Version: | 0.9-0 |
Date: | 2025-05-05 |
Title: | A Data Analysis GUI for R |
Maintainer: | Ian Fellows <ian@fellstat.com> |
Description: | An intuitive, cross-platform graphical data analysis system. It uses menus and dialogs to guide the user efficiently through the data manipulation and analysis process, and has an excel like spreadsheet for easy data frame visualization and editing. Deducer works best when used with the Java based R GUI JGR, but the dialogs can be called from the command line. Dialogs have also been integrated into the Windows Rgui. |
Depends: | R (≥ 2.15.0), ggplot2 (≥ 2.0.0), JGR(≥ 1.7-10), car, MASS |
Imports: | rJava, e1071, scales, plyr, foreign, multcomp, effects |
Suggests: | Hmisc, brunnermunzel |
SystemRequirements: | Java, JRI |
License: | GPL-2 |
URL: | https://www.deducer.org/ https://www.fellstat.com |
NeedsCompilation: | no |
Packaged: | 2025-05-05 20:56:13 UTC; ianfellows |
Author: | Ian Fellows [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2025-05-07 13:50:06 UTC |
Helpers
Description
GUI helpers
Usage
.assign.classnames()
Apply a Stratified test to a Contingency Table
Description
Applies and adds a hypothesis test to a contingency.tables
object.
Usage
add.cross.strata.test(tables,name,htests,types=c("asymptotic","monte.carlo","exact"))
Arguments
tables |
An object of class |
name |
The name of the hypothesis test |
htests |
A function or list of functions which take a three dimensional array as it's argument
and returns an object of class |
types |
A character vector with the same number of items as htests, indicating what type of test was done |
Value
A contingency.tables
object identical to tables
, but with the test applied to each table.
See Also
Examples
dat<-data.frame(a=rnorm(100)>.5,b=rnorm(100)>0,c=rnorm(100)>(-.5))
tables<-contingency.tables(
row.vars=a,
col.vars=b,
stratum.var=c,data=dat)
add.cross.strata.test(tables,"Mantel-Haenszel",list(function(x) mantelhaen.test(x,correct=FALSE)),
"asymptotic")
tables
Apply the Mantel-Haenszel test to a Contingency Table
Description
Applies and adds the Cochran-Mantel-Haenzsel test to a contingency.tables
object. The Cochran-Mantel-Haenzsel tests
the independence of two nominal variables, stratified by a third nominal variable, assuming no three way interaction.
Usage
add.mantel.haenszel(tables,conservative=FALSE)
Arguments
tables |
An object of class |
conservative |
Should a continuity 'correction' be applied |
Details
This is a convenience function wrapping mantelhaen.test
in a add.cross.strata.test
call.
See mantelhaen.test
for further details.
Value
A contingency.tables
object identical to tables
, but with the test applied to each table.
See Also
add.cross.strata.test
add.test
mantelhaen.test
Examples
dat<-data.frame(a=rnorm(100)>.5,b=rnorm(100)>0,c=rnorm(100)>(-.5))
tables1<-contingency.tables(
row.vars=a,
col.vars=b,
stratum.var=c,data=dat)
tables1<-add.mantel.haenszel(tables1)
print(tables1,prop.r=TRUE,prop.c=TRUE,prop.t=FALSE)
Apply a test to a Contingency Tables object
Description
Applies and adds a test to a contingency.tables
object.
Usage
add.test(tables,name,htests,types=c("asymptotic","monte.carlo","exact"))
add.chi.squared(tables, simulate.p.value = FALSE, B = 10000)
add.likelihood.ratio(tables, conservative = FALSE, simulate.p.value = FALSE, B = 10000)
add.fishers.exact(tables, simulate.p.value = FALSE, B = 10000)
add.correlation(tables,method=c("spearman","kendall"))
add.kruskal(tables,nominal=c("both","rows","cols"))
Arguments
tables |
An object of class |
name |
Name of the test |
htests |
A function or list of functions which take a matrix as it's argument
and returns an object of class |
types |
A character vector with the same number of items as |
conservative |
Should a conservative p-value be computed. i.e. One with a continuity correction for asymptotic tests and not using the mid p-value for exact and approximate tests |
simulate.p.value |
If |
B |
the number of samples for the monte carlo simulation |
method |
the type of correlation |
nominal |
Should the rows or columns be considered nominal. |
Details
add.test applies a supplied list of tests to all of the tables in tables
.
add.chi.squared is a wrapper function applying the chisq.test
function to each table.
add.likelihood.ratio is a wrapper function applying the likelihood.test
function to each table.
add.fishers.exact is a wrapper function applying the fisher.test
function to each table.
add.correlation is a wrapper function applying the cor.test
function to each table.
add.kruskal is a wrapper function applying the kruskal.test
function to each table.
Value
A contingency.tables
object identical to tables
, but with the test applied to each table.
See Also
add.cross.strata.test
likelihood.test
cor.test
kruskal.test
Examples
dat<-data.frame(a=rnorm(100)>.5,b=rnorm(100)>0,c=rnorm(100)>(-.5))
tables<-contingency.tables(
row.vars=a,
col.vars=b,
stratum.var=c,data=dat)
tables<-add.chi.squared(tables,simulate.p.value=TRUE,B=10000)
tables<-add.likelihood.ratio(tables)
tables<-add.fishers.exact(tables)
tables<-add.correlation(tables,method='kendall')
tables<-add.kruskal(tables)
tables<-add.mantel.haenszel(tables)
print(tables)
remove(tables)
as.matrix method
Description
as matrix
Usage
## S3 method for class 'cor.matrix'
as.matrix(x,...)
Arguments
x |
Object of class |
... |
further arguments. unsued |
Value
a matrix
Non-central Chi-Squared Confidence Interval
Description
Confidence interval for the Non-centrality parameter of Non-central chi-squared distribution
Usage
chi.noncentral.conf(chival,df,conf,prec=.00001)
Arguments
chival |
The observed Chi-Squared value |
conf |
The confidence level (e.g. .95) |
df |
Degrees of freedom |
prec |
Precision of estimate |
Value
A 2X2 matrix whose rows represent the upper and lower bounds, and whose columns represent the parameter value and upper tail percentiles.
References
Smithson, M.J. (2003). Confidence Intervals, Quantitative Applications in the Social Sciences Series, No. 140. Thousand Oaks, CA: Sage.
See Also
Examples
chi.noncentral.conf(6,1,.95)
# Result:
# Non-Central %
#Lower 0.2089385 0.97500899
#Upper 19.4443359 0.02499302
contin.tests.to.table
Description
Makes a nice table out of a contin.tests
object
Usage
contin.tests.to.table(tests,test.digits=3,...)
Arguments
tests |
a |
test.digits |
The number of digits to round to |
... |
other paramaters |
Value
A nice table
Contingency Tables
Description
Creates a contingency.tables object
Usage
contingency.tables(row.vars, col.vars, stratum.var, data=NULL, missing.include=FALSE )
Arguments
row.vars |
A variable or data frame evaluated in data |
col.vars |
A variable or data frame evaluated in data |
stratum.var |
A variable evaluated in data |
data |
A |
missing.include |
A logical indicating whether a missing category should be included in the table |
Value
A list with class "contingency.tables." Each element of the list is a single contingency table of
class "contin.table" corresponding to each combination of elements of row.vars
and col.vars
stratified by stratum.var
See Also
Examples
temp.data<-data.frame(a=rnorm(100)>0,b=rnorm(100)>0,gender=rep(c("male","female"),50))
#a vs. b stratified by gender
tab<-contingency.tables(a,b,gender,data=temp.data)
tab
##add in chi-squared tests
tab<-add.chi.squared(tab)
tab
cor.matrix
Description
Creates a correlation matrix
Usage
cor.matrix(variables,with.variables,data=NULL,test=cor.test,...)
Arguments
variables |
variables |
with.variables |
An optional set of variables to correlate with |
data |
A data.frame from which the variables and factor will be selected. |
test |
A function whose first two arguments are the variables upon which the correlation will be calculated,
and whose result is an object of class |
... |
further arguments for |
Value
A multi.test
object, representing a table of the results of func
applied to each of the variables.
See Also
Examples
dat<-data.frame(aa=rnorm(100),bb=rnorm(100),cc=rnorm(100),dd=rnorm(100))
dat$aa<-dat$aa+dat$dd
dat$cc<-dat$cc+dat$aa
cor.matrix(dat,test=cor.test)
cor.matrix(d(aa,cc),data=dat,test=cor.test,method="kendall")
cor.matrix(d(aa,cc),d(dd,bb),data=dat,test=cor.test,method="spearman")
wrapper for data.frame
Description
This function creates data frames, tightly coupled collections of variables which share many of the properties of matrices and of lists, used as the fundamental data structure by most of R's modeling software. It is a keystroke saving wrapper for the data.frame function. The only difference is that check.names and stringsAsFactors are FALSE by default.
Usage
d(..., row.names = NULL, check.rows = FALSE,
check.names = FALSE,
stringsAsFactors = FALSE)
Arguments
... |
items |
row.names |
NULL or a single integer or character string specifying a column to be used as row names, or a character or integer vector giving the row names for the data frame. |
check.rows |
if TRUE then the rows are checked for consistency of length and names. |
check.names |
logical. If TRUE then the names of the variables in the data frame are checked to ensure that they are syntactically valid variable names and are not duplicated. If necessary they are adjusted (by make.names) so that they are. |
stringsAsFactors |
logical: should character vectors be converted to factors? |
See Also
Examples
x <- d(rnorm(10),1:10)
GUI Access functions
Description
splits a variable into two groups
Usage
deducer(cmd=NULL)
data.viewer()
Arguments
cmd |
The command to be executed |
Controls Deducer's command line menus
Description
Controls Deducer's command line menus
Usage
deducer.addMenu(name, pos=length(menus)+1)
deducer.setMenus(newMenus)
deducer.getMenus()
deducer.addMenuItem(name, pos=NULL, command, menuName, silent=TRUE)
menuFunctions()
Arguments
name |
name of item or menu to add |
pos |
position at which to add the item or menu |
menuName |
the name of the menu to add the item to |
command |
A character vector representing the R command to be run |
silent |
Should the command be executed silently |
newMenus |
new menus |
Examples
#add a menu with two items
deducer.addMenu("TestMenu")
deducer.addMenuItem("test1",,"cat('test1 selected')","TestMenu")
deducer.addMenuItem("test2",,"print(summary(lm(rnorm(100)~rnorm(100))))","TestMenu")
#Add menu to gui if applicable
if(.windowsGUI){
winMenuAdd("TestMenu")
winMenuAddItem("TestMenu", "test1", "cat('test1 selected')")
winMenuAddItem("TestMenu", "test2", "print(summary(lm(rnorm(100)~rnorm(100))))")
}else if(.jgr){
jgr.addMenu("TestMenu")
jgr.addMenuItem("TestMenu", "test1", "cat('test1 selected')")
jgr.addMenuItem("TestMenu", "test2", "print(summary(lm(rnorm(100)~rnorm(100))))")
}
Table of Descriptives
Description
Table of descriptive statistics, possibly stratified
Usage
descriptive.table(vars,
strata,
data,
func.names = c("Mean","St. Deviation","Median",
"25th Percentile","75th Percentile",
"Minimum","Maximum","Skew","Kurtosis","Valid N"),
func.additional)
Arguments
vars |
A variable or data.frame containing variables on which to run descriptive statistics. |
data |
The data frame in which vars is evaluated |
strata |
A variable or data.frame containing variables on which to stratify |
func.names |
A character vector of built-in statistics |
func.additional |
A named list of functions. Each function should take a numeric vector as its argument, and return a single value |
Value
Returns a list of matrix
objects containing descriptive information on all variables in dat
.
One for each level or combination of levels in strata
.
See Also
Examples
data(mtcars)
##means and standard deviations
descriptive.table(vars = d(mpg,hp),data= mtcars,
func.names =c("Mean","St. Deviation","Valid N"))
##stratifying by cyl
descriptive.table(vars = d(mpg,hp) ,
strata = d(cyl),data= mtcars,
func.names =c("Mean","St. Deviation","Valid N"))
func.list=list(mean.deviance=function(x) mean(abs(x-mean(x))))
##Adding deviance as a statistic
descriptive.table(vars = d(mpg,hp) ,
strata = d(cyl),data= mtcars,
func.names =c("Mean","St. Deviation","Valid N"),func.additional=func.list)
Deducer's plug-in development tools
Description
functions pertaining to GUI development
Usage
addComponent(container, component, top, right, bottom,
left, topType = "REL", rightType = "REL", bottomType = "REL",
leftType = "REL")
getSize(component)
setSize(component,width,height)
execute(cmd)
ButtonGroupWidget
CheckBoxesWidget
DeducerMain
JLabel
RDialog
SimpleRDialog
SimpleRSubDialog
SingleVariableWidget
SliderWidget
TextAreaWidget
VariableListWidget
VariableSelectorWidget
ComboBoxWidget
RDialogMonitor
ListWidget
AddRemoveButtons
TextFieldWidget
ObjectChooserWidget
Arguments
container |
A Java Swing container with Anchor layout |
component |
a Java Swing component |
top |
location of top of component 0 - 1000 |
right |
location of right of component 0 - 1000 |
bottom |
location of bottom of component 0 - 1000 |
left |
location of left of component 0 - 1000 |
topType |
Type of constraint on top of component. Can be "REL", "ABS", or "NONE" |
rightType |
Type of constraint on right of component. Can be "REL", "ABS", or "NONE" |
bottomType |
Type of constraint on bottom of component. Can be "REL", "ABS", or "NONE" |
leftType |
Type of constraint on left of component. Can be "REL", "ABS", or "NONE" |
height |
new height of component or window in pixels |
width |
new width of component or window in pixels |
cmd |
the command to be executed |
Details
addComponent adds a Java object of class Component to a container (usually an RDialog or SimpleRDialog). the location of the component is determined by the top, right, bottom, and left arguments, which are numbers between 1 and 1000 indicating the distance from either the top (or left) of the container, with 1000 indicating the opposite side of the container. Each side can be constrained in three different ways. If the Type is "REL", the side will scale proportional to the container when the container is resized. If it is "ABS", it is not rescaled. If it is "NONE", the location of that side is determined by the componet's preferred size, which can be set with the "setPreferedSize" method.
getSize gets the height and width
setSize sets the height and width
execute executes a character representing a command, as if it were entered into the console
The rest of the items are references to the Java classes of commonly used GUI components. see www.deducer.org for more details and usage.
dich
Description
splits a variable into two groups
Usage
dich(variables,data=NULL,cut=NULL,group1=NULL,group2=NULL)
Arguments
variables |
variables to be dichotomized |
data |
A data.frame |
cut |
An optional cut point dividing |
group1 |
An optional vector of levels of |
group2 |
An optional vector of levels of |
Value
a data.frame containing the variables, recoded into two groups.
Extract Contingency Table Arrays
Description
Extracts the counts of a contingency.tables object
Usage
extract.counts(tables)
Arguments
tables |
A |
Value
A named list of three dimensional arrays. One for each contin.table
in tables
See Also
Examples
temp.data<-data.frame(a=rnorm(100)>0,b=rnorm(100)>0,gender=rep(c("male","female"),50))
#a vs. b stratified by gender
tab<-contingency.tables(a,b,gender,data=temp.data)
tab
##extract counts
extract.counts(tab)
##Yields something like the following:
#$`a by b`
#, , female
#
# FALSE TRUE
#FALSE 11 9
#TRUE 15 15
#
#, , male
#
# FALSE TRUE
#FALSE 10 10
#TRUE 22 8
Frequency Tables
Description
Creates a set of frequency tables.
Usage
frequencies(data,r.digits=1)
Arguments
data |
A data.frame containing the variables on which to run frequencies |
r.digits |
how many digits should the percentages be rounded to |
Value
Returns a list of freq.table
objects. One for each variable in data
.
See Also
table
xtabs
descriptive.table
prop.table
Examples
dat<-data.frame(rnorm(100)>0,trunc(runif(100,0,5)))
##rounding to 1
frequencies(dat)
##rounding to 4
frequencies(dat,4)
get objects
Description
Enumerates all objects of a certain class
Usage
get.objects(cn,env = globalenv(),includeInherited=TRUE)
Arguments
cn |
The name of the class |
env |
environment to look in |
includeInherited |
Should objects inheriting cn be included |
Value
a character vector
Correlation matrix
Description
Plots a correlation matrix
Usage
ggcorplot(cor.mat,data=NULL,lines=TRUE,line.method=c("lm","loess"),type="points",
alpha=.25,main="auto",var_text_size=5,
cor_text_limits=c(5,25),level=.05)
Arguments
cor.mat |
a |
data |
the data.frame used to compute the correlation matrix |
lines |
Logical. Should regression lines be drawn. |
type |
type of plot. "points" or "bins" |
line.method |
Character. Type of regression line. |
alpha |
numeric. level of alpha transparency for the points. |
main |
Title of the plot. defaults to the method of cor.mat. |
var_text_size |
size of the diagonal variable names. |
cor_text_limits |
lower and upper bounds for the size of the correlation text. |
level |
the size of the test differentiated by text color. |
Author(s)
Mike Lawrence and Ian Fellows
See Also
Examples
data(mtcars)
corr.mat1<-cor.matrix(variables=d(mpg,carb,carb+rnorm(length(carb))),,
data=mtcars,
test=cor.test,
method='spearman',
alternative="two.sided",exact=FALSE)
p<-ggcorplot(corr.mat1,data = mtcars)
print(p)
## Not run:
has.hex<-require("hexbin")
if(has.hex){
data(diamonds)
corr.mat<-cor.matrix(variables=d(price,carat,color),,
data=diamonds,
test=cor.test,
method='spearman',
alternative="two.sided")
p1 <- ggcorplot(cor.mat=corr.mat,data=diamonds,type="bins",
cor_text_limits=c(5,15),
lines=FALSE)
print(p1)
rm('corr.mat')
}
## End(Not run)
K Sample Test
Description
Performs a K independent sample test.
Usage
k.sample.test(formula,data,test=oneway.test,...)
Arguments
formula |
A formula, the left hand side of which indicated the outcomes, and the right hand side of which contains the factor |
data |
A data.frame |
test |
A function whose first argument is a formula with the outcome on the lhs and the factor on the rhs.
The second argument should be the data to be used for the formula. The result of the function should be an object of class |
... |
further arguments for func |
Value
A multi.test
object, representing a table of the results of func
applied to each of the variables.
See Also
oneway.test
kruskal.test
wilcox.test
Examples
dat<-data.frame(a=rnorm(100),b=rnorm(100),c=rnorm(100),d=cut(rnorm(100),4))
k.sample.test(d(a,b)~d,dat)
k.sample.test(dat[,-4]~dat$d,var.equal=TRUE)
k.sample.test(d(a,c)~d,dat,kruskal.test)
Likelihood Ratio (G test) for contingency tables
Description
Performs a likelihood ratio test of independence
Usage
likelihood.test(x,y=NULL,conservative=FALSE)
Arguments
x |
A vector or a matrix |
y |
A vector that is ignored if x is a matrix and required if x is a vector |
conservative |
If |
Value
A list with class "htest" containing the following components:
statistic |
the value the chi-squared test statistic. |
parameter |
the degrees of freedom of the approximate chi-squared distribution of the test statistic. |
p.value |
the p-value for the test. |
method |
a character string indicating the type of test performed, and whether the continuity correction was used. |
data.name |
a character string giving the name(s) of the data. |
Author(s)
Pete Hurd and Ian Fellows
See Also
Examples
data(InsectSprays)
likelihood.test(InsectSprays$count>7,InsectSprays$spray)
multi.test
Description
Creates a table from a list of htests
Usage
multi.test(tests)
Arguments
tests |
A named list of htest objects representing the same test applied to a number of different conditions or variables. |
Value
A multi.test
object, representing a table of the htest
objects.
One Sample Test
Description
Performs a one sample test.
Usage
one.sample.test(variables,data=NULL,test=t.test,...)
Arguments
variables |
A variable or dataframe of variables |
data |
The data frame in which variables is evaluated |
test |
A function whose first argument is the sample to be tested,
and whose result is an object of class |
... |
further arguments for func |
Value
A multi.test
object, representing a table of the results of test
applied to each of the variables.
See Also
Examples
data(anorexia)
#are subjects' weights at baseline and endpoint significantly different from normal
one.sample.test(variables=d(Prewt,Postwt),
data=anorexia,
test=shapiro.test)
#does CBT work at increasing mean wt
anorexia.sub<-subset(anorexia,Treat=="CBT")
one.sample.test(variables=Postwt-Prewt,
data=anorexia.sub,
test=t.test)
onesample.plot
Description
plots for one sample tests
Usage
onesample.plot(variables,data=NULL,test.value,scale=FALSE,type="hist",alpha=.2)
Arguments
variables |
An expression denoting a set of variable. |
data |
A data.frame from which the variables will be selected. |
test.value |
null hypothesis test value |
scale |
scale variables |
type |
type of plot. 'hist' or 'box' are allowed |
alpha |
transparency of points for box plot |
Examples
data(mtcars)
onesample.plot(variables=d(mpg,cyl,disp,hp,drat,wt,qsec,vs,am,
gear,carb),data=mtcars,type='hist')
onesample.plot(variables=d(mpg,cyl,disp,hp,drat,wt,qsec,vs,am,
gear,carb),data=mtcars,type='box',alpha=1)
One Way PLot
Description
plots a categorical variable against a series of continuous variables
Usage
oneway.plot(formula,data=NULL,alpha=.2,
box=TRUE,points=TRUE,scale=FALSE)
Arguments
formula |
A formula, the left hand side of which indicated the outcomes, and the right hand side of which contains the factor |
data |
A data.frame |
alpha |
alpha transparency level for the points. |
box |
prints boxplot |
points |
prints jitter plot |
scale |
standardize the variables prior to plotting |
Value
a ggplot object
Examples
oneway.plot(d(DriversKilled, drivers, front, rear, kms, PetrolPrice)~law,as.data.frame(Seatbelts))
Vector Permutations
Description
Enumerates all permutations of a vector
Usage
perm(vec,duplicates=FALSE)
Arguments
vec |
The vector to permute |
duplicates |
Should duplicate permutations be listed |
Value
Returns a matrix where each row is a permutation of vec. All possible permutations are listed, and if duplicates=TRUE
non-unique permutations are also listed.
See Also
Examples
perm(1:4)
perm(LETTERS[4:8])
Permutation t-test
Description
Two Sample t-test via monte-carlo permutation
Usage
perm.t.test(x,y,statistic=c("t","mean"),
alternative=c("two.sided", "less", "greater"), midp=TRUE, B=10000)
Arguments
x |
a numeric vector containing the first sample |
y |
a numeric vector containing the second sample |
statistic |
The statistic to be permuted. See details |
alternative |
The alternative hypothesis |
midp |
should the mid p-value be used |
B |
The number of monte-carlo samples to be generated |
Details
This function performs a two sample permutation test. If the mean is permuted, then the test assumes exchangability between the two samples. if the t-statistic is used, the test assumes either exchangability or a sufficiently large sample size. Because there is little lost in the way of power, and the assumptions are weaker, the t-statistic is used by default.
Value
A list with class "htest" containing the following components:
statistic |
The observed value of the statistic. |
p.value |
the p-value for the test. |
method |
a character string indicating the type of test performed. |
data.name |
a character string giving the name(s) of the data. |
B |
The number of samples generated |
alternative |
the direction of the test |
See Also
Examples
perm.t.test(rnorm(100),runif(100,-.5,.5))
Plot method
Description
Produces a circle plot for an object of class "plot.cor.matrix"
Usage
## S3 method for class 'cor.matrix'
plot(x,y=NULL,size=10,...)
Arguments
x |
Object of class |
y |
unused |
size |
maximum radius size |
... |
further arguments. unsued |
Value
a ggplot object
Print method
Description
Print object of class "contin.table"
in nice layout.
Usage
## S3 method for class 'contin.table'
print(
x,digits=3,prop.r=TRUE,prop.c=TRUE,prop.t=TRUE,
expected.n=FALSE,residuals=FALSE,std.residuals=FALSE,
adj.residuals=FALSE,no.tables=FALSE,...)
Arguments
x |
Object of class |
digits |
Number of digits to round to. |
prop.r |
Logical. print row proportions. |
prop.c |
Logical. print column proportions. |
prop.t |
Logical. print proportions. |
expected.n |
Logical print expected cell counts. |
residuals |
Logical. print residuals. |
std.residuals |
Logical. print standardized residuals. |
adj.residuals |
Logical. Print Adjusted residuals |
no.tables |
Logical. Suppress tables |
... |
further arguments |
Value
none
Author(s)
Ian Fellows based on the CrossTable function from the gmodels package maintained by Gregory R. Warnes
Print method
Description
Print object of class "contin.tests"
in nice layout.
Usage
## S3 method for class 'contin.tests'
print(x,test.digits, ...)
Arguments
x |
Object of class |
test.digits |
Number of digits to be printed |
... |
further arguments to be passed to or from methods. |
Value
none
Print method
Description
Print object of class "contingency.tables"
in nice layout.
Usage
## S3 method for class 'contingency.tables'
print(x,digits=3,prop.r=TRUE,prop.c=TRUE,prop.t=TRUE,
expected.n=FALSE,no.tables=FALSE,...)
Arguments
x |
Object of class |
digits |
Number of digits to round to. |
prop.r |
Logical. print row proportions. |
prop.c |
Logical. print column proportions. |
prop.t |
Logical. print proportions. |
expected.n |
Logical print expected cell counts. |
no.tables |
Logical. Suppress tables |
... |
further arguments |
Value
none
Print method
Description
Print object of class "cor.matrix"
in nice layout.
Usage
## S3 method for class 'cor.matrix'
print(x,digits=4,N=TRUE,CI=TRUE,stat=TRUE,p.value=TRUE,...)
Arguments
x |
Object of class |
digits |
Number of digits to round to. |
N |
Logical. print a row for sample size. |
CI |
Logical. print a row for confidence intervals if they exist. |
stat |
Logical. print a row for test statistics. |
p.value |
Logical. print a row for p-values. |
... |
further arguments |
Value
none
Print method
Description
Print object of class "freq.table"
in nice layout.
Usage
## S3 method for class 'freq.table'
print(x,...)
Arguments
x |
Object of class |
... |
further arguments |
Value
none
Print method
Description
Print object of class "multi.test"
in nice layout.
Usage
## S3 method for class 'multi.test'
print(x,...)
Arguments
x |
Object of class |
... |
further arguments |
Value
none
qscatter_array
Description
Creates an array of scatterplots
Usage
qscatter_array(variables,with.variables,data,x.lab="",y.lab="",
main="Correlation Array",common.scales=TRUE,alpha=.25)
Arguments
variables |
variables |
with.variables |
An optional set of variables to correlate with |
data |
A data.frame from which the variables will be selected. |
x.lab |
A label for the x axis |
y.lab |
A label for the y axis |
main |
A label for the plot |
common.scales |
should common x and y scales be used. |
alpha |
alpha transparency |
Examples
data(mtcars)
qscatter_array(d(cyl,disp,hp,drat),
data=mtcars) + geom_smooth(method="lm")
qscatter_array(d(cyl,disp,hp,drat),d(wt,carb),data=mtcars,common.scales=FALSE)
Recode
Description
Recodes a set of variables according to a set of rules
Usage
recode.variables(data,recodes)
Arguments
data |
A |
recodes |
Definition of the recoding rules. See details |
Details
recodes
contains a set of recoding rules separated by ";".
There are three different types of recoding rules:
1. The simplest codes one value to another. If we wish to recode 1 into 2, we could use the rule "1->2;"
.
2. A range of values can be coded to a single value using "1:3->4;"
.
This rule would code all values between 1 and 3 inclusive into 4. For factors, a value is
between two levels if it is between them in the factor ordering.
One sided ranges can be specified using the Lo and Hi key words (e.g."Lo:3->0; 4:Hi->1"
)
3. Default conditions can be coded using "else." For example, if we wish to recode all
values >=0 to 1 and all values <0 to missing, we could use ("0:Hi->1; else->NA"
)
Value
returns a recoded data.frame
Author(s)
Ian Fellows adapted from code by John Fox
Examples
data<-data.frame(a=rnorm(100),b=rnorm(100),male=rnorm(100)>0)
recode.variables(data[c("a","b")] , "Lo:0 -> 0;0:Hi -> 1;")
data[c("male")] <- recode.variables(data[c("male")] , "1 -> 'Male';0 -> 'Female';else -> NA;")
ROC Plot for a logistic regression model
Description
Plots the ROC Curve
Usage
rocplot(logistic.model,diag=TRUE,pred.prob.labels=FALSE,prob.label.digits=3,AUC=TRUE)
Arguments
logistic.model |
a glm object with binomial link function. |
diag |
a logical value indicating whether a diagonal reference line should be displayed. |
pred.prob.labels |
a logical value indicating whether the predictive probabilities should be displayed |
prob.label.digits |
The number of digits of the predictive probabilities to be displayed. |
AUC |
a logical value indicating whether the estimated area under the curve should be displayed |
Value
a ggplot object
Author(s)
Ian Fellows adapted from the lroc function by Virasakdi Chongsuvivatwong
Examples
model.glm <- glm(formula=income>5930.5 ~ education + women + type,
family=binomial(),data=Prestige,na.action=na.omit)
rocplot(model.glm)
Sort Data
Description
Sorts a data frame
Usage
## S3 method for class 'data.frame'
sort(x, decreasing, by, ...)
Arguments
x |
A |
decreasing |
unused |
by |
A character, a one sided formula, or an expression indicating the sorting order |
... |
further arguments |
Details
If by
is a formula, or a character vector coerce-able into a formula,
x
is sorted by each element of the formula, with ties broken by subsequent elements.
Elements preceded by a '-' indicate descending order, otherwise ascending order is used. Parentheses or any formula
operator other than + and - are ignored, so sorting by a*b
will sort based on the product of a and b.
If by
is not a formula, a ~
is appended to the left hand side of the call, and coerced into
a formula.
The decreasing argument is included for generic method consistency, and is not used.
Value
returns x
, sorted.
Author(s)
Ian Fellows adapted from code by Ari Friedman and Kevin Wright
See Also
Examples
data(mtcars)
#sort by the number of cylenders
sort(mtcars, by= ~cyl)
sort(mtcars, by= cyl) #identical: no need for ~
#sort in descending order
sort(mtcars, by= -cyl)
#break ties with horse power
sort(mtcars,by= cyl +hp )
sort(mtcars,by= cyl -hp )
#randomly permute the data
sort(mtcars,by= rnorm(nrow(mtcars)) )
#reverse order
sort(mtcars,by= nrow(mtcars):1 )
#sort by squared deviation from mean hp
sort(mtcars,by= -(hp-mean(hp))^2 )
sort(mtcars,by= "-(hp-mean(hp))^2" ) #identical
Summary table for a linear model
Description
Computes the coefficients, std. errors, t values, and p-values for a linear model in the presence of possible heteroskedasticity.
Usage
summarylm(object,correlation=FALSE,symbolic.cor = FALSE,white.adjust=FALSE,...)
Arguments
object |
an object of class lm. |
correlation |
a logical value indicating whether parameter correlations should be printed. |
symbolic.cor |
logical. If TRUE, print the correlations in a symbolic form (see symnum) rather than as numbers. Effective only if white.adjust is FALSE. |
white.adjust |
value passed to |
... |
additional parameters passed to stats::summary.lm |
Details
If white.adjust is false, the function returns a value identical to stats::summary.lm. Otherwise, robust summaries are computed
Value
A summary table
Examples
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c((ctl-mean(ctl))*10+mean(ctl), trt)
lm.D9 <- lm(weight ~ group)
summarylm(lm.D9,white.adjust=TRUE)
Table –> data.frame
Description
Creates a data.frame from a table
Usage
table.to.data(x)
Arguments
x |
A matrix or table representing the cross tabulation of two variables |
Value
A two column data.frame where each row is an observation and each column is a variable.
See Also
Examples
tab<-matrix(c(4,5,6,9,7,3),ncol=3)
tab
table.to.data(tab)
Two Sample Test
Description
Performs a two independent sample test.
Usage
two.sample.test(formula,data=NULL,test=t.test,...)
Arguments
formula |
A formula, the left hand side of which indicated the outcomes, and the right hand side of which contains the factor |
data |
A data.frame |
test |
A function whose first two arguments are the two-samples to be tested,
and whose result is an object of class |
... |
further arguments for test |
Value
A multi.test
object, representing a table of the results of test
applied to each of the variables.
See Also
Examples
dat<-data.frame(a=rnorm(100),b=rnorm(100),c=rnorm(100),d=rnorm(100)>(-.5))
two.sample.test(d(a,b) ~ d,dat,ks.test)
two.sample.test(a ~ dich(b,cut=0) ,dat,t.test)
two.sample.test(d(a^2,abs(b),c)~d,dat,wilcox.test)