Discover causality for bivariate categorical data. This package aims to enable users to discover causality for bivariate observational categorical data. See Ni, Y. (2022) <doi:10.48550/arXiv.2209.08579> "Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation. Advances in Neural Information Processing Systems 35 (in press)".
| Version: | 1.0.0 |
| Depends: | R (≥ 3.5.0) |
| Imports: | MASS, combinat, stats |
| Published: | 2022-09-29 |
| DOI: | 10.32614/CRAN.package.COLP |
| Author: | Yang Ni |
| Maintainer: | Yang Ni <yni at stat.tamu.edu> |
| BugReports: | https://github.com/nySTAT/COLP/issues |
| License: | MIT + file LICENSE |
| URL: | https://github.com/nySTAT/COLP |
| NeedsCompilation: | no |
| CRAN checks: | COLP results |
| Reference manual: | COLP.html , COLP.pdf |
| Package source: | COLP_1.0.0.tar.gz |
| Windows binaries: | r-devel: COLP_1.0.0.zip, r-release: COLP_1.0.0.zip, r-oldrel: COLP_1.0.0.zip |
| macOS binaries: | r-release (arm64): COLP_1.0.0.tgz, r-oldrel (arm64): COLP_1.0.0.tgz, r-release (x86_64): COLP_1.0.0.tgz, r-oldrel (x86_64): COLP_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=COLP to link to this page.