictors In regression models, we can get the get the transformed values of
the linear predictors (Ip) (i.e., inverse logit transformation for binary outcome and exponential for
count outcomes) based on the regression model directly. For example, using the type = "response”
in predict function gives this information directly for all outcome types other than time-to-event
outcomes, which are analysed with coxph. For time-to-event outcomes, the type = "expected" gives
the cumulative hazard by ’t’ after adjusting for the covariates (predict.coxph), from which one
can estimate the probability of the event by the time ’#’ using the relations described above.

Missing linear predictors When predicting using the regression models directly as described
above, there must be no missing data for the predictors included in the model. One possibility
is to not make a prediction at all. However, in real life some of these predictors will be missing
but a decision must be made. One possibility is multiple imputation. However, some assumptions
about the missing data can be difficult to verify (Heymans et al, 2022). Another possibility is to
exclude the missing predictor (whose value is missing) from the regression equation. Although
the coefficient values would have been different without the predictor, it is impossible to develop
and validate for all scenarios of missing predictors. This function calculates the linear predictor by
excluding the predictors which contain missing data (for that subject) using the regression model
developed on subjects without missing data. If the coefficient values in the model indicates NA
(which should alert people to overfitting the data or levels with sparse data), the variable level itself
is removed from calculating the linear predictor. To a large extent, the method used assumes that
external validation will be performed before changing clinical practice and the application of this

calculate_actual_predicted 5

method compared to other methods of handling missing data must be compared as part of external
validation.

Conversion of probabilities of event (linear predictors) for binary and time-to-event outcomes
to event versus no event There are multiple ways of converting probabilities of event (linear predic-
tors) for binary and time-to-event outcomes to event versus no event. For example, one can consider
that the probabilities of event are from binomial distribution for binary outcomes. Alternatively, one
can choose an ’optimal threshold’ (on the training set) using the roc and coords functions. There
are two types of threshold calculated by the coords function: 'Youden’ and ’closest to top left’. For
further information, please see coords. Occasionally, it may not be possible to obtain the thresh-
old using roc and coords. A function that performs a rough estimation of the threshold based on
prevalence is included in the source code of this function (please see ’calculate_heuristic_threshold’
function, included as part of this function).

Intercept-slope adjustment In regression models, the intercept and slope can be adjusted (Van
Calster et al., 2019). The calibration intercept and slope are calculated according to the supplement
of Van Calster et al., 2019. The paper provides details only for logistic regression, but the procedures
are based on glm, i.e., they are applicable in glm models. The relation is regression equation is ¥ =
calibration_intercept + beta * linear predictor.

Note that the linear predictor in the equation is used as variable rather than as an offset term as
with calculation of calibration intercept only. The linear predictors must be back-transformed to the
original scale before their use in the calibration regression equation.

Robust methods for calibration slope adjustment for time-to-events are still being developed. Until
such methods become widely available, this function uses similar principles as that described for
binary outcomes for time-to-event outcomes. These should be considered experimental until further
evaluation of the performance of calibration adjustment in external samples. It should be noted
however, that for time-to-event outcomes, Cox regression does not have an intercept separately, as
the intercept is included in the baseline hazard (SAS support 2017). Therefore, with regards to
time-to-event outcomes, there is no change to the intercept, but there is a change to the slope when
calibration adjusted models are created.

Model with with only the mandatory predictors but based on the coefficients of the entire
model This is solely for research purposes. Potential use of such a model with only the mandatory
predictors, but based on the coefficients of the entire model will be to find the added value of
measurement of optional predictors, particularly when there is a single mandatory predictor, for
example, a treatment. It will be practically impossible to develop all the possible models with
missing optional predictors. This model has the potential to provide predictions in this situation.

Value

actual_training

Actual values in the training sample.
predicted_training

Predicted values in the training sample.
predicted_training_calibration_adjusted

Predicted values after calibration adjustment.
predicted_training_adjusted_mandatory_predictors_only

Predicted values of a model with only the mandatory predictors, but based on
the coefficients of the entire model.

calculate_actual_predicted

actual_only_validation

Actual values in the ’out-of-sample’ subjects, i.e., the subjects excluded from

the model development in each simulation.
predicted_only_validation

Predicted values in the ’out-of-sample’ subjects
predicted_only_validation_calibration_adjusted

Predicted values in the out-of-sample subjects after calibration adjustment
predicted_only_validation_adjusted_mandatory_predictors_only

Predicted values in the out-of-sample subjects using a model with only the

mandatory predictors, but based on the coefficients of the entire model.
actual_all_subjects

Actual values in all subjects with outcomes.
predicted_all_subjects

Predicted values in all subjects with outcomes.
predicted_all_subjects_calibration_adjusted

Predicted values in all subjects with outcomes after calibration adjustment.
predicted_all_subjects_adjusted_mandatory_predictors_only

Predicted values in all subjects using a model with only the mandatory predic-

tors, but based on the coefficients of the entire model.
lp_training Linear predictors in the ’training’ sample.
lp_only_validation

Linear predictors in the "out-of-sample’ subjects.
1lp_all_subjects

Linear predictors in all subjects with outcomes.
lp_training_calibration_adjusted

Linear predictors in the training sample after calibration adjustment.
lp_only_validation_calibration_adjusted

Linear predictors in the *out-of-sample’ subjects after calibration adjustment.
1p_all_subjects_calibration_adjusted

Linear predictors in all subjects with outcomes after calibration adjustment.
lp_training_adjusted_mandatory_predictors_only

Linear predictors in the training sample using a model with only the mandatory

predictors, but based on the coefficients of the entire model.
lp_only_validation_adjusted_mandatory_predictors_only

Linear predictors in the ’out-of-sample’ subjects using a model with only the

mandatory predictors, but based on the coefficients of the entire model.
lp_all_subjects_adjusted_mandatory_predictors_only

Linear predictors in all subjects with outcomes using a model with only the

mandatory predictors, but based on the coefficients of the entire model.
time_training Follow-up time in training sample (applicable only for time-to-event outcomes.)
time_only_validation

Follow-up time in ’out-of-sample’ subjects (applicable only for time-to-event

outcomes.)
time_all_subjects

Follow-up time in all subjects with outcomes (applicable only for time-to-event

outcomes.)

calculate_actual_predicted 7

regression_model
The regression model

html_file Some output in html format, which will be used for final output.
outcome Whether calculations could be made.
Author(s)

Kurinchi Gurusamy

References

Collins GS, Dhiman P, Ma J, Schlussel MM, Archer L, Van Calster B, et al. Evaluation of clinical
prediction models (part 1): from development to external validation. Bmj. 2024;384:¢074819.

Heymans MW, Twisk JWR. Handling missing data in clinical research. J Clin Epidemiol. 2022
Nov;151:185-188.

SAS Support. https://support.sas.com/kb/24/457 .html (accessed on 16 January 2026).

Simon G, Aliferis C. Appendix A: Models for Time-to-Event Outcomes. In: Simon GJ, Aliferis C,
editors. Aurtificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best
Practices and Pitfalls [Internet]. Cham (CH): Springer. https://www.ncbi.nlm.nih.gov/books/NBK610554/
(accessed on 13 December 2025). 2024.

Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, et al. Cali-
bration: the Achilles heel of predictive analytics. BMC Medicine. 2019;17(1):230.

See Also

prepare_datasets glm predict coxph basehaz predict.coxph roc coords

Examples

library(survival)

colon$status <- factor(as.character(colon$status))

For testing, only 5 simulations are used here. Usually at least 300 to 500

simulations are a minimum. Increasing the simulations leads to more reliable results.
The default value of 2000 simulations should provide reasonably reliable results.
generic_input_parameters <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 5,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters
analysis_details <- cbind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',
'Multiple mandatory and optional predictors',
'Multiple optional predictors only', 'Predetermined model text'),

develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),

predetermined_model_text = c(NA, NA, NA, NA,

"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = c¢(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),

1

calculate_actual_predicted

optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),
mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),

model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('6@', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)
)
write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")
analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE
results <- create_specific_input_parameters(
generic_input_parameters = generic_input_parameters,
analysis_details_path = analysis_details_path, verbose = TRUE)
specific_input_parameters <- results$specific_input_parameters
Set a seed for reproducibility - Please see details above
set.seed(generic_input_parameters$seed)
prepared_datasets <- {prepare_datasets(
df = generic_input_parameters$df,
simulations = generic_input_parameters$simulations,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
verbose = TRUE)}
There is no usually no requirement to call this function directly. This is used
by the perform_analysis function to create the actual and predicted values.
specific_input_parameters_each_analysis <- specific_input_parameters[[1]]
actual_predicted_results_apparent <- {calculate_actual_predicted(
prepared_datasets = prepared_datasets,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
outcome_count = generic_input_parameters$outcome_count,
develop_model = specific_input_parameters_each_analysis$develop_model,
predetermined_model_text =
specific_input_parameters_each_analysis$predetermined_model_text,
mandatory_predictors = specific_input_parameters_each_analysis$mandatory_predictors,
optional_predictors = specific_input_parameters_each_analysis$optional_predictors,
mandatory_interactions = specific_input_parameters_each_analysis$mandatory_interactions,
optional_interactions = specific_input_parameters_each_analysis$optional_interactions,
model_threshold_method = specific_input_parameters_each_analysis$model_threshold_method,
scoring_system = specific_input_parameters_each_analysis$scoring_system,
predetermined_threshold = specific_input_parameters_each_analysis$predetermined_threshold,
higher_values_event = specific_input_parameters_each_analysis$higher_values_event,
each_simulation = 1, bootstrap_sample = FALSE, verbose = TRUE
)}
bootstrap_results <- lapply(1:generic_input_parameters$simulations,
function(each_simulation) {
calculate_actual_predicted(
prepared_datasets = prepared_datasets,
outcome_name = generic_input_parameters$outcome_name,

calculate_performance 9

outcome_type = generic_input_parameters$outcome_type,

outcome_time = generic_input_parameters$outcome_time,

outcome_count = generic_input_parameters$outcome_count,

develop_model = specific_input_parameters_each_analysis$develop_model,

predetermined_model_text =

specific_input_parameters_each_analysis$predetermined_model_text,

mandatory_predictors = specific_input_parameters_each_analysis$mandatory_predictors,

optional_predictors = specific_input_parameters_each_analysis$optional_predictors,
mandatory_interactions = specific_input_parameters_each_analysis$mandatory_interactions,
optional_interactions = specific_input_parameters_each_analysis$optional_interactions,
model_threshold_method = specific_input_parameters_each_analysis$model_threshold_method,

scoring_system = specific_input_parameters_each_analysis$scoring_system,
predetermined_threshold = specific_input_parameters_each_analysis$predetermined_threshold,

higher_values_event = specific_input_parameters_each_analysis$higher_values_event,

each_simulation = each_simulation, bootstrap_sample = TRUE, verbose = TRUE

b

calculate_performance Calculate performance of prognostic models

Description

This function calculates the different performance measures of prognostic models and factors.
Please see below for more details.

Usage

calculate_performance(outcome_type, time, outcome_count, actual, predicted,
develop_model, 1p)

Arguments

outcome_type One of 'binary’, 'time-to-event’, quantitative’. Count outcomes are included in
‘quantitative’ outcome type and can be differentiated from continuous outcomes
by specifying outcome_count as TRUE. Please see examples below.

time Times at which the outcome was measured. This is applicable only for ’time-to-
event’ outcome. For other outcome types, enter NA.

outcome_count TRUE if the outcome was a count outcome and FALSE otherwise.
actual A vector of actual values.
predicted A vector of predicted values.

develop_model TRUE, if you a model was developed; FALSE, if a scoring system with a prede-
termined threshold (if applicable) was used.

1p A vector of linear predictors (applicable only if you have developed a model.)

10 calculate_performance

Details

General comment Most of the input parameters are already available from the generic and specific

input parameters created using create_generic_input_parameters and create_specific_input_parameters.
This function is used by the compile_results function which provides the correct input parameters

based on the entries while using create_generic_input_parametersand create_specific_input_parameters
and the output from calculate_actual_predicted.

Performance measures The performance was measured by the following parameters. Accuracy
Number of correct predictions/number of participants in whom the predictions were made (Rainio
et al., 2024). Calibration Three measures of calibration are used. Observed/expected ratio Please
see Riley et al., 2024. Values closer to 1 are better; ratios < 1 indicate overestimation of risk by the
model while ratios > 1 indicate underestimation of risk by the model (Riley et al., 2024).

We treated underestimation and overestimation equally, i.e., an observed-expected ratio of 0.8 was
considered equivalent to 1/0.8 = 1.25. Therefore, we converted the observed-expected ratios to be
in the same direction (less than 1) (‘modified observed-expected ratio’). This ensured that while
calculating the test performance and bootstrap performance, lower numbers consistently indicated
worse test performance (as they are more distant from 1) and higher numbers consistently indicated
better performance (noting that the maximum value of the modified observed-expected ratio was 1).
This modification also helps in interpretation of comparison for different models, some of which
may overestimate the risk while others might underestimate the risk.

For assessing the calibration, when the expected events were zero, 0.5 were added to both the
observed events and expected events.

Calibration intercept and calibration slope: Calibration slope quantifies the spread of the risk prob-
abilities in relation to the observed events (Stevens et al., 2020). We used the methods described
by Riley et al, 2024 to calculate the calibration intercept and slope for all outcomes other than
time-to-event outcomes. Essentially, this involves the following regression equation: Y = calibra-
tion intercept + coefficient * linear predictor, where 'Y’ is the log odds of observed event, log risk
of observed event, and the untransformed outcomes for binary, count, and continuous outcomes
respectively.

Estimation in time-to-event is lot more uncertain and should be considered experimental. Please
note that that Cox regression does not have an intercept separately, as the intercept is included in
the baseline hazard (SAS Support, 2017).

Values closer to 1 indicate better performance when the intercept is close to 0; values further away
from 1 indicate that the predictions are incorrect in some ranges (Van Calster et al., 2019; Riley et
al., 2024; Stevens e al., 2020). The further away from 1, the worse the relationship between the log
odds of observed event, log hazard, log risk of observed event, and the untransformed outcome with
the linear predictor.

To allow easy comparison with lower values indicating closer to 1 and higher values indicating fur-
ther away from 1, this function also calculates the 'modified calibration slope’ using the following
formula: ’Modified calibration slope = absolute value (1-calibration slope)’.

Calibration intercept (also called "calibration-in-the-large") in the calibration regression equation
evaluates whether the observed event proportion equals the average predicted risk (Van Calster et
al, 2019).

This function also calculates the ‘modified calibration intercept’ as the absolute value of calibration
intercept to allow lower values indicating closer to 0 and higher values indicating further away from
0.

calculate_performance 11

C-statistic This is the area under the ROC curve and a measure of discrimination (Riley et al. 2025).
This was calculated using roc. Higher values indicate better performance.

Value

output A dataframe of the calculated evaluation parameters

Author(s)

Kurinchi Gurusamy

References
Rainio O, Teuho J, Klén R. Evaluation metrics and statistical tests for machine learning. Scientific
Reports. 2024;14(1):6086.

Riley RD, Archer L, Snell KIE, Ensor J, Dhiman P, Martin GP, et al. Evaluation of clinical predic-
tion models (part 2): how to undertake an external validation study. BMJ. 2024;384:e074820.

SAS Support. https://support.sas.com/kb/24/457 .html (accessed on 16 January 2026).

Stevens RJ, Poppe KK. Validation of clinical prediction models: what does the "calibration slope"
really measure? Journal of Clinical Epidemiology. 2020;118:93-9.

Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, et al. Cali-
bration: the Achilles heel of predictive analytics. BMC Medicine. 2019;17(1):230.

See Also

roc

Examples

library(survival)

colon$status <- factor(as.character(colon$status))

For testing, only 5 simulations are used here. Usually at least 300 to 500

simulations are a minimum. Increasing the simulations leads to more reliable results.
The default value of 2000 simulations should provide reasonably reliable results.
generic_input_parameters <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 5,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters
analysis_details <- cbind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',
'Multiple mandatory and optional predictors’,
'Multiple optional predictors only', 'Predetermined model text'),

develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),

predetermined_model_text = c(NA, NA, NA, NA,

"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = c(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),
optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),

12

calculate_performance

mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),
model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('6@', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)
)
write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")
analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE
results <- create_specific_input_parameters(
generic_input_parameters = generic_input_parameters,
analysis_details_path = analysis_details_path, verbose = TRUE)
specific_input_parameters <- results$specific_input_parameters
Set a seed for reproducibility - Please see details above
set.seed(generic_input_parameters$seed)
prepared_datasets <- {prepare_datasets(
df = generic_input_parameters$df,
simulations = generic_input_parameters$simulations,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
verbose = TRUE)}
There is no usually no requirement to call this function directly. This is used
by the perform_analysis function to create the actual and predicted values.
specific_input_parameters_each_analysis <- specific_input_parameters[[1]]
actual_predicted_results_apparent <- {calculate_actual_predicted(
prepared_datasets = prepared_datasets,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
outcome_count = generic_input_parameters$outcome_count,
develop_model = specific_input_parameters_each_analysis$develop_model,
predetermined_model_text =
specific_input_parameters_each_analysis$predetermined_model_text,
mandatory_predictors = specific_input_parameters_each_analysis$mandatory_predictors,
optional_predictors = specific_input_parameters_each_analysis$optional_predictors,
mandatory_interactions = specific_input_parameters_each_analysis$mandatory_interactions,
optional_interactions = specific_input_parameters_each_analysis$optional_interactions,
model_threshold_method = specific_input_parameters_each_analysis$model_threshold_method,
scoring_system = specific_input_parameters_each_analysis$scoring_system,
predetermined_threshold = specific_input_parameters_each_analysis$predetermined_threshold,
higher_values_event = specific_input_parameters_each_analysis$higher_values_event,
each_simulation = 1, bootstrap_sample = FALSE, verbose = TRUE
)}
bootstrap_results <- lapply(1:generic_input_parameters$simulations,
function(each_simulation) {
calculate_actual_predicted(
prepared_datasets = prepared_datasets,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,

compile_results 13

outcome_time = generic_input_parameters$outcome_time,

outcome_count = generic_input_parameters$outcome_count,

develop_model = specific_input_parameters_each_analysis$develop_model,

predetermined_model_text =

specific_input_parameters_each_analysis$predetermined_model_text,

mandatory_predictors = specific_input_parameters_each_analysis$mandatory_predictors,

optional_predictors = specific_input_parameters_each_analysis$optional_predictors,
mandatory_interactions = specific_input_parameters_each_analysis$mandatory_interactions,
optional_interactions = specific_input_parameters_each_analysis$optional_interactions,
model_threshold_method = specific_input_parameters_each_analysis$model_threshold_method,

scoring_system = specific_input_parameters_each_analysis$scoring_system,
predetermined_threshold = specific_input_parameters_each_analysis$predetermined_threshold,

higher_values_event = specific_input_parameters_each_analysis$higher_values_event,

each_simulation = each_simulation, bootstrap_sample = TRUE, verbose = TRUE

)

»

apparent_performance <- {cbind.data.frame(
performance = "apparent”, simulation = NA,

calculate_performance(
outcome_type = generic_input_parameters$outcome_type,
time = actual_predicted_results_apparent$time_all_subjects,
outcome_count = generic_input_parameters$outcome_count,
actual = actual_predicted_results_apparent$actual_all_subjects,
predicted = actual_predicted_results_apparent$predicted_all_subjects,
develop_model = specific_input_parameters_each_analysis$develop_model,
1p = actual_predicted_results_apparent$lp_all_subjects

N}

compile_results Run the analysis and compile the results.

Description

This is wrapper function that takes generic_input_parameters created using create_generic_input_parameters,
specific_input_parameters created using create_specific_input_parameters and the datasets
prepared using prepare_datasets, and provides the results. For details, please see below.

Usage

compile_results(generic_input_parameters, specific_input_parameters,
prepared_datasets, verbose)

Arguments

generic_input_parameters
This is a list that contains common information across models. If one or more
items are missing or incorrect, this may result in error. Therefore, we recom-
mend that you use the create_generic_input_parameters function to create
this input.

14 compile_results

specific_input_parameters
This is a list that contains information related to each model or scoring system.
If one or more items are missing or incorrect, this may result in error. Therefore,
we recommend that you use the create_specific_input_parameters.

prepared_datasets
Datasets prepared using the prepare_datasets.

verbose TRUE if the progress must be displayed and FALSE otherwise.

Details

Overview This is wrapper function that takes generic_input_parameters created using create_generic_input_parameters
specific_input_parameters created using create_specific_input_parameters, and the datasets

prepared using prepare_datasets, and provides the results. It uses the perform_analysis func-

tion (which itself uses the calculate_actual_predicted to develop and run models and calculate_performance

to calculate the performance). It also creates calibration curves for each model and summarises the

information across the different scoring systems and models.

The following steps must be done sequentially. Please see example below which provides the details
of how to perform the analysis. 1. Process the data: The dataset should be prepared correctly for
the functions to work correctly. This can be done using process_data. 2. Create the generic input
parameters: The generic input parameters should be provided. You can check that the input param-
eters are correct using create_generic_input_parameters. 3. Create the specific input param-
eters: The specific input parameters should be provided. You can check that the input parameters
are correct using create_specific_input_parameters. 4. Prepare the datasets: The datasets for
each simulation are prepared using prepare_datasets. 5. Provide the correct parameters to this
function: Input ’generic_input_parameters’, ’specific_input_parameters’, and ’prepared_datasets’
to obtain the results.

Preparing datasets for each simulation Please see prepare_datasets.

Calculation of actual and predicted values Please see calculate_actual_predicted.
Calculation of performance measures Please see calculate_performance.
Calculation of means and confidence intervals Please see perform_analysis.

Calibration curves Flexible calibration curves were created using the package CalibrationCurves,
based on the paper by Van Calster et al, 2016.

The calibration curves have been described for only one simulation. It is impractical to interpret
each calibration curve (one for each simulation). Therefore, the calibration curves are shown only
for the apparent performance. As an experimental method, the linear predictors were averaged
across the simulations and calibration curves for the average test performance are also provided.

When the flexible calibration curves resulted in errors or were not possible, for example, the aver-
age linear predictors across simulations for time-to-event outcomes, calibration_plot was used
to create the calibration plots. Appropriate backtransformations were performed to reverse the
transformations applied while calculating the linear predictors. For further information about trans-
formations, please see calculate_actual_predicted.

Value

results These include the performance results for each model.

compile_results 15

summary_results
These include the summary performance results.

html_file_location
This provides the location of the html file, which contains the results in html
format. This can be downloaded and the content copied to word document or
PowerPoint presentations.

Author(s)

Kurinchi Gurusamy

References

Collins GS, Dhiman P, Ma J, Schlussel MM, Archer L, Van Calster B, et al. Evaluation of clinical
prediction models (part 1): from development to external validation. Bmj. 2024;384:e074819.

R Package "coxed". https://CRAN.R-project.org/package=coxed)

Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hier-
archy for risk models was defined: from utopia to empirical data. Journal of Clinical Epidemiology.
2016;74:167-76.

See Also

process_dataprepare_datasets perform_analysis calculate_actual_predicted calculate_performance
CalibrationCurves

Examples

Load packages #i###

library(base64enc)

library(mime)

library(pROC)

library(survival)

library(ggplot2)

library(CalibrationCurves)

library(predtools)

colon$status <- factor(as.character(colon$status))

For testing, only 5 simulations are used here. Usually at least 300 to 500

simulations are a minimum. Increasing the simulations leads to more reliable results.
The default value of 2000 simulations should provide reasonably reliable results.
generic_input_parameters <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 5,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time"”, outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters
analysis_details <- cbind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',
'Multiple mandatory and optional predictors',
'Multiple optional predictors only', 'Predetermined model text'),

develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),

16 create_generic_input_parameters

predetermined_model_text = c(NA, NA, NA, NA,
"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = ¢(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),
optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),
mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),
model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('60', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)
)
For the demonstration, only the first row is run. Please remove the line
below i.e., analysis_details <- analysis_details[1,]
analysis_details <- analysis_details[1,]
write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")
analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE, as shown here
results <- create_specific_input_parameters(
generic_input_parameters = generic_input_parameters,
analysis_details_path = analysis_details_path, verbose = FALSE)
specific_input_parameters <- results$specific_input_parameters
Set a seed for reproducibility - Please see details above
set.seed(generic_input_parameters$seed)
prepared_datasets <- {prepare_datasets(
df = generic_input_parameters$df,
simulations = generic_input_parameters$simulations,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
verbose = FALSE)}
results <- compile_results(generic_input_parameters, specific_input_parameters,
prepared_datasets, verbose = FALSE)
Results html_file_location
results$html_file_location

create_generic_input_parameters
Create generic input parameters

Description

This function simply checks whether the input parameters are correct and if correct, creates a list
from the input parameters. This also makes some corrections when possible (i.e., when there were
minor correctable issues in the input parameters).

Usage

create_generic_input_parameters(general_title, simulations, simulations_per_file,
seed, df, outcome_name, outcome_type, outcome_time, outcome_count, verbose)

create_generic_input_parameters 17

Arguments

general_title A general title for your analysis

simulations The number of simulations required. Usually at least 300 to 500 simulations
are a minimum. Increasing the simulations leads to more reliable results. The
default value of 2000 simulations should provide reasonably reliable results.

simulations_per_file
This is to manage the memory requirements. The default value of 20 simulations
per file should work in most instances.

seed Please see prepare_datasets for details.

df The dataset used for the analysis. This must be provided as a dataframe. Data in
files can be converted to dataframes with appropriate field types using process_data.

outcome_name Name of the colummn that contains the outcome data. This must be a column
name in the ’df” provided as input.

outcome_type One of ’binary’, 'time-to-event’, ’quantitative’. Count outcomes are included in
’quantitative’ outcome type and can be differentiated from continuous outcomes
by specifying outcome_count as TRUE. Please see examples below.

outcome_time The name of the column that provides the follow-up time. This is applicable
only for ’time-to-event’ outcome. For other outcome types, enter NA.

outcome_count TRUE if the outcome was a count outcome and FALSE otherwise.

verbose TRUE if the outcome message must be displayed and FALSE otherwise.
Value
outcome The outcome containing the processing details. If some corrections were made,

the corrections are included in the outcome. If there was a fatal error, the reason
for the fatal error is provided.

generic_input_parameters
A list with information for further analyses. If there was a fatal error, the reason
for the fatal error is displayed and generic_input_parameters is NULL.

Author(s)

Kurinchi Gurusamy

See Also

process_data prepare_datasets

Examples

Correct parameters

Binary outcome

verbose is TRUE, therefore, the outcome message will be displayed

results <- create_generic_input_parameters(

general_title = "Prediction of penguin species”, simulations = 2000,
simulations_per_file = 20, seed = 1, df = penguins, outcome_name = "species”,

18

create_generic_input_parameters

outcome_type = "binary", outcome_time = NA, outcome_count = FALSE, verbose = TRUE)
generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

Time-to-event outcome

library(survival)

The field 'status' is provided as numeric. This must be converted to factor. In

this example, we can convert this to factor using a command. For conversion of more
columns, please use process_data function.

colon$status <- factor(as.character(colon$status))

verbose is FALSE, therefore, the outcome message will not be displayed, but the

outcome is stored.

results <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 2000,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)

Display outcome

results$outcome

Display generic_input_parameters

generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

Continuous outcome

verbose is not supplied, therefore, the outcome message will be displayed as
this is the default.

results <- create_generic_input_parameters(

general_title = "Prediction of iris petal length”, simulations = 2000,
simulations_per_file = 20, seed = 1, df = iris, outcome_name = "Petal.Length”,
outcome_type = "quantitative"”, outcome_time = NA, outcome_count = FALSE)

generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

Count outcomes
results <- create_generic_input_parameters(

general_title = "Prediction of warp breaks”, simulations = 2000,
simulations_per_file = 20, seed = 1, df = warpbreaks, outcome_name = "breaks”,
outcome_type = "quantitative"”, outcome_time = NA, outcome_count = TRUE)

generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

Non fatal errors #ii#
results <- create_generic_input_parameters(

general_title = "", simulations = "Use default”,

simulations_per_file = "Use default”, seed = "Use default”,

df = warpbreaks, outcome_name = "breaks",

outcome_type = "quantitative"”, outcome_time = "Use default”, outcome_count = TRUE,

verbose = TRUE)
generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

Fatal error #i#i#
Note the dataframe name supplied within quotes.

create_specific_input_parameters

results <- create_generic_input_parameters(

general_title = "", simulations = "Use default”,

simulations_per_file = "Use default”, seed = "Use default”,

df = "warpbreaks”, outcome_name = "breaks"”, outcome_type = "quantitative”,
outcome_time = "Use default”, outcome_count = TRUE, verbose = TRUE)

generic_input_parameters <- results$generic_input_parameters
generic_input_parameters

19

create_specific_input_parameters
Create specific input parameters

Description

This function converts the analysis details that you provide in a "csv’ file to a list that will be used for
analysis. Only valid rows are included in this list. If there are invalid rows, the reasons for rejecting
the rows are provided. Any revisions that make the rows valid are performed when possible.

Usage

create_specific_input_parameters(generic_input_parameters, analysis_details_path,

verbose)

Arguments

generic_input_parameters

The generic input parameters that you generated with create_generic_input_parameters
(recommended) or manually.

analysis_details_path

The path to the ’csv’ file containing the following columns. ’name’: The name

of the analysis. Provide a short name. This will be displayed on graphs and
will also be used for naming the analysis. The name must be unique. If the
name does not follow the naming convention for R objects, a suitable name is
created. ‘analysis_title’: The title of the analysis to be displayed. If the title is
missing, the 'name’ is used as the ’analysis_title’. ’develop_model’: TRUE, if
you want to develop a model; FALSE, if you want to use a scoring system with a
predetermined threshold (if applicable). ’predetermined_model_text’: You can
create the model text from the mandatory and optional predictors and interac-
tions or for finer control of the model, you can provide the model text directly.
‘mandatory_predictors’: Predictors that must be included in the model. These
should be provided even if you provide the ’predetermined_model_text’. 'op-
tional_predictors’: Optional predictors that may be included in the model by
step. These should be provided even if you provide the *predetermined_model_text’.
‘mandatory_interactions’: Interactions that must be included in the model. These
should be provided even if you provide the ’predetermined_model_text’. ’'op-
tional_interactions’: Optional interactions that may be included in the model by
step. These should be provided even if you provide the ’predetermined_model_text’.

20

create_specific_input_parameters

‘'model_threshold_method’: One of ’youden’, ’topleft’, 'heuristic’. Please see
description in calculate_actual_predicted. ’scoring_system’: Name of the
pre-existing scoring system. This is ignored if develop_model is TRUE. ’pre-
determined_threshold’: Pre-determined threshold of the pre-existing scoring
system. This is mandatory when develop_model is FALSE and when the out-
come_type is 'binary’ or 'time-to-event’. This is ignored if develop_model is
TRUE or when the outcome_type is 'quantitative’. "higher_values_event’: TRUE
if higher values of the pre-existing system indicates event and FALSE otherwise.
This is mandatory when develop_model is FALSE and when the outcome_type is
’binary’ or 'time-to-event’. This is ignored if develop_model is TRUE or when
the outcome_type is 'quantitative’.

verbose TRUE if the outcome message must be displayed and FALSE otherwise.

Value

outcome The outcome containing the processing details. If some corrections were made,

the corrections are included in the outcome. If some rows were not valid, the
reason for the row not being valid is provided.

specific_input_parameters

A list with the information for further analyses.

Author(s)

Kurinchi Gurusamy

Examples

library(survival)
colon$status <- factor(as.character(colon$status))
generic_input_parameters <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 2000,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters

analysis_details <- cbind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',

'Multiple mandatory and optional predictors’,

'Multiple optional predictors only', 'Predetermined model text'),
develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),
predetermined_model_text = c(NA, NA, NA, NA,
"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = c(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),
optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),
mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),
model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('60', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)

get_outcome_status_at_specific_time 21

)

write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")

analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE
results <- create_specific_input_parameters(

generic_input_parameters = generic_input_parameters,

analysis_details_path = analysis_details_path, verbose = TRUE)
specific_input_parameters <- results$specific_input_parameters

get_outcome_status_at_specific_time
Get outcome status at specific time

Description

Some may want to calculate the outcome status at a specified time to predict the outcome at a
specific time. This function gets the outcome status at the specific time.

Usage

get_outcome_status_at_specific_time(df, status_field, time_field, specific_time)

Arguments

df The dataframe which contains the data.
status_field The field in the dataframe that indicates the status, i.e., event or no event.
time_field The field in the dataframe that indicates the follow-up time.

specific_time The time point at which the outcome status should be calculated.

Value
outcome Whether the operation was successfully performed
message Any information, particularly when the operation fails.
new_data The data with the existing status and time fields replaced by the updated status
and time. The original status and time are available with a prefix "unmodified_".
Author(s)

Kurinchi Gurusamy

22

Examples

library(survival)

guess_data_types

Use the dataset colon as example

Replace existing status with the status at 365 days

results <- get_outcome_status_at_specific_time(df = colon,
status_field = "status”, time_field = "time"”, specific_time = 365)

results$outcome
results$message

Display first 10 rows to show how the status and time have been modified
results$new_datal[1:10, c("status”, "time"”, "unmodified_status”, "unmodified_time")]

guess_data_types

Guess data types

Description

This function removes any columns where there is no data and makes guesses on the data type.
However, this relies on the data not being coded already. If the data has been coded, the metadata
generated can be used as a template that can be modified and provided as input for process_data.

Usage

guess_data_types(data_file_path)

Arguments

data_file_path The path for the data file where guessing the data types of columns is necessary.

Value

outcome
message
data

metadata

any_type
quantitative
numerical

count

categorical

nominal

Whether the operation was successfully performed
Any information, particularly when the operation fails.
The data after removing the columns without any data.

Automated metadata is created based on the data. However, this relies on data
not previously coded, for example, if the status is coded as 0 and 1 rather than
absent’ and ’present’, the variable will be recognised as a quantitative variable
rather than categorical variable.

All fields with data.
Fields recognised as quantitative.
Fields recognised as continuous.

Fields recognised as count. Count data is recognised from the field name. If a
field name starts with ’Number of’, it is considered as count data.

Fields recognised as categorical data.

Fields recognised as nominal data. All categorical data with more than two
levels are recognised as nominal data.

perform_analysis 23

binary Fields recognised as binary data. All categorical data with only two levels are
recognised as binary data.

ordinal Fields recognised as ordinal data. Any categorical data with more than two
levels and with the second character of all the levels being an ’_’ are recognised
as ordinal data.

date Fields recognised as date.
time Fields recognised as time.
Author(s)

Kurinchi Gurusamy

See Also

process_data

Examples

data_file_path <- paste@(tempdir(), "/df.csv")

write.csv(penguins, data_file_path, row.names = FALSE, na = "")
guessed_data_types <- guess_data_types(data_file_path = data_file_path)
guessed_data_types

perform_analysis Perform analysis

Description

This uses the calculate_actual_predicted to develop and run models and calculate_performance
to calculate the mean and confidence intervals of the performance (please see details below).

Usage

perform_analysis(generic_input_parameters,
specific_input_parameters_each_analysis, prepared_datasets, verbose)

Arguments

generic_input_parameters
This is a list that contains common information across models. If one or more
items are missing or incorrect, this may result in error. Therefore, we recom-
mend that you use the create_generic_input_parameters function to create
this input.

specific_input_parameters_each_analysis
This corresponds to each analysis, i.e., a model or scoring system. If one or
more items are missing or incorrect, this may result in error. Therefore, we
recommend that you use the create_specific_input_parameters.

24

perform_analysis

prepared_datasets
Datasets prepared using the prepare_datasets.

verbose TRUE if the progress must be displayed and FALSE otherwise.

Details

Preparing datasets for each simulation Please see prepare_datasets.

Calculation of actual and predicted values Please see calculate_actual_predicted, partic-
ulary for details of apparent performance, bootstrap performance, test performance, optimism as
described by Collins et al, 2024.

Calculation of performance measures Please see calculate_performance.

Calculation of means and confidence intervals For calculating the average performance mea-
sures and their confidence intervals across multiple simulations, appropriate transformations were
performed first. After this, the bias-corrected accelerated confidence intervals were calculated based
on the "bca" function from coxed package, which is not maintained anymore (R, 2025). The bias-
corrected accelerated confidence intervals of the transformed data were then back transformed.

The "enhanced bootstrapping internal validation approach" method described by Collins et al., 2024
provides only the mean optimism-corrected performance. However, we have optimism from mul-
tiple simulations. Therefore, rather than calculating the average and then subtracting it from the
apparent performance, the optimism from each simulation was subtracted from the apparent perfor-
mance. This allowed calculation of the confidence intervals of the optimism-corrected performance
using the bca function (after appropriate transformation).

The performance measures of the calibration intercept-slope adjusted models were also assessed
by the same method. We have also presented the performance of the models in the ’out-of-sample
subjects’, i.e., the subjects who were not included in the bootstrap sample.

Value

apparent_performance
Model is developed in the entire dataset and performance evaluated in the same
sample.
bootstrap_performance
Model is developed in a subset of data (training set) and evaluated in the training
dataset
test_performance
Model developed in the training set is evaluated in the entire dataset.
out_of_sample_performance
Performance in the sample that was not included in the training dataset
optimism Test performance - bootstrap performance
average_optimism
Average of the optimism
optimism_corrected_performance
Apparent performance - average optimism

optimism_corrected_performance_with_CI
Please see details above.

perform_analysis 25

out_of_sample_performance_summary

Please see details above.
apparent_performance_calibration_adjusted

For details of calibration adjustment see calculate_actual_predicted

bootstrap_performance_calibration_adjusted

As above
test_performance_calibration_adjusted

As above
out_of_sample_performance_calibration_adjusted

As abovee
optimism_calibration_adjusted

As above
average_optimism_calibration_adjusted

As above
optimism_corrected_performance_calibration_adjusted

As above
optimism_corrected_performance_with_CI_calibration_adjusted

As above

out_of_sample_performance_summary_calibration_adjusted
Summary of out-of-sample performance

apparent_performance_adjusted_mandatory_predictors_only
For details of this model, used only for research purposes, see calculate_actual_predicted,
section, "Model with with only the mandatory predictors but based on the coef-
ficients of the entire model’.
bootstrap_performance_adjusted_mandatory_predictors_only

As above
test_performance_adjusted_mandatory_predictors_only

As above
out_of_sample_performance_adjusted_mandatory_predictors_only

As abovee
optimism_adjusted_mandatory_predictors_only

As above
average_optimism_adjusted_mandatory_predictors_only

As above
optimism_corrected_performance_adjusted_mandatory_predictors_only

As above
optimism_corrected_performance_with_CI_adjusted_mandatory_predictors_only

As above

out_of_sample_performance_summary_adjusted_mandatory_predictors_only
Summary of out-of-sample performance
actual_predicted_results_apparent
Output from calculate_actual_predicted retained for some later calcula-
tions.
average_lp_all_subjects
Output from calculate_actual_predicted retained for some later calcula-
tions.

26

perform_analysis

Author(s)

Kurinchi Gurusamy

References

Collins GS, Dhiman P, Ma J, Schlussel MM, Archer L, Van Calster B, et al. Evaluation of clinical
prediction models (part 1): from development to external validation. Bmj. 2024;384:e074819.

See Also

prepare_datasets calculate_actual_predicted calculate_performance

Examples

library(survival)

colon$status <- factor(as.character(colon$status))

For testing, only 5 simulations are used here. Usually at least 300 to 500

simulations are a minimum. Increasing the simulations leads to more reliable results.
The default value of 2000 simulations should provide reasonably reliable results.
generic_input_parameters <- create_generic_input_parameters(

general_title = "Prediction of colon cancer death”, simulations = 5,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters
analysis_details <- cbhind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',

'Multiple mandatory and optional predictors',
'Multiple optional predictors only', 'Predetermined model text'),
develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),
predetermined_model_text = c(NA, NA, NA, NA,
"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = ¢(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),

optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),
mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),

model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('60', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)
)
write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")
analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE, as shown here
results <- create_specific_input_parameters(
generic_input_parameters = generic_input_parameters,
analysis_details_path = analysis_details_path, verbose = FALSE)
specific_input_parameters <- results$specific_input_parameters
Set a seed for reproducibility - Please see details above

prepare_datasets 27

set.seed(generic_input_parameters$seed)
prepared_datasets <- {prepare_datasets(

#
#

df = generic_input_parameterss$df,

simulations = generic_input_parameters$simulations,

outcome_name = generic_input_parameters$outcome_name,

outcome_type = generic_input_parameters$outcome_type,

outcome_time = generic_input_parameters$outcome_time,

verbose = FALSE)}

There is no usually no requirement to call this function directly. This is used
by the perform_analysis function to create the actual and predicted values.

specific_input_parameters_each_analysis <- specific_input_parameters[[1]1]
results <- perform_analysis(generic_input_parameters,
specific_input_parameters_each_analysis, prepared_datasets, verbose = FALSE)
results$apparent_performance

prepare_datasets Prepare simulated datasets from the entire dataset

Description

This takes the dataset, prepared using the process_data function and takes subsets of data for each
simulation. For details, please see below.

Usage

prepare_datasets(df, simulations, outcome_name, outcome_type, outcome_time, verbose)

Arguments
df The dataset used for the analysis. This must be provided as a dataframe. Data in
files can be converted to dataframes with appropriate field types using process_data.
simulations The number of simulations required. Usually at least 300 to 500 simulations

are a minimum. Increasing the simulations leads to more reliable results. The
default value of 2000 simulations should provide reasonably reliable results.

outcome_name Name of the colummn that contains the outcome data. This must be a column

name in the 'df” provided as input.

outcome_type One of ’binary’, 'time-to-event’, ’quantitative’. Count outcomes are included in

‘quantitative’ outcome type and can be differentiated from continuous outcomes
by specifying outcome_count as TRUE. Please see examples below.

outcome_time The name of the column that provides the follow-up time. This is applicable

only for ’time-to-event’ outcome. For other outcome types, enter NA.

verbose TRUE if the progress must be displayed and FALSE otherwise.

28 prepare_datasets

Details

Overview The input parameters are part of the generic_input_parameters created with create_generic_input_parameters
In the first step, it excludes all rows where the outcome is not available. For ’time-to-event’ out-

comes, the rows without outcome_time are also excluded. This forms the basis for the ’all_subjects’

dataset.

In the next step, subjects are sampled from the ’all_subjects’ dataset. The sampling is done using
random methods. The starting point used in the random number generator is called a ’seed’. This
determines all the subsequent numbers generated. The size of the sample is the same as the original
data set. This is done by sampling with replacement. The subjects included in this sample are
included for model development and the sample is called ’training’ dataset.

Some subjects are not included in the ’training’ dataset. These ’out-of-sample’ subjects are used
only for validation. The dataset that includes only ’out-of-sample’ subjects is called *only_validation’
dataset. It must be noted that some subjects in the ’all_subjects’ will be included more than once in
the “training’ dataset because of the nature of the sampling.

While sampling, if all the subjects have the same outcome, this dataset is not suitable for model de-

velopment. Therefore, such simulations cannot be included in the analysis and therefore, excluded.

In addition to sampling, some additional processing is performed. In the ’out-of-sample’ evalua-

tion, when there are ordinal factors absent in the "training’ dataset but present in the ’out-of-sample’

dataset, it results in errors. To avoid this, some levels of ordinal factors are combined.

By default, no seed is used for initiating the random sequence. This is set as part of create_generic_input_parameters.
However, you might want to set a seed for reproducibility. In the examples, the seed is set to 1.

Choosing a different seed might give slightly different results compared to seed 1.

Value
df_training_list
A list of ’training’ datasets, one for each simulation.
df_only_validation_list
A list of datasets containing "out-of-sample’ subjects, one for each simulation.
df_all_subjects_list
This is the same for all simulations.

Author(s)

Kurinchi Gurusamy

See Also

Random

Examples

library(survival)

colon$status <- factor(as.character(colon$status))

For testing, only 5 simulations are used here. Usually at least 300 to 500

simulations are a minimum. Increasing the simulations leads to more reliable results.
The default value of 2000 simulations should provide reasonably reliable results.
generic_input_parameters <- create_generic_input_parameters(

process_data 29

general_title = "Prediction of colon cancer death”, simulations = 5,
simulations_per_file = 20, seed = 1, df = colon, outcome_name = "status”,
outcome_type = "time-to-event”, outcome_time = "time", outcome_count = FALSE,

verbose = FALSE)$generic_input_parameters
analysis_details <- cbind.data.frame(

name = c('age', 'single_mandatory_predictor', 'complex_models',
'complex_models_only_optional_predictors', 'predetermined_model_text'),
analysis_title = c('Simple cut-off based on age', 'Single mandatory predictor (rx)',
'Multiple mandatory and optional predictors’,
'Multiple optional predictors only', 'Predetermined model text'),

develop_model = c(FALSE, TRUE, TRUE, TRUE, TRUE),
predetermined_model_text = c(NA, NA, NA, NA,
"cph(Surv(time, status) ~ rx * age, data = df_training_complete, x = TRUE, y = TRUE)"),
mandatory_predictors = ¢(NA, 'rx', 'rx; differ; perfor; adhere; extent', NA, "rx; age"),
optional_predictors = c(NA, NA, 'sex; age; nodes', 'rx; differ; perfor', NA),
mandatory_interactions = c(NA, NA, 'rx; differ; extent', NA, NA),
optional_interactions = c(NA, NA, 'perfor; adhere; sex; age; nodes', 'rx; differ', NA),
model_threshold_method = c(NA, 'youden', 'youden', 'youden', 'youden'),
scoring_system = c('age', NA, NA, NA, NA),
predetermined_threshold = c('60', NA, NA, NA, NA),
higher_values_event = c(TRUE, NA, NA, NA, NA)
)
write.csv(analysis_details, paste@(tempdir(), "/analysis_details.csv"),
row.names = FALSE, na = "")
analysis_details_path <- paste@(tempdir(), "/analysis_details.csv")
verbose is TRUE as default. If you do not want the outcome displayed, you can
change this to FALSE
results <- create_specific_input_parameters(
generic_input_parameters = generic_input_parameters,
analysis_details_path = analysis_details_path, verbose = TRUE)
specific_input_parameters <- results$specific_input_parameters
Set a seed for reproducibility - Please see details above
set.seed(generic_input_parameters$seed)
prepared_datasets <- {prepare_datasets(
df = generic_input_parameters$df,
simulations = generic_input_parameters$simulations,
outcome_name = generic_input_parameters$outcome_name,
outcome_type = generic_input_parameters$outcome_type,
outcome_time = generic_input_parameters$outcome_time,
verbose = TRUE)}

[

process_data Process the data

Description

This takes a dataset and the metadata for the dataset and creates R data frames in a format required
for the subsequent steps.

30 process_data

Usage

process_data(data_file_path, metadata_file_path)

Arguments

data_file_path Path to the dataset
metadata_file_path
Path to the metadata file

Details

The metadata should contain the following information as a minimum. variable: this is the name of
the variable and should match the column names of the dataset. data_type: 'numerical’ for contin-
uous variables, ’count’ for count variables, ’binary for binary categorical variables, 'nominal’ for
unordered categorical variables with more than 2 levels, 'ordinal’ for ordered categorical variables,
‘date’ for variables stored as date, and 'time’ for variables stored containing the time of the day.

Optional information includes the following. reference: Reference category for binary and nominal
variables. This should be a category existing in the variable. ordinal levels: the levels of ordinal
data from lower to higher order, separated by ";". This must include all the levels in the data.

You can use guess_data_types as a starting point for the metadata, which is included in the output
list of the guess_data_types function.

Value
outcome Whether the operation was successfully performed
message Any information, particularly when the operation fails.

data_processed The data which has been modifed according to the metadata when correct pa-
rameters are provided

any_type All fields.
quantitative Fields recognised as quantitative.
numerical Fields recognised as continuous.
count Fields recognised as count.
categorical Fields recognised as categorical data.
nominal Fields recognised as nominal data
binary Fields recognised as binary data.
ordinal Fields recognised as ordinal data.
date Fields recognised as date.
time Fields recognised as time.
Author(s)

Kurinchi Gurusamy

process_data

See Also

guess_data_types

Examples

Not run:
library(survival)
Use the dataset colon as example
Select only the survival for these examples (etype == 2)
data_file_path <- paste@(tempdir(), "/df.csv")
write.csv(colon[colon$etype == 2, 1, data_file_path, row.names = FALSE,
metadata <- {data.frame(
variable = c("id","study”,"rx","sex","age",
"obstruct”, "perfor”,"adhere"”, "nodes"”, "status”,
"differ"”,"extent”,"surg"”, "node4"”,"time",

non non "
’ ’

"etype"),

data_type = c("nominal”, "nominal”, "nominal”, "binary"”, "numerical”,
"binary"”, "binary”, "binary"”, "count”, "binary",
"ordinal”, "ordinal”, "binary"”, "binary"”, "numerical”,
"nominal"”),

reference = c(NA, NA, "Obs", @, NA,
9, 0, 0, NA, 0,
NA, NA, 0, 0, NA,
NA),
ordinal_levels = c(NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
"1;2;3", "1;2;3;4", NA, NA, NA,

NA),
comments = NA
)}
metadata_file_path <- paste@(tempdir(), "/metadata.csv")
write.csv(metadata, metadata_file_path, row.names = FALSE, na = "")

processed_data <- process_data(data_file_path, metadata_file_path)

End(Not run)

na = "")

Index

basehaz, 4,7

calculate_actual_predicted, 2, 10, 14, 15,
20, 23-26

calculate_performance, 9, 14, 15,23, 24, 26

calibration_plot, /4

CalibrationCurves, 14, 15

compile_results, 10, 13

coords, 5,7

coxph, 3, 4,7

create_generic_input_parameters, 3, 10,
13, 14,16, 19, 23,28

create_specific_input_parameters, 3, 10,
13, 14,19, 23

get_outcome_status_at_specific_time,
21

glm, 3,7

guess_data_types, 22, 30, 31

perform_analysis, 3, 14, 15,23

predict, 4,7

predict.coxph, 4, 7

prepare_datasets, 2, 3, 7, 13-15, 17, 24, 26,
27

process_data, 14, 15,17, 22, 23,27, 29

Random, 28
roc, 5,7, 11

step, 2, 3, 19

32

	calculate_actual_predicted
	calculate_performance
	compile_results
	create_generic_input_parameters
	create_specific_input_parameters
	get_outcome_status_at_specific_time
	guess_data_types
	perform_analysis
	prepare_datasets
	process_data
	Index

