Version: 2.1-1
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Title: Time Series Autoregressive-Based Decomposition
Description: Autoregressive-based decomposition of a time series based on the approach in West (1997). Particular cases include the extraction of trend and seasonal components.
Author: Susana Barbosa
Maintainer: Susana Barbosa <sabarbosa@fc.ul.pt>
Date: 2022-05-31
NeedsCompilation: no
Packaged: 2022-05-31 17:41:06 UTC; susana
Repository: CRAN
Date/Publication: 2022-05-31 22:20:26 UTC

Time series autoregressive decomposition

Description

Decomposition of a time series into latent subseries from a fitted autoregressive model

Usage

ardec(x, coef, ...)

Arguments

x

time series

coef

autoregressive parameters of AR(p) model

...

additional arguments for specific methods

Details

If an observed time series can be adequately described by an (eventually high order) autoregressive AR(p) process, a constructive result (West, 1997) yields a time series decomposition in terms of latent components following either AR(1) or AR(2) processes depending on the eigenvalues of the state evolution matrix.

Complex eigenvalues r exp(iw) correspond to pseudo-periodic oscillations as a damped sine wave with fixed period (2pi/w) and damping factor r. Real eigenvalues correspond to a first order autoregressive process with parameter r.

Value

A list with components:

period

periods of latent components

modulus

damping factors of latent components

comps

matrix of latent components

Author(s)

S. M. Barbosa

References

West, M. (1997), Time series decomposition. Biometrika, 84, 489-494.

West, M. and Harrisson, P.J. (1997), Bayesian Forecasting and Dynamic Models, Springer-Verlag.

Examples


data(tempEng)
coef=ardec.lm(tempEng)$coefficients

# warning: running the next command can be time comsuming!

decomposition=ardec(tempEng,coef)

 

Fit an autoregressive model as a linear regression

Description

Function ardec.lm fits an autoregressive model of order p, AR(p) to a time series through a linear least squares regression.

Usage

ardec.lm(x)

Arguments

x

time series

Value

For ardec.lm, an object of class "lm".

Author(s)

S. M. Barbosa

References

West, M. (1995), Bayesian inference in cyclical component dynamic linear models.Journal of the American Statistical Association, 90, 1301-1312.

See Also

ar, lm

Examples

data(tempEng)
model=ardec.lm(tempEng)

Extraction of individual periodic components from a monthly time series

Description

Function ardec.periodic extracts a periodic component from the autoregressive decomposition of a monthly time series.

Usage

ardec.periodic(x, per, tol = 0.95)

Arguments

x

time series

per

period of the component to be extracted

tol

tolerance for the period of the component

Value

A list with components:

period

period for the anual component

modulus

damping factor for the annual component

component

extracted component

Author(s)

S. M. Barbosa

Examples


data(tempEng)
ardec.periodic(tempEng,per=12)


Estimation of the trend component from a monthly time series

Description

Function ardec.trend extracts the trend component from the autoregressive decomposition of a monthly time series.

Usage

ardec.trend(x)

Arguments

x

time series

Value

A list with components:

modulus

damping factor for the annual component

trend

trend component

Author(s)

S. M. Barbosa

Examples


data(co2)
ardec.trend(co2)


Time series of monthly temperature values

Description

Monthly temperature in Central England from 1723-1970

Usage

data(tempEng)

Format

Time-Series [1:2976] from 1723 to 1971

Source

Hipel, K. W. and Mcleod, A. (1994) Time Series Modelling of Water Resources and Environmental Systems, Elsevier

Examples

data(tempEng)