
BKP: An R Package for Beta Kernel Process
Modeling

Jiangyan Zhao
School of Statistics

East China Normal University

Kunhai Qing
School of Statistics

East China Normal University

Jin Xu
School of Statistics

and
Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE

East China Normal University

Abstract

We present BKP, a user-friendly and extensible R package that implements the Beta
Kernel Process (BKP) – a fully nonparametric and computationally efficient framework
for modeling spatially varying binomial probabilities. The BKP model combines localized
kernel-weighted likelihoods with conjugate beta priors, resulting in closed-form posterior
inference without requiring latent variable augmentation or intensive MCMC sampling.
The package supports binary and aggregated binomial responses, allows flexible choices
of kernel functions and prior specification, and provides loss-based kernel hyperparameter
tuning procedures. In addition, BKP extends naturally to the Dirichlet Kernel Process
(DKP) for modeling spatially varying categorical or multinomial data. To our knowledge,
this is the first publicly available R package for implementing BKP-based methods. We il-
lustrate the use of BKP through several synthetic and real-world datasets, highlighting its
interpretability, accuracy, and scalability. The package aims to facilitate practical appli-
cation and future methodological development of kernel-based beta modeling in statistics
and machine learning.

Keywords: Beta kernel process, Dirichlet kernel process, nonparametric Bayesian modeling,
binomial and multinomial data, R.

1. Introduction

Estimating a continuous probability function from binary or binomial observations is a funda-
mental task in modern statistics and machine learning (Hastie et al. 2009; Rolland et al. 2019;
Murphy 2022). Such problems arise in various domains where the goal is to infer a latent
probability surface from individual Bernoulli outcomes or aggregated binomial counts over a
continuous input space. Representative applications include binary classification (MacKenzie
et al. 2014; Wen et al. 2025), probability calibration (Sung et al. 2020; Dimitriadis et al.
2022), relative abundance modeling (Martin et al. 2020), and longitudinal analysis of patient-

2 Beta Kernel Process Modeling in R

reported outcomes (Najera-Zuloaga et al. 2018, 2019).
Classical approaches such as logistic regression and generalized additive models provide com-
putationally efficient tools for binomial regression, but their parametric form often limits
their ability to capture complex nonlinear patterns (Hastie et al. 2009). Nonparametric mod-
els like Gaussian Process (GP) classifiers provide greater modeling flexibility and principled
uncertainty quantification (Rasmussen and Williams 2006), yet the non-Gaussian likelihood
of binary responses necessitates approximate inference, leading to substantial computational
cost and implementation complexity (Nickisch and Rasmussen 2008).
The BKP package implements the Beta Kernel Process (BKP), a scalable and interpretable
nonparametric model for estimating binomial probability surfaces. Developed in R (R Core
Team 2025) and available on the Comprehensive R Archive Network (CRAN) at https:
//cran.r-project.org/package=BKP, BKP combines localized kernel-weighted likelihoods
with conjugate beta priors, yielding closed-form posterior inference without latent variables
or numerical approximation. It supports both binary and aggregated binomial data, and
delivers full posterior uncertainty quantification while maintaining linear scalability and com-
putational efficiency (Goetschalckx et al. 2011; MacKenzie et al. 2014; Rolland et al. 2019).
Compared to GP-based methods, BKP eliminates the need for sampling or variational in-
ference and provides interpretable, locally updated estimates. This makes it suitable for
applications demanding transparency, real-time feedback, or adaptive decision-making. BKP
has been extended to the multinomial setting via the Dirichlet Kernel Process (DKP), en-
abling nonparametric modeling of categorical proportions across multiple groups. Despite its
practical appeal, the theoretical properties of BKP remain underexplored. Mussi et al. (2024)
identified the lack of formal guarantees for BKP-based decision processes as an open problem,
emphasizing the need for further methodological development.
While GP models are supported by mature software libraries, such as DiceKriging (Roustant
et al. 2012), GPfit (MacDonald et al. 2015), and gplite (Piironen 2022) in R, and GPy-
Torch (Gardner et al. 2018), GPflow (Matthews et al. 2017), and GPy (GPy since 2012)
in Python. So far, there are about 100 GP-related packages on CRAN (as seen by running
packagefinder::findPackage("Gaussian process", display = "browser")). In contrast,
software for kernel-based modeling of binomial and multinomial data remains scarce. The
BKP package fills this gap by offering a natively, unified and extensible framework for non-
parametric modeling of binary/binomial, categorical/multinomial data. It provides multiple
options for prior specification, kernel functions, and loss functions, enabling flexible model cus-
tomization. These features make BKP applicable to a wide range of problems in biomedicine,
ecology, social science, and industrial statistics.
The remainder of the paper is organized as follows. Section 2 introduces the statistical
foundation of the BKP model, including prior specification strategies, kernel functions, loss-
based hyperparameter tuning, and the DKP extension. Section 3 describes the structure and
main functionalities of the BKP package, including model fitting, prediction, and simulation
for both BKP and DKP. Section 4 presents illustrative examples to demonstrate the use of
BKP and DKP in binary classification and compositional modeling tasks. Section 5 concludes
with a discussion of current limitations and potential extensions.

2. Statistical Foundation

https://cran.r-project.org/package=BKP
https://cran.r-project.org/package=BKP

Jiangyan Zhao, Kunhai Qing, Jin Xu 3

2.1. Beta Kernel Process
Let x = (x1, x2, . . . , xd) ∈ X ⊂ Rd denote a d-dimensional input. Suppose the success
probability surface π(x) ∈ [0, 1] is unknown. At each location x, the observed data is modeled
as

y(x) ∼ Binomial(m(x), π(x)),
where y(x) is the number of successes out of m(x) independent trials. The full dataset
comprises n observations Dn = {(xi, yi, mi)}n

i=1, where we write yi = y(xi) and mi = m(xi)
for brevity.
In line with the Bayesian paradigm, assign a Beta prior to the unknown probability function
as

π(x) ∼ Beta(α0(x), β0(x)),
where α0(x) > 0 and β0(x) > 0 are spatially varying shape parameters. Details on prior
specification are discussed in Section 2.2.
Let k : X × X → [0, 1] denote a user-defined kernel function measuring the similarity between
input locations. By the kernel-based Bayesian updating strategy (Goetschalckx et al. 2011;
Rolland et al. 2019), the BKP model constructs a closed-form posterior distribution for π(x)
as

π(x) | Dn ∼ Beta (αn(x), βn(x)) ,

αn(x) = α0(x) +
n∑

i=1
k(x, xi)yi = α0(x) + k⊤(x)y, (1)

βn(x) = β0(x) +
n∑

i=1
k(x, xi)(mi − yi) = β0(x) + k⊤(x)(m − y),

where k(x) = [k(x, x1), . . . , k(x, xn)]⊤ is the vector of kernel weights and y = (y1, . . . , yn)⊤.

Remark 1. While the BKP model leverages the conjugacy of the Beta-Binomial pair, it differs
from the traditional Bayesian paradigm in the sense that the posterior update is induced from
a kernel-weighted local likelihood defined by

L̃(π(x); Dn) ∝
n∏

i=1

{
π(x)yi(1 − π(x))mi−yi

}k(x,xi) = π(x)k
⊤(x)y{1 − π(x)}k⊤(x)(m−y).

This approach mimics the local likelihood method of Fan et al. (1998), where data are reweighted
based on distance to the target point in the input space. And, the choice of kernel parameters
is driven by empirical risk minimization rather than posterior inference. Thus, BKP is best
interpreted as a nonparametric, Bayesian-inspired smoothing framework.

Remark 2. One prominent advantage of the closed-form updating scheme is its light burden
of computational complexity. Fitting the BKP model involves O(n2) operations for computing
the kernel matrix, in contrast to the O(n3) operations typically required by Gaussian pro-
cess regression. While, evaluating the posterior at a new location requires only O(n) kernel
computations.

Based on the resulting posterior distribution (1), the posterior mean

π̂n(x) = E[π(x) | Dn] = αn(x)
αn(x) + βn(x) (2)

4 Beta Kernel Process Modeling in R

serves as a smooth estimator of the latent success probability. The corresponding posterior
variance

σ2
n(x) = Var[π(x) | Dn] = π̂n(x){1 − π̂n(x)}

αn(x) + βn(x) + 1 (3)

provides a local measure of epistemic uncertainty. These posterior summaries can be used
to visualize prediction quality across the input space, particularly highlighting regions with
sparse data coverage. See Section 4 for illustrations.
For binary classification, the posterior mean can be thresholded to produce hard predictions
through

ŷ(x) =
{

1 if π̂n(x) > π0,

0 otherwise,
(4)

where π0 ∈ (0, 1) is a user-specified threshold, typically set to be 0.5.

2.2. Prior Specification
We provide three strategies for prior specification as follows.

• Non-informative prior: A default and widely used choice is the uniform prior, which
sets α0(x) = β0(x) ≡ 1 for all x. It is appropriate when no prior knowledge is available.

• Informative prior with fixed mean: When prior information about the overall
success probability p0 ∈ (0, 1) is available, an informative prior can be constructed by
setting

α0(x) = r0p0, β0(x) = r0(1 − p0),
where r0 > 0 is a scalar precision parameter controlling the strength of the prior. Larger
value of r0 represents greater prior certainty. It contains the previous non-informative
prior as a special case with r0 = 2 and p0 = 0.5.

• Data-adaptive informative prior: To accommodate spatial variation in the data,
BKP supports a locally adaptive prior in which both the prior mean and prior strength
vary across the input space. Specifically, at each location x, the prior mean p(x) and
prior precision r(x) are estimated using kernel-weighted averages through

p(x) =
n∑

i=1
wi(x) · yi

mi
, r(x) = r0

n∑
i=1

k(x, xi),

where r0 > 0 is a global precision parameter and wi(x) are normalized kernel weights
defined by wi(x) = k(x, xi)/

∑n
j=1 k(x, xj). Then, the prior parameters at x are given

by
α0(x) = r(x)p(x), β0(x) = r(x){1 − p(x)}.

This data-adaptive formulation allows the prior to dynamically respond to the local sam-
pling density. In well-sampled regions, it becomes more concentrated, while in sparse
regions, it remains diffuse. Such adaptivity improves calibration in under-sampled areas
and reduces overfitting where data are dense, thereby enhancing inference robustness
under spatial heterogeneity. This strategy is consistent with the principle of local like-
lihood modeling (Fan and Gijbels 1996).

Jiangyan Zhao, Kunhai Qing, Jin Xu 5

Table 1: Kernel functions implemented in BKP.

Kernel Type Function k(h)

Gaussian k(h) = exp(−h2)

Matérn ν = 5/2 k(h) =
(
1 +

√
5h + 5

3h2
)

exp(−
√

5h)

Matérn ν = 3/2 k(h) =
(
1 +

√
3h
)

exp(−
√

3h)

We offer some practical guideline to choose the global precision parameter. In classification
when each input location receives a single categorical observation, we recommend choosing a
relatively small value, such as 0.01 ≤ r0 ≤ 0.1, to prevent the prior domination and keep the
posterior inference primarily data-driven. We illustrate this point in Example 1 of Section
4.1. For model fitting when binomial responses are observed at each input location, set r0
to be about 5–10% of the average number of trials per location for moderate regularization.
When strong prior knowledge is available, choose r0 to be 1–5% of the total sample size.
In the absence of strong prior information, a good starting point is r0 = 0.01. Then, use
cross-validation or predictive performance to make adjustment. In both situations, one can
conduct a sensitivity analysis over several r0 values (e.g., 0.01, 0.1, 0.5, 1, 2, 5) to evaluate
the stability of predictions and decision boundaries.

2.3. Model Selection via Kernel Hyperparameter Tuning

Kernel Functions

Let h(x, x′; θ) denote the scaled Euclidean distance:

h(x, x′; θ) =

√√√√√ d∑
j=1

(
xj − x′

j

θj

)2

,

where θ = (θ1, θ2, . . . , θd) are positive kernel hyperparameters governing the relative im-
portance of each input component. Based on this metric, define the kernel function as
k(x, x′) = k(h), where the functional form of k(·) determines the kernel type (Rasmussen
and Williams 2006).
The BKP package implements several widely used kernel functions, namely Gaussian (squared-
exponential) and Matérn families, summarized in Table 1.

Loss Functions

Hyperparameter tuning is conducted by minimizing a user-specified loss function evaluated
using the leave-one-out cross-validation (LOOCV) method (Montesano and Lopes 2012). For
each data point xi, the model is refitted up on the remaining data D−i

n , and the posterior mean
π̂−i

n (xi) is used as the prediction. The LOOCV procedure is known to mitigate overfitting
and produce better generalization performance than marginal likelihood-based approaches
(Rasmussen and Williams 2006; Vehtari et al. 2017).

6 Beta Kernel Process Modeling in R

Currently, BKP supports two loss functions: the Brier score (i.e., squared error loss) and the
log-loss (i.e., negative log-likelihood or cross-entropy).

Brier Score Let π̃i = yi/mi denote the empirical success proportion at input location xi.
The LOOCV Brier score is defined as

BS(θ; Dn) = 1
n

n∑
i=1

{
π̂−i

n (xi) − π̃i

}2
, (5)

which penalizes the squared deviation between the predicted and observed success propor-
tions.

Log-Loss The log-loss (or cross-entropy) is widely used for probabilistic classification.
Based on the LOOCV predictions, it is defined as

LL(θ; Dn) = − 1
n

n∑
i=1

[
yi log π̂−i

n (xi) + (mi − yi) log
{

1 − π̂−i
n (xi)

}]
. (6)

It corresponds to the negative log-likelihood of the binomial model evaluated at the LOOCV
predictive probabilities.

Remark 3. Although both criteria rely on LOOCV estimates, they emphasize different as-
pects of predictive performance (Gneiting and Raftery 2007; Flores et al. 2025). The Brier
score directly penalizes squared deviations from empirical proportions, making it more robust
to poorly calibrated probabilities and better suited for smooth probability estimation under bi-
nomial data. In contrast, the log-loss penalizes overconfident mispredictions more heavily and
is highly sensitive to the accuracy of the predicted probabilities. In practice, the choice between
the two depends on whether calibration quality or robustness is prioritized in the evaluation
(DRatings 2023).

Hyperparameter Optimization

To improve optimization stability and reduce irregularities near the boundary of the param-
eter space, we adopt the reparameterization strategy proposed by MacDonald et al. (2015).
Specifically, we transform the kernel scale parameters via γj = log10(θj) for j = 1, . . . , d, and
denote γ = (γ1, . . . , γd). For example, the Gaussian kernel becomes

k(x, x′; γ) = exp

−
d∑

j=1

(
xj − x′

j

10γj

)2
 . (7)

Although gradient-based optimizers such as L-BFGS-B (Byrd et al. 1995) are computationally
efficient, their performance can be sensitive to initialization in non-convex settings. To im-
prove robustness, we adopt a multi-start strategy based on a Latin Hypercube design (LHD)
of n0 = 10d initial runs within a carefully constructed region (Loeppky et al. 2009).
By MacDonald et al. (2015), the Gaussian kernel value k(x, x′; γ) typically lies within the
interval [0.0067, 0.9999], approximately [exp(−5), exp(−10−4)], to ensure stable numerical
behavior. Assuming a space-filling design of size n = 10d over [0, 1]d and isotropic smoothness

Jiangyan Zhao, Kunhai Qing, Jin Xu 7

(i.e., γj = γ0 for all j),the minimum pairwise distance along each coordinate is roughly
|xik − xjk| ≈ 0.1. This leads to the following search region for γ:

Ω0 =
[log10 d − log10 500

2 ,
log10 d + 2

2

]d

. (8)

For the mat'{e}rn kernels, we adopt the same search region.
The initial values γ(1), . . . , γ(n0) ⊂ Ω0 are drawn using LHD. For each initial value, solve

γ̂(i) = argmin
γ∈Ω

L(γ; Dn), i = 1, . . . , n0,

where L(·) is the chosen loss function from (5) or (6), and Ω = [−10, 10]d is a broader search
region than Ω0. The final estimate is chosen as the best local minimum through

γ̂ = argmin
1≤i≤n0

L(γ̂(i); Dn).

The procedure is summarized below:

1. Generate 10d initial values γ in Ω0 using a space-filling LHD.

2. Run the L-BFGS-B algorithm from each initial value.

3. Select the solution that produces the lowest loss function.

Remark 4. The implementation of LOOCV necessitates refitting the model n times, which
can be computationally intensive. However, the closed-form posterior updates in the BKP
model mitigate this cost by reducing the computational complexity to O(n2). This represents
a substantial improvement over the typical O(n3) complexity of Gaussian process models with
binomial likelihoods, as demonstrated in Example 3.

2.4. Extension to Dirichlet Kernel Process

The BKP model can be naturally extended to handle multi-class responses via the Dirichlet
Kernel Process (DKP) on replacing the binomial likelihood with a multinomial model and
the Beta prior with a Dirichlet prior (MacKenzie et al. 2014).
Let the response at input x ∈ X ⊂ Rd be y(x) = (y1(x), . . . , yq(x)), where ys(x) denotes the
count of class s out of m(x) = ∑q

s=1 ys(x) total trials. Assume

y(x) ∼ Multinomial(m(x), π(x)),

with class probabilities π(x) = (π1(x), . . . , πq(x)) satisfying ∑q
s=1 πs(x) = 1.

A Dirichlet prior is imposed on π(x) as

π(x) ∼ Dirichlet(α0(x)),

where α0(x) = (α0,1(x), . . . , α0,q(x)) are prior concentration parameters. Given training
data Dn = {(xi, yi)}n

i=1, define the response matrix as Y = [y1, . . . , yn]⊤ ∈ Rn×q. Then the
kernel-smoothed conjugate posterior becomes

π(x) | Dn ∼ Dirichlet (αn(x)) , with αn(x) = α0(x) + k⊤(x)Y . (9)

8 Beta Kernel Process Modeling in R

Table 2: Main functions provided in the BKP package.

Function Description
fit.BKP() Fit a Beta Kernel Process (BKP) model for binomial or binary data.
predict.BKP() Make predictions using a fitted BKP model.
simulate.BKP() Generate posterior samples from fitted BKP models.
plot.BKP() Visualization for BKP model results.
fit.DKP() Fit a Dirichlet Kernel Process (DKP) model for multinomial data.
predict.DKP() Make predictions using a fitted DKP model.
simulate.DKP() Generate posterior samples from fitted DKP models.
plot.DKP() Visualization for DKP model results.

The posterior means and variances of the class probabilities are

π̂n,s(x) = αn,s(x)∑q
s′=1 αn,s′(x) , σ2

n,s(x) = π̂n,s(x){1 − π̂n,s(x)}∑q
s′=1 αn,s′(x) + 1 , s = 1, . . . , q.

For classification tasks, labels are assigned by the maximum a posteriori (MAP) decision rule
through

ŷ(x) = argmax
s∈{1,...,q}

π̂n,s(x). (10)

Prior choices (e.g., non-informative, fixed informative, or locally adaptive) follow similarly
from the BKP framework in Section 2.2 by treating component-wise specification of prior
class proportions.
Kernel hyperparameters are tuned by minimizing LOOCV-based loss functions as in Section
2.3, where the multi-class Brier score and log-loss are defined as:

BSmulti(θ) = 1
n

n∑
i=1

q∑
s=1

{
π̂−i

n,s(xi) − yi,s

mi

}2
, (11)

LLmulti(θ) = − 1
n

n∑
i=1

q∑
s=1

yi,s log π̂−i
n,s(xi). (12)

These multi-class loss functions reduce to (5) and (6) when q = 2.

3. BKP Package
The BKP package provides the implementation of the Beta Kernel Process (BKP) and its
extension to the Dirichlet Kernel Process (DKP). The package is designed with usability and
extensibility in mind, offering a modular structure with separate functions for model fitting,
prediction, simulation, kernel construction, prior specification, and hyperparameter tuning.
Users can specify the kernel type and prior form to adapt to various application scenarios.
The core functionality of the package is summarized in Table 2.
To install the package, one can install the stable version from CRAN using install.packages("BKP")
or the development version from GitHub via pak::pak("Jiangyan-Zhao/BKP").

Jiangyan Zhao, Kunhai Qing, Jin Xu 9

3.1. BKP Model

We first present the BKP model in detail. The DKP model will be described in Section 3.2,
with a focus on differences from the BKP formulation.
The function fit.BKP() fits the BKP model (1) for binomial or binary response data. Its
main arguments are:

fit.BKP(X, y, m, Xbounds = NULL,
prior = "noninformative", r0 = 2, p0 = 0.5,
loss = "brier", kernel = "gaussian", n_multi_start = NULL, theta = NULL)

The first group of arguments specifies the core data inputs: X is an n×d input matrix, y is the
vector of observed successes, and m is the corresponding vector of total trials. The Xbounds
argument is used to constrain or confine X to the unit hypercube [0, 1]d, facilitating kernel
hyperparameter optimization. When Xbounds = NULL (default), the inputs are assumed to
be already standardized in [0, 1]d.
The second group defines the prior distribution for the latent success probability surface. The
prior argument controls the prior type, with available options: "noninformative" (default),
"fixed", and "adaptive", corresponding to the formulations in Section 2.2. The parameters
r0 and p0 specify the prior strength and prior mean for the latter two options.
The third group specifies the loss function and optimization settings. The loss argument
chooses the criterion for kernel hyperparameter estimation: "brier" (default), based on the
Brier score in (5), and "log_loss", based on the log loss in (6). The kernel argument selects
the kernel function from "gaussian" (default), "matern32", and "matern52" in Table 1. The
n_multi_start argument determines the number of random initial points in the multi-start
optimization, with the default setting (NULL) being 10d. Alternatively, the theta argument
allows users to supply a fixed positive kernel length scale, either as a scalar (applied to all
dimensions) or a vector of length d. When theta is provided, the multi-start optimization is
skipped and the specified value is used directly. The optimization, when invoked, is carried
out using the multistart() function from the optimx package (Nash and Varadhan 2011;
Nash 2014).

Remark 5. The current version is implemented entirely in R. Computational efficiency can
be further improved by implementing additional components in C++ via Rcpp (Eddelbuettel
and François 2011), and by enabling options that leverage parallel computing architectures,
for example, to accelerate multi-start optimization routines used in hyperparameter tuning.

fit.BKP() returns an object of class ‘BKP’, which contains: the estimated model hyperparam-
eters θ (theta_opt); the minimum achieved loss value (loss_min); the estimated posterior
parameters αn(x) and βn(x) (stored as alpha_n and beta_n); and other input arguments.
The resulting ‘BKP’ object can be directly used as the object argument in the functions
predict(), simulate(), and summary(), or as the x argument in the functions plot() and
print().
Assume BKPmodel is an object of class ‘BKP’. The function call:

predict(BKPmodel, Xnew, CI_level = 0.95, threshold = 0.5, ...)

10 Beta Kernel Process Modeling in R

returns the predictive mean of the success probability π̂n(x), the predictive variance σ2
n(x),

and the lower and upper bounds of the CI_level credible interval for each x in Xnew. If m =
1, the function also returns the predicted binary label (0 or 1), determined by comparing the
posterior mean to the specified threshold, after the classification rule in (4).
The function call:

simulate(BKPmodel, Xnew, n_sim = 1, threshold = NULL, ...)

generates random samples from the posterior predictive distribution of a fitted BKP model at
new input locations. This function draws n_sim samples from the posterior Beta distribution
at each row of Xnew, representing the distribution over success probabilities learned by the
BKP model. If threshold is specified and m = 1, binary class labels (0 or 1) are generated for
each simulated value by comparing it to the threshold. The optional argument seed allows
reproducibility of the simulations. These samples can be used in various decision-making
contexts, such as Bayesian optimization via Thompson sampling (Garnett 2023).
The plot(), summary(), and print() methods provide graphical, numerical, and textual
summaries of a fitted ‘BKP’ object, respectively. Plotting is supported for d ≤ 2.
For one-dimensional inputs (d = 1), the plot() method displays the posterior mean of the
predicted success probability as a line plot. A shaded region represents the 95% credible
interval, and the observed proportions (π̃i = yi/mi) are shown as points overlaid on the plot.
When used for classification, a horizontal dashed line is added to indicate the classification
threshold.
For two-dimensional inputs (d = 2), the plot() method returns a 2 × 2 grid of contour
plots illustrating the posterior mean, posterior variance, and the 2.5% and 97.5% quantiles
of the predictive distribution, providing a comprehensive view of the model’s predictions and
associated uncertainty across the input space. When used for classification, only the posterior
mean and posterior variance surfaces are displayed. When the argument only_mean = TRUE
is specified, only the contour plot of the predictive mean surface is shown. This option is
useful when a simplified visualization of the predictive mean is preferred.

3.2. DKP Model

The function fit.DKP() fits the DKP model (9), which generalizes the BKP model to multi-
nomial response data with q > 2 classes. The overall structure and interface of fit.DKP()
closely follow those of fit.BKP(), including support for prior specification, loss-based kernel
hyperparameter optimization, and multi-start routines. The response input Y should be an
n × q matrix of observed counts, where each row corresponds to an observation and each col-
umn to a category. The argument m is omitted in this setting, as the total count is implicitly
defined by the row sums of Y. If prior = "fixed", the user must provide a fixed prior mean
vector p0 of length q.
The function returns an object of class ‘DKP’, which contains analogous elements to the ‘BKP’
class, including the optimized kernel parameters, posterior parameters αn(x) (one vector per
x), and the input settings.
Prediction, simulation, and plotting methods are also extended from the BKP setting. The
method predict() returns the same components as for class ‘BKP’, except it produces per-
class outputs. If all row sums of Y are 1, the function returns the predicted multi-class label

Jiangyan Zhao, Kunhai Qing, Jin Xu 11

following the classification MAP rule in (10). The simulate() method generates draws from
the posterior predictive Dirichlet distribution, optionally producing sampled class labels via
Thompson sampling. Plotting for d = 1 displays one curve per class, while plotting for d = 2
generates a panel of contour plots for the predictive mean or other quantities of each class.

4. Examples using BKP

4.1. BKP Model

This subsection presents detailed illustrative examples based on the BKP model. Examples
for the DKP model are provided in Section 4.2.

Example 1 Let x ∈ [−2, 2], and suppose the true Bernoulli probability function is given by

π1(x) = 1
1 + e−3x

, (13)

which is referred as the function true_pi_fun in the code below. We aim to fit the BKP
model based on seven input locations that are uniformly distributed over [−2, 2], with each
location associated with a binomial observation having a maximum trial count of 100. The
input locations are generated using the lhs() function from the R package tgp (Gramacy
and Taddy 2010). The following R code illustrates how to simulate the data and fit the BKP
model using the fit.BKP() function.

R> n <- 7
R> Xbounds <- matrix(c(-2,2), nrow = 1)
R> X <- lhs(n = n, rect = Xbounds)
R> true_pi <- true_pi_fun(X)
R> m <- sample(100, n, replace = TRUE)
R> y <- rbinom(n, size = m, prob = true_pi)
R> BKP_model_1D_1 <- fit.BKP(X, y, m, Xbounds = Xbounds)

The estimates of the parameters of the fitted BKP model can be displayed using the print()
function:

R> print(BKP_model_1D_1)

--
Beta Kernel Process (BKP) Model

--
Number of observations (n): 7
Input dimensionality (d): 1
Kernel type: gaussian
Loss function used: brier
Optimized kernel parameters: 0.1748
Minimum achieved loss: 0.01165

12 Beta Kernel Process Modeling in R

Kernel parameters were obtained by optimization.

Prior specification:
Noninformative prior: Beta(1,1).

--

The BKP_model_1D_1 object can be used for visualization and prediction over a grid of input
values via the plot() and simulate() methods:

R> plot(BKP_model_1D_1)
R> Xnew = matrix(seq(-2, 2, length = 100), ncol = 1)
R> sim <- simulate(BKP_model_1D_1, Xnew = Xnew, n_sim = 3)

Figure 1 presents two views of the model output. Panel (a) shows the posterior mean estimate
of the probability function π(x) (blue), along with a 95% credible interval (gray band), ob-
served proportions (red dots), and the true underlying probability function (black). Panel (b)
presents three posterior sample curves generated using the simulate() method, illustrating
the variability of the estimated probability surface.
We continue with the same probability function of this example to show the impact of the
global precision parameters, r0, in classification tasks. However, the sample size is changed
from 7 to 20 for classification. The following R code generates the label of response and fit
the BKP model for classification with r0 being 0.01 and 2.

R> # Fit BKP model with r0 = 0.01
R> BKP_model_1D_1_class_1 <- fit.BKP(
+ X, y, m, Xbounds = Xbounds,
+ prior = "fixed", r0 = 0.01, loss = "log_loss")
R> # Fit BKP model with r0 = 2
R> BKP_model_1D_1_class_2 <- fit.BKP(
+ X, y, m, Xbounds = Xbounds,
+ prior = "fixed", r0 = 2, loss = "log_loss")

Figure 2a shows a sigmoidal curve with steep slope around zero (in solid line) and a narrow
95% credible interval (in grey band) under r0 = 0.01, indicating a decisive and confident
classification boundary. In contrast, Figure 2b displays a sine-shape curve with a much wider
credible interval, reflecting greater uncertainty and less effective separation. This demon-
strates the preference of a small value of r0 value for classification task.

Example 2 The first example is essentially a generalized linear model with a smooth logit
link, and thus poses limited modeling complexity. To demonstrate the capability of the BKP
model in handling more challenging classification structures, we consider a second example
with a highly nonlinear underlying probability surface. Define the true Bernoulli probability
as

π2(x) = 1
2

[
1 + e−x2 cos

(
101 − e−x

1 + e−x

)]
, (14)

Jiangyan Zhao, Kunhai Qing, Jin Xu 13

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Probability

x

P
ro

ba
bi

lit
y

Estimated Probability
95% Credible Interval
Observed Proportions
True Probability

(a) Posterior mean and 95% CI of Example 1

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simulated Probability Curves

x
P

ro
ba

bi
lit

y

sample 1
sample 2
sample 3

(b) Posterior samples of Example 1

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Probability

x

P
ro

ba
bi

lit
y

Estimated Probability
95% Credible Interval
Observed Proportions
True Probability

(c) Posterior mean and 95% CI of Example 2

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

Simulated Probability Curves

x

P
ro

ba
bi

lit
y

sample 1
sample 2
sample 3

(d) Posterior samples of Example 2

Figure 1: Posterior inference and simulation results from the fitted BKP models

where x ∈ [−2, 2] (Goetschalckx et al. 2011). This example involves rapid local oscillations
and strong nonlinearity, making it substantially more difficult to fit than Example 1. Here,
we increase the number of locations to 30.

n <- 30
R> Xbounds <- matrix(c(-2,2), nrow = 1)
R> X <- lhs(n = n, rect = Xbounds)
R> true_pi <- true_pi_fun(X)
R> m <- sample(100, n, replace = TRUE)

14 Beta Kernel Process Modeling in R

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Probability

x

P
ro

ba
bi

lit
y

threshold

(a) r0 = 0.01

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Probability

x
P

ro
ba

bi
lit

y

threshold

(b) r0 = 2

Figure 2: Posterior mean and 95% CI of Example 1 (classification task) under r0 = 0.01 and
2

R> y <- rbinom(n, size = m, prob = true_pi)
R> BKP_model_1D_2 <- fit.BKP(X, y, m, Xbounds = Xbounds)

The results are shown in panels (c) and (d) of Figure 1. Panel (c) demonstrates that the BKP
model accurately recovers the highly nonlinear pattern, while panel (d) illustrates posterior
variability through three representative realizations of π(x).

Example 3 We now consider a two-dimensional test function to further illustrate the mod-
eling capabilities of the BKP package. Let x ∈ [0, 1]2, and define the latent surface using a
re-scaled version of the Goldstein–Price function (Picheny et al. 2013):

f(x) =log[{1 + a(x)}{30 + b(x)} − 8.6928]
2.4269 , with

a(x) = (4x1 + 4x2 − 3)2 ×
{75 − 56 (x1 + x2) + 3 (4x1 − 2)2 + 6 (4x1 − 2) (4x2 − 2) + 3 (4x2 − 2)2},

b(x) = (8x1 − 12x2 + 2)2 ×
{−14 − 128x1 + 12 (4x1 − 2)2 + 192x2 − 36 (4x1 − 2) (4x2 − 2) + 27 (4x2 − 2)2}.

The true Bernoulli probability surface is then defined by

π3(x) = Φ{f(x)}, (15)

where Φ(·) is the cumulative distribution function of the standard normal distribution. This
formulation produces a smooth yet highly non-linear response surface, providing a challenging
test scenario for probabilistic modeling.

Jiangyan Zhao, Kunhai Qing, Jin Xu 15

To construct the training data, we generate a LHD of size 100 over [0, 1]2. Each location
is associated with a binomial observation whose number of trials is randomly drawn from
{1, . . . , 100}. The following R code demonstrates the data simulation and model fitting using
the fit.BKP() function:

R> n <- 100
R> Xbounds <- matrix(c(0, 0, 1, 1), nrow = 2)
R> X <- lhs(n = n, rect = Xbounds)
R> true_pi <- true_pi_fun(X)
R> m <- sample(100, n, replace = TRUE)
R> y <- rbinom(n, size = m, prob = true_pi)
R> BKP_model_2D <- fit.BKP(X, y, m, Xbounds=Xbounds)
R> print(BKP_model_2D)

--
Beta Kernel Process (BKP) Model

--
Number of observations (n): 100
Input dimensionality (d): 2
Kernel type: gaussian
Loss function used: brier
Optimized kernel parameters: 0.1112, 0.0680
Minimum achieved loss: 0.01041
Kernel parameters were obtained by optimization.

Prior specification:
Noninformative prior: Beta(1,1).

--

Figure 3 is obtained by the following code, which is the heatmaps with contour lines for the
true probability and the estimated.

R> plot(BKP_model_2D)

The results of model prediction are as follows:

R> Xnew <- lhs(n = 10, rect = Xbounds)
R> predict(BKP_model_2D, Xnew)

$Xnew
[,1] [,2]

[1,] 0.21839993 0.10462329
[2,] 0.94012023 0.61081728
[3,] 0.67819130 0.80874492
[4,] 0.15911245 0.91202275
[5,] 0.78384305 0.25559477

16 Beta Kernel Process Modeling in R

True Probability

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Predictive Mean

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

95% CI Upper

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Predictive Variance

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.000

0.005

0.010

0.015

0.020

0.025

0.030

95% CI Lower

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Comparison of the true probability surface and BKP-based posterior summaries of
Example 3

Jiangyan Zhao, Kunhai Qing, Jin Xu 17

[6,] 0.41851057 0.52146871
[7,] 0.30241571 0.08882792
[8,] 0.88767862 0.33088498
[9,] 0.08770149 0.48006939

[10,] 0.51597110 0.71151567

$mean
[1] 0.3581193 0.1591143 0.5132974 0.9589202 0.4911282 0.2664934
[7] 0.3105955 0.6079035 0.7455542 0.4478995

$variance
[1] 0.0029847470 0.0041082794 0.0018284629 0.0003391657 0.0032395988
[6] 0.0007819776 0.0022007004 0.0019417134 0.0021114379 0.0028286298

$lower
[1] 0.25492486 0.05577439 0.42943483 0.91600288 0.38011034 0.21352972
[7] 0.22263662 0.52002256 0.65058913 0.34506661

$upper
[1] 0.4683872 0.3030328 0.5967884 0.9869524 0.6025878 0.3230099
[7] 0.4060059 0.6924258 0.8300536 0.5530176

$CI_level
[1] 0.95

We continue with Example 3 to demonstrate the scalability of the BKP model in comparison
to the logistic Gaussian process (LGP) model (Rasmussen and Williams 2006). Let the
sample size range from 200 to 5000. Two scenarios for hyperparameter determination are
considered, namely, i) one scenario with fixed value of theta = 1, and ii) the other scenario
with hyperparameters optimized (through n_multi_start = 1 or n_multi_start = NULL).
The LGP model was implemented using the gp_fit() and gp_optim() functions from the
gplite package (Piironen 2022). Notably, the gplite package employs a multi-start optimiza-
tion strategy that is only triggered upon optimization failure; therefore, the additional com-
putational cost of multiple restarts was not included in our timing measurements.
All experiments were conducted on a workstation equipped with an Intel(R) Xeon(R) W-
2235 CPU @ 3.80GHz (12 cores) and 16 GB RAM. The computation times reported here are
averages over 20 independent repetitions to mitigate the effects of variability due to random
initialization and computational fluctuations.
The average computation times for both models under these scenarios are presented in Figure
4. The observed computational costs align well with the theoretical complexity predictions,
confirming the expected O(n2) scalability for BKP and O(n3) for the LGP model. Addi-
tionally, the computational cost of the multi-start optimization approach for BKP is roughly
proportional to the number of restarts, which was set to 10d. For the current setting, this cor-
responds to approximately 20 times the cost of the single-start method, reflecting the increased
complexity incurred by multiple initializations. This trade-off between computational expense
and potentially improved optimization robustness should be carefully considered when select-

18 Beta Kernel Process Modeling in R

200 500 1000 2000 5000

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Fixed Hyperparameter

n

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

BKP
LGP
O(n^2)
O(n^3)

200 500 1000 2000 5000

5e
−

01
5e

+
00

5e
+

01
5e

+
02

5e
+

03

Optimization−based Methods

n

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

BKP (single_start)
BKP (multi_start)
LGP
O(n^2)
O(n^3)

Figure 4: Comparison of computation times (in log scale) between BKP and LGP methods:
(a) fixed hyperparameter; (b) optimization-based methods

ing an appropriate strategy.

Example 4 We next consider a binary classification task using the Two Spirals dataset
(Chalup and Wiklendt 2007), a well-known benchmark consisting of two intertwined spirals
in a bounded two-dimensional input space. This dataset is particularly challenging due to
the complex, non-linearly separable class structure.
We generate n = 250 observations using the mlbench.spirals() function from the R pack-
age mlbench (Leisch and Dimitriadou 2024), with two complete rotations and additive Gaus-
sian noise of standard deviation sd = 0.05. The inputs x are constrained to the domain
[−1.7, 1.7]2, and the binary class labels are encoded as 0 and 1. We fit the BKP model using
a fixed prior specification with r_0 = 0.1 and p_0 = 0.5.

R> n <- 250
R> n_train <- 200
R> n_test <- 50
R> data <- mlbench.spirals(n, cycles = 2, sd = 0.05)
R> X_train <- data$x[1:n_train,]
R> y_train <- as.numeric(data$classes[1:n_train]) - 1 # Convert to 0/1 for BKP
R> X_test <- data$x[(n_train + 1):n,]
R> y_test <- as.numeric(data$classes[(n_train + 1):n]) - 1
R> m <- rep(1, n_train)
R> Xbounds <- rbind(c(-1.7, 1.7), c(-1.7, 1.7))
R> BKP_model_Class <- fit.BKP(
+ X_train, y_train, m, Xbounds = Xbounds,
+ prior = "fixed", r0 = 0.1, loss = "log_loss")
R> prediction <- predict(BKP_model_Class, X_test)

Jiangyan Zhao, Kunhai Qing, Jin Xu 19

Predictive Mean

X1

X
2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Predictive Variance

X1
X

2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

(a) BKP
Predictive Mean

X1

X
2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Predictive Variance

X1

X
2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.05

0.10

0.15

0.20

(b) LGP

Figure 5: Predictions of the two spirals by BKP and LGP models in terms of posterior
predictive mean (left panel) and predictive variance (right panel) of class probabilities, where
color shading represents the estimated success probability, circles and crosses indicate training
observations from the two classes

Figure 5 presents the predictive mean and variance surfaces of the class probabilities. The
upper left panel shows that the BKP model accurately captures the intricate spiral structure,
with smoothly varying predicted probabilities that delineate the nonlinear decision boundary.
The upper right panel displays the associated predictive uncertainty, which is highest near
the boundary regions between the spirals. Circles and crosses indicate training observations
from the two respective classes. These results illustrate the capacity of BKP to flexibly model
complex classification boundaries while providing coherent uncertainty quantification.

20 Beta Kernel Process Modeling in R

ROC curve for BKP (AUC = 0.926)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) BKP

ROC curve for LGP (AUC = 0.889)

Specificity
S

en
si

tiv
ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) LGP

Figure 6: ROC curves and their respective AUCs for BKP and LGP models

We compare the prediction performance with the LGP model implemented by R package
gplite.

R> gp <- gp_init(cf = cf_sexp(), lik = lik_bernoulli())
R> gp <- gp_optim(gp, X_train, y_train, method = method_full(),
+ approx = approx_ep(), verbose = FALSE)
R> prediction_gp <- gp_pred(gp, as.matrix(X_test), transform = TRUE)

The lower panel of Figure 5 indicates that the LGP model encounters difficulty in capturing
the intricate geometry of the Two Spirals dataset. Although it roughly follows the spiral struc-
ture, its predictive mean exhibits a more irregular and less sharply defined decision boundary
compared to the BKP model. This pattern suggests that the LGP model may be more prone
to overfitting or less capable of generalizing effectively. The corresponding predictive vari-
ance plots reinforce this interpretation when viewed separately in regions with and without
training data. In regions where data are available, the LGP model exhibits elevated variance
(brighter regions) across a broader portion of the input space indicating greater uncertainty
in areas critical for classification. In contrast, the BKP model maintains lower variance con-
centrated more closely around the decision boundary, reflecting higher confident predictions.
Interestingly, in regions without training data, the LGP model’s uncertainty is not necessarily
the highest; instead, it sometimes shows comparatively lower variance than the BKP model.
This suggests that the LGP model may over-smooth or fail to express appropriate uncertainty
far from observed data, whereas BKP better captures uncertainty behavior in unobserved re-
gions. The receiver operating characteristic (ROC) curves and the corresponding area under
the curve (AUC) values in Figure 6 further corroborate this conclusion: BKP achieves an
AUC of 0.926, compared to 0.889 for LGP, reflecting superior discriminatory performance
and a better balance between sensitivity and specificity.

Jiangyan Zhao, Kunhai Qing, Jin Xu 21

4.2. DKP Model

Example 5 Consider a one-dimensional three-class classification problem. The input is
defined on the interval x ∈ [−2, 2], and the true class probability vector is given by

π(x) =
[

π1(x)
2 ,

π2(x)
2 , 1 − π1(x)

2 − π2(x)
2

]⊤
,

where π1(x) and π2(x) are smooth functions defined in (13) and (14), respectively.
We generate n = 30 input locations using Latin hypercube sampling over the interval [−2, 2].
At each location, the response is a multinomial vector with probability π(x) and a random
total count sampled from {1, . . . , 150}. The DKP model is then fitted using the fit.DKP()
function and visualized with the plot() method:

R> n <- 30
R> Xbounds <- matrix(c(-2, 2), nrow = 1)
R> X <- lhs(n = n, rect = Xbounds)
R> true_pi <- true_pi_fun(X)
R> m <- sample(150, n, replace = TRUE)
R> Y <- t(sapply(1:n, function(i) rmultinom(1, size = m[i], prob = true_pi[i,])))
R> DKP_model_1D <- fit.DKP(X, Y, Xbounds = Xbounds)
R> plot(DKP_model_1D)

Figure 7 shows that the DKP model accurately recovers the true class probability functions
and provides meaningful uncertainty quantification. The predictive mean curves align with
the true underlying structure, and the shaded bands reflect posterior uncertainty.

Example 6 Consider a two-dimensional three-class classification problem. Let x = [x1, x2]⊤ ∈
[0, 1]2, and define the true class probability function as

π(x) =
[

π3(x)
2 ,

π4(x)
2 , 1 − π3(x)

2 − π4(x)
2

]⊤
,

where π3(x) is defined in (15), and

π4(x) = sin(πx1) cos{π(x2 − 0.5)}.

We generate n = 100 input points using Latin hypercube sampling over [0, 1]2. At each loca-
tion, the response is a multinomial vector with probability π(x) and a total count randomly
sampled from {1, . . . , 150}. We fit the DKP model using fit.DKP() and visualize the results
with the plot() method:

R> n <- 100
R> Xbounds <- matrix(c(0, 0, 1, 1), nrow = 2)
R> X <- lhs(n = n, rect = Xbounds)
R> true_pi <- true_pi_fun(X)
R> m <- sample(150, n, replace = TRUE)
R> Y <- t(sapply(1:n, function(i) rmultinom(1, size = m[i], prob = true_pi[i,])))
R> DKP_model_2D <- fit.DKP(X, Y, Xbounds=Xbounds)

22 Beta Kernel Process Modeling in R

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Estimated Probability (Class 1)

x

P
ro

ba
bi

lit
y

Estimated Probability
95% CI
Observed

−2 −1 0 1 2

0.
1

0.
2

0.
3

0.
4

0.
5

Estimated Probability (Class 2)

x
P

ro
ba

bi
lit

y

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

Estimated Probability (Class 3)

x

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Probability

x

P
ro

ba
bi

lit
y

Class 1
Class 2
Class 3

Figure 7: Posterior inference from the fitted DKP model for a one-dimensional three-class
problem

Figures 8–10 display the ground truth surfaces and corresponding posterior inference for each
of the three classes. In each figure, the top panel shows the true class probability surface,
while the bottom row presents the posterior mean, variance, and uncertainty bounds produced
by the DKP model.

Example 7 Consider another three-class classification task based on the well-known Iris
dataset available in R. This classic benchmark dataset contains measurements of three iris
species—setosa, versicolor, and virginica—each described by four features: sepal length, sepal
width, petal length, and petal width. Due to the overlap in feature space, particularly be-

Jiangyan Zhao, Kunhai Qing, Jin Xu 23

True Probability

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

Predictive Mean

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

95% CI Upper

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Predictive Variance

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

95% CI Lower

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

Estimated Probability (Class 1)

Figure 8: Class 1: true distribution (top) and DKP model posterior summaries (bottom)

24 Beta Kernel Process Modeling in R

True Probability

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

Predictive Mean

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

95% CI Upper

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Predictive Variance

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

95% CI Lower

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

Estimated Probability (Class 2)

Figure 9: Class 2: true distribution (top) and DKP model posterior summaries (bottom)

Jiangyan Zhao, Kunhai Qing, Jin Xu 25

True Probability

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Predictive Mean

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.3

0.4

0.5

0.6

0.7

0.8

95% CI Upper

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Predictive Variance

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

95% CI Lower

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

Estimated Probability (Class 3)

Figure 10: Class 3: true distribution (top) and DKP model posterior summaries (bottom)

26 Beta Kernel Process Modeling in R

tween versicolor and virginica, the class boundaries are not linearly separable, making this
dataset a standard testbed for evaluating multi-class classification algorithms. For visualiza-
tion purposes, we restrict our analysis to the first two features: sepal length and sepal width.
We fit the DKP model using a fixed prior specification with r0 = 0.1 and p0 = rep(1/3,
3), assuming equal prior probability for each class.

R> data(iris)
R> X <- as.matrix(iris[, 1:2])
R> Xbounds <- rbind(c(4.2, 8), c(1.9, 4.5))
R> labels <- iris$Species
R> Y <- model.matrix(~ labels - 1) # expand factors to a set of dummy variables
R> train_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
R> X_train <- X[train_indices,]
R> Y_train <- Y[train_indices,]
R> DKP_model_Class <- fit.DKP(
+ X_train, Y_train, Xbounds = Xbounds, loss = "log_loss",
+ prior = "fixed", r0 = 0.1, p0 = rep(1/3, 3))
R> X_test <- X[-train_indices,]
R> Y_test <- Y[-train_indices,]
R> dkp_pred_probs <- predict(DKP_model_Class, X_test)$mean

Figure 11 provides a visual summary of the fitted DKP model. The upper left panel displays
the MAP classification boundaries, which clearly separate setosa from the other two species.
In contrast, the boundary between versicolor and virginica is more intricate, reflecting the
known overlap between these two species in sepal measurements.
To further illustrate the model’s prediction uncertainty, the upper right panel shows a contour
map of the maximum predicted probability maxj πj(x) across the input space. This diagnostic
highlights regions where the classifier is most confident (values near 1) versus uncertain (values
close to 1/3), which effectively identifies decision boundaries and ambiguous areas. Such
visualization aids in understanding the reliability of classification decisions and the structure
of the learned decision surfaces.
Again, we compare the performance with LGP model, which is implemented by R package
kernlab (Karatzoglou et al. 2004). We adopt the one-vs-rest (OvR) approach for comparison,
which works by training a separate binary classifier for each class. Each classifier is tasked
with distinguishing its assigned class from all other classes combined.

R> iris_data <- data.frame(
+ Sepal.Length = iris$Sepal.Length,
+ Sepal.Width = iris$Sepal.Width,
+ Species = iris$Species
+)
R> iris_train <- iris_data[train_indices,]
R> iris_test <- iris_data[-train_indices,]
R> gausspr_model <- gausspr(Species ~ ., data = iris_train,
+ kernel = "rbfdot", kpar = "automatic")
R> lgp_pred_probs <- predict(gausspr_model, newdata = iris_test,
+ type = "probabilities")

Jiangyan Zhao, Kunhai Qing, Jin Xu 27

Predicted Classes

X1

X
2

2.0

2.5

3.0

3.5

4.0

5 6 7

Maximum Predicted Probability

X1
X

2

2.0

2.5

3.0

3.5

4.0

5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) DKP
Predicted Classes

X1

X
2

2.0

2.5

3.0

3.5

4.0

5 6 7

Maximum Predicted Probability

X1

X
2

2.0

2.5

3.0

3.5

4.0

5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) LGP

Figure 11: Classification and uncertainty visualization after applying the DKP model on the
Iris dataset. The left panel shows the predicted classification regions based on the MAP
decision rule, where each color corresponds to one of the three iris species. The training
data points are overlaid using shape-coded markers. The right panel visualizes the model’s
predictive uncertainty using the maximum predicted class probability. Lower values (light-
colored regions) indicate higher classification uncertainty, which usually occurs near the class
boundaries.

It is seen that the decision boundaries in the Predicted Classes'' plot (lower left
panel) appear less smooth, particularly in the regions between the two clusters
of `triangle' and `plus' data points. Additionally, theMaximum Predicted Prob-
ability’ ’ plot (lower right panel) shows a more fragmented and less uniform confidence land-
scape. There are pockets of high confidence, but also areas of lower confidence (yellows and

28 Beta Kernel Process Modeling in R

One−vs−Rest ROC curve for BKP (AUC =0.936)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

setosa
versicolor
virginica

(a) BKP

One−vs−Rest ROC curve for LGP (AUC =0.927)

Specificity
S

en
si

tiv
ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

setosa
versicolor
virginica

(b) LGP

Figure 12: One-vs-Rest ROC curves and their respective macro-average AUCs for BKP and
LGP models

greens) scattered over the region, even within what appear to be the core regions of the
classes. This indicates that DKP model is more accurate in prediction and more consistent in
uncertainty quantification than the LGP model. The corresponding multiclass ROC curves
with macro-average AUC (0.936 vs 0.927) are presented in Figure 12.

5. Summary and discussion
This article has presented BKP, a user-friendly R package that implements the Beta Ker-
nel Process (BKP) – a scalable, interpretable, and fully Bayesian nonparametric framework
for modeling spatially varying binomial probabilities. The package provides a flexible and
modular interface for fitting BKP models to both binary and aggregated binomial data, and
extends naturally to the Dirichlet Kernel Process (DKP) for handling multinomial and com-
positional responses with multiple categories. To our knowledge, BKP is the first publicly
available software for implementing BKP methodology, thereby filling an important gap in
the toolkit for spatially varying binomial and multinomial modeling.
Future development directions include extending the BKP framework to support more com-
plex data structures, such as multivariate responses, functional data, time series, and combi-
nations of qualitative and quantitative covariates. Another promising avenue is to generalize
the BKP methodology under alternative likelihoods beyond the binomial family. For example,
negative binomial likelihoods are particularly suitable for over-dispersed count data, where
the variance exceeds the mean, a common phenomenon in ecological surveys, RNA-seq gene
expression counts, and epidemiological incidence data. Geometric likelihoods, as a special case
of the negative binomial, naturally model the number of trials until the first success and are
useful in reliability analysis, survival studies, and modeling waiting times in event processes.
%https://www.datacamp.com/tutorial/negative-binomial-distribution These method-

https://www.datacamp.com/tutorial/negative-binomial-distribution

Jiangyan Zhao, Kunhai Qing, Jin Xu 29

ological and computational extensions would substantially broaden the applicability of BKP
across applied statistics, biostatistics, and machine learning.
At last, we welcome contributions from the community and invite developers to participate
in the ongoing maintenance and extension of the package by submitting pull requests via
GitHub at https://github.com/Jiangyan-Zhao/BKP/pulls.

References

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190–1208. doi:
10.1137/0916069.

Chalup SK, Wiklendt L (2007). “Variations of the two-spiral task.” Connection Science,
19(2), 183–199. doi:10.1080/09540090701398017.

Dimitriadis T, Dümbgen L, Henzi A, Puke M, Ziegel J (2022). “Honest calibration assessment
for binary outcome predictions.” Biometrika, 110(3), 663–680. doi:10.1093/biomet/
asac068.

DRatings (2023). “Log Loss vs. Brier Score.” Accessed on August 02, 2025, URL https:
//www.dratings.com/log-loss-vs-brier-score/.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Fan J, Farmen M, Gijbels I (1998). “Local Maximum Likelihood Estimation and Inference.”
Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(3), 591–608.
doi:10.1111/1467-9868.00142.

Fan J, Gijbels I (1996). Local Polynomial Modelling and Its Applications, volume 66 of
Monographs on Statistics and Applied Probability. 1st edition. Routledge, Boca Raton,
Florida. doi:10.1201/9780203748725.

Flores G, Schiff A, Smith AH, Fukuyama JA, Wilson AC (2025). “A Consequentialist Critique
of Binary Classification Evaluation Practices.” URL https://arxiv.org/abs/2504.04528.

Gardner J, Pleiss G, Weinberger KQ, Bindel D, Wilson AG (2018). “GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.” In
S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
27e8e17134dd7083b050476733207ea1-Paper.pdf.

Garnett R (2023). Bayesian Optimization. Cambridge University Press, Cambridge, United
Kingdom. doi:10.1017/9781108348973. https://bayesoptbook.com/.

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Esti-
mation.” Journal of the American Statistical Association, 102(477), 359–378. doi:
10.1198/016214506000001437.

https://github.com/Jiangyan-Zhao/BKP/pulls
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1080/09540090701398017
https://doi.org/10.1093/biomet/asac068
https://doi.org/10.1093/biomet/asac068
https://www.dratings.com/log-loss-vs-brier-score/
https://www.dratings.com/log-loss-vs-brier-score/
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1111/1467-9868.00142
https://doi.org/10.1201/9780203748725
https://arxiv.org/abs/2504.04528
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/27e8e17134dd7083b050476733207ea1-Paper.pdf
https://doi.org/10.1017/9781108348973
https://bayesoptbook.com/
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437

30 Beta Kernel Process Modeling in R

Goetschalckx R, Poupart P, Hoey J (2011). “Continuous Correlated Beta Processes.” In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence
- Volume Volume Two, IJCAI’11, p. 1269–1274. AAAI Press. URL https://dl.acm.org/
doi/10.5555/2283516.2283608.

GPy (since 2012). “GPy: A Gaussian process framework in python.” http://github.com/
SheffieldML/GPy.

Gramacy RB, Taddy M (2010). “Categorical Inputs, Sensitivity Analysis, Optimization and
Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Mod-
els.” Journal of Statistical Software, 33(6), 1–48. URL https://www.jstatsoft.org/v33/
i06/.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, volume 2. Springer New York, New York, NY. doi:
10.1007/978-0-387-84858-7.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. doi:10.18637/jss.v011.i09.

Leisch F, Dimitriadou E (2024). mlbench: Machine Learning Benchmark Problems. R package
version 2.1-6, URL https://CRAN.R-project.org/package=mlbench.

Loeppky JL, Sacks J, Welch WJ (2009). “Choosing the Sample Size of a Computer Exper-
iment: A Practical Guide.” Technometrics, 51(4), 366–376. doi:10.1198/TECH.2009.
08040.

MacDonald B, Ranjan P, Chipman H (2015). “GPfit: An R Package for Fitting a Gaussian
Process Model to Deterministic Simulator Outputs.” Journal of Statistical Software, 64(12).
doi:10.18637/jss.v064.i12.

MacKenzie CA, Trafalis TB, Barker K (2014). “A Bayesian Beta Kernel Model for Binary
Classification and Online Learning Problems.” Statistical Analysis and Data Mining: The
ASA Data Science Journal, 7(6), 434–449. doi:10.1002/sam.11241.

Martin BD, Witten D, Willis AD (2020). “Modeling microbial abundances and dysbiosis
with beta-binomial regression.” The Annals of Applied Statistics, 14(1), 94–115. doi:
10.1214/19-AOAS1283.

Matthews AGdG, van der Wilk M, Nickson T, Fujii K, Boukouvalas A, León-Villagrá P,
Ghahramani Z, Hensman J (2017). “GPflow: A Gaussian process library using TensorFlow.”
Journal of Machine Learning Research, 18(40), 1–6. URL http://jmlr.org/papers/v18/
16-537.html.

Montesano L, Lopes M (2012). “Active learning of visual descriptors for grasping using
non-parametric smoothed beta distributions.” Robotics and Autonomous Systems, 60(3),
452–462. doi:10.1016/j.robot.2011.07.013.

Murphy KP (2022). Probabilistic Machine Learning: An introduction. Adaptive Computation
and Machine Learning Series. The MIT Press, Cambridge, Massachusetts. URL http:
//probml.github.io/book1.

https://dl.acm.org/doi/10.5555/2283516.2283608
https://dl.acm.org/doi/10.5555/2283516.2283608
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://www.jstatsoft.org/v33/i06/
https://www.jstatsoft.org/v33/i06/
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.18637/jss.v011.i09
https://CRAN.R-project.org/package=mlbench
https://doi.org/10.1198/TECH.2009.08040
https://doi.org/10.1198/TECH.2009.08040
https://doi.org/10.18637/jss.v064.i12
https://doi.org/10.1002/sam.11241
https://doi.org/10.1214/19-AOAS1283
https://doi.org/10.1214/19-AOAS1283
http://jmlr.org/papers/v18/16-537.html
http://jmlr.org/papers/v18/16-537.html
https://doi.org/10.1016/j.robot.2011.07.013
http://probml.github.io/book1
http://probml.github.io/book1

Jiangyan Zhao, Kunhai Qing, Jin Xu 31

Mussi M, Drago S, Metelli AM (2024). “Open Problem: Tight Bounds for Bernoulli Rewards
in Kernelized Multi-Armed Bandits.” In Workshop on Aligning Reinforcement Learning Ex-
perimentalists and Theorists at the International Conference on Machine Learning (ICML).
ArXiv: 2407.06321, URL https://arxiv.org/abs/2407.06321.

Najera-Zuloaga J, Lee DJ, Arostegui I (2018). “Comparison of beta-binomial regression model
approaches to analyze health-related quality of life data.” Statistical Methods in Medical
Research, 27(10), 2989—009. doi:10.1177/0962280217690413.

Najera-Zuloaga J, Lee DJ, Arostegui I (2019). “A beta-binomial mixed-effects model approach
for analysing longitudinal discrete and bounded outcomes.” Biometrical Journal, 61(3),
600–615. doi:10.1002/bimj.201700251.

Nash JC (2014). “On Best Practice Optimization Methods in R.” Journal of Statistical
Software, 60(2), 1–14. doi:10.18637/jss.v060.i02.

Nash JC, Varadhan R (2011). “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. doi:10.18637/jss.
v043.i09.

Nickisch H, Rasmussen CE (2008). “Approximations for Binary Gaussian Process Classifica-
tion.” Journal of Machine Learning Research, 9(67), 2035–2078. URL http://jmlr.org/
papers/v9/nickisch08a.html.

Picheny V, Wagner T, Ginsbourger D (2013). “A Benchmark of Kriging-based Infill Criteria
for Noisy Optimization.” Structural and Multidisciplinary Optimization, 48(3), 607–626.
doi:10.1007/s00158-013-0919-4.

Piironen J (2022). gplite: General Purpose Gaussian Process Modelling. doi:10.32614/
CRAN.package.gplite. R package version 0.13.0, URL https://CRAN.R-project.org/
package=gplite.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rasmussen CE, Williams CK (2006). Gaussian Processes for Machine Learning. the MIT
Press, Cambridge, MA. URL https://gaussianprocess.org/gpml/.

Rolland P, Kavis A, Singla A, Cevher V (2019). “Efficient learning of smooth probabil-
ity functions from Bernoulli tests with guarantees.” In K Chaudhuri, R Salakhutdi-
nov (eds.), Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 5459–5467. PMLR. URL
https://proceedings.mlr.press/v97/rolland19a.html.

Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages for
the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization.”
Journal of Statistical Software, 51(1), 1–55. doi:10.18637/jss.v051.i01.

Sung CL, Hung Y, Rittase W, Zhu C, Wu CFJ (2020). “Calibration for Computer Experiments
With Binary Responses and Application to Cell Adhesion Study.” Journal of the American
Statistical Association, 115(532), 1664–1674. doi:10.1080/01621459.2019.1699419.

https://arxiv.org/abs/2407.06321
https://doi.org/10.1177/0962280217690413
https://doi.org/10.1002/bimj.201700251
https://doi.org/10.18637/jss.v060.i02
https://doi.org/10.18637/jss.v043.i09
https://doi.org/10.18637/jss.v043.i09
http://jmlr.org/papers/v9/nickisch08a.html
http://jmlr.org/papers/v9/nickisch08a.html
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.32614/CRAN.package.gplite
https://doi.org/10.32614/CRAN.package.gplite
https://CRAN.R-project.org/package=gplite
https://CRAN.R-project.org/package=gplite
https://www.R-project.org/
https://gaussianprocess.org/gpml/
https://proceedings.mlr.press/v97/rolland19a.html
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.1080/01621459.2019.1699419

32 Beta Kernel Process Modeling in R

Vehtari A, Gelman A, Gabry J (2017). “Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC.” Statistics and Computing, 27(5), 1413–1432. doi:
10.1007/s11222-016-9696-4.

Wen H, Betken A, Hang H (2025). “Optimal Learning of Kernel Logistic Regression for
Complex Classification Scenarios.” In The Thirteenth International Conference on Learning
Representations. URL https://openreview.net/forum?id=WlhVRh2rQ0.

Affiliation:
Jiangyan Zhao
School of Statistics
East China Normal University
3663 North Zhongshan Road,
Shanghai 200062, China
E-mail: jyzhao@sfs.ecnu.edu.cn

Kunhai Qing
School of Statistics
East China Normal University
3663 North Zhongshan Road,
Shanghai 200062, China
E-mail: 51254404017@stu.ecnu.edu.cn

Jin Xu
School of Statistics
and
Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE
East China Normal University
3663 North Zhongshan Road,
Shanghai 200062, China
E-mail: jxu@stat.ecnu.edu.cn

https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://openreview.net/forum?id=WlhVRh2rQ0
mailto:jyzhao@sfs.ecnu.edu.cn
mailto:51254404017@stu.ecnu.edu.cn
mailto:jxu@stat.ecnu.edu.cn

	Introduction
	Statistical Foundation
	Beta Kernel Process
	Prior Specification
	Model Selection via Kernel Hyperparameter Tuning
	Kernel Functions
	Loss Functions
	Hyperparameter Optimization

	Extension to Dirichlet Kernel Process

	BKP Package
	BKP Model
	DKP Model

	Examples using BKP
	BKP Model
	DKP Model

	Summary and discussion

