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1.0 Introduction 
 
Fitting distributions consists in finding a mathematical function which represents in a good way a statistical 
variable. A statistician often is facing with this problem: he has some observations of a quantitative character 
x1, x2,… xn and he wishes to test if those observations, being a  sample of an unknown population, belong 
from a population with a pdf (probability density function) f(x,θθθθ), where θθθθ is a vector of parameters to 
estimate with available data. 
We can identify  4 steps in fitting distributions: 
 

1) Model/function choice: hypothesize families of distributions; 
2) Estimate parameters; 
3) Evaluate quality of fit; 
4) Goodness of fit statistical tests. 

 
This paper aims to face fitting distributions dealing shortly with theoretical issues and practical ones using 
the statistical environment and language R1. 
R is a language and an environment for statistical computing and graphics flexible and powerful. We are 
going to use  some R statements concerning  graphical techniques (§ 2.0), model/function choice (§ 3.0), 
parameters estimate (§ 4.0), measures of goodness of fit (§ 5.0) and most common goodness of fit tests (§ 
6.0). 
To understand this work a basic knowledge of R is needed. We suggest a reading of “An introduction to R”2. 
R statements, if not specified, are included in stats package. 
 
 
2.0 Graphics 
 
Exploratory data analysis can be the first step, getting descriptive statistics (mean, standard deviation, 
skewness, kurtosis, etc.) and using graphical techniques (histograms, density estimate, ECDF) which can 
suggest the kind of pdf to use to fit the model. 
We can obtain samples from some pdf (such as gaussian, Poisson, Weibull, gamma, etc.) using R statements 
and after we draw a histogram of these data. Suppose we have a sample of size n=100 belonging from a 
normal population N(10,2) with mean=10 and standard deviation=2: 
 
x.norm<-rnorm(n=200,m=10,sd=2) 
 
We can get a histogram using hist()statement (Fig. 1): 
hist(x.norm,main="Histogram of observed data") 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

���������������������������������������
1 R Development Core Team (2004). R: A language and environment for  statistical computing. R Foundation for 
Statistical Computing,  Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.r-project.org. 
2 R Development Core Team, An introdution to R, release 2.0.1, November 2004 
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[Fig. 1] 

 
Histograms can provide insights on skewness, behavior in the tails, presence of multi-modal behavior, and 
data outliers; histograms can be compared to the fundamental shapes associated with standard analytic 
distributions. 
We can estimate frequency density using density()and plot()to plot the graphic ( Fig. 2): 
 
plot(density(x.norm),main="Density estimate of data") 
 
R allows to compute the empirical cumulative distribution function by ecdf() (Fig. 3): 
 
plot(ecdf(x.norm),main=” Empirical cumulative distribution function”)  

 
A Quantile-Quantile (Q-Q) plot3 is a scatter plot comparing the fitted and empirical distributions in terms of 
the dimensional values of the variable (i.e., empirical quantiles). It is a graphical technique for determining if 
a data set come from a known population. In this plot on the y-axis we have empirical quantiles4 e on the x-
axis we have the ones got by the theorical model. 
R offers to statements: qqnorm(), to test the goodness of fit of a gaussian distribution, or qqplot() for 
any kind of distribution. In our example we have  (Fig. 4): 
 
z.norm<-(x.norm-mean(x.norm))/sd(x.norm) ## standardized data 
qqnorm(z.norm) ## drawing the QQplot 
abline(0,1) ## drawing a 45-degree reference line 

 
 
 
 
 
 

���������������������������������������
3 See http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm [2005-01-11] 
4 By a quantile, we mean the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile is 
the point at which 30% percent of the data fall below and 70% fall above that value. 
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[Fig. 2] 

 
 

[Fig. 3] 
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[Fig. 4] 

 

 
 
A 45-degree reference line is also plotted. If the empirical data come from the population with the choosen 
distribution, the points should fall approximately along this reference line. The greater the departure from 
this reference line, the greater the evidence for the conclusion that the data set have come from a population 
with a different distribution.  
 
If data differ from a normal distribution (i.e. data belonging from a Weibull pdf) we can use  qqplot()in 
this way (Fig. 5): 
 
x.wei<-rweibull(n=200,shape=2.1,scale=1.1) ## sampling from a Weibull 
distribution with parameters shape=2.1 and scale=1.1 
x.teo<-rweibull(n=200,shape=2, scale=1) ## theorical quantiles from a 
Weibull population with known paramters shape=2 e scale=1 
qqplot(x.teo,x.wei,main="QQ-plot distr. Weibull") ## QQ-plot 
abline(0,1) ## a 45-degree reference line is plotted 
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[Fig. 5] 

 
where x.wei is the vector of empirical data, while x.teo are quantiles from theorical model. 
 
 
3.0 Model choice 
 
The first step in fitting distributions consists in choosing the mathematical model or function to represent 
data in the better way.  
Sometimes the type of model or function can be argued by some hypothesis concerning the nature of data, 
often histograms and other graphical techniques can help in this step (see § 2.0), but graphics could be quite 
subjective, so there are methods based on analytical expressions such us the Pearson’s K criterion. Solving a 
particular differential equation  we can obtain several families of function able to represent quite all 
empirical distributions. Those curves depend only by mean, variability, skewness and kurtosis. Standardizing 
data, the type of curve depends only by skewness and kurtosis5 measures as shown in this formula:   
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� http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm  [2005-02-04]  
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According to the value of K, obtained by available data, we have a particular kind of function.   
Here are some examples of continuous and discrete distributions6, they will be used afterwards in this paper. 
For each distribution there is the graphic shape and R statements to get graphics.   
Dealing with discrete data we can refer to Poisson’s distribution7 (Fig. 6) with probability mass function: 

!
),(

x
exf

xλλ λ−=   where x=0,1,2,… 

x.poi<-rpois(n=200,lambda=2.5) 
hist(x.poi,main="Poisson distribution") 
 
As concern continuous data we have: 

 normal (gaussian) distribution8 (Fig. 7): 
2
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curve(dnorm(x,m=10,sd=2),from=0,to=20,main="Normal distribution") 
 

 

gamma distribution9 (Fig. 8): 
xexxf λα

α

α
λλα −−

Γ
= 1

)(
),,(  with +∈ Rx  

 
curve(dgamma(x, scale=1.5, shape=2),from=0, to=15, main="Gamma 
distribution") 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

���������������������������������������
6 See these websites for an overview on several kinds of distributions existing in statistical literature: 
http://www.xycoon.com/continuousdistributions.htm,,http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.ht
m and  http://www.statsoft.com/textbook/stdisfit.html  [2005-01-11] 
7 See: http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm [2005-02-04] 
8 See: http://www.xycoon.com/normal.htm [2005-01-12] 
9 See: http://www.xycoon.com/gamma.htm [2005-01-11] 
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[Fig. 6] 

 
 
 

[Fig. 7] 
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[Fig. 8] 

 

 

Weibull distribution10 (Fig. 9): 
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curve(dweibull(x, scale=2.5, shape=1.5),from=0, to=15, main="Weibull 
distribution") 
 
To compute skewness and kurtosis index we can use those statements: skewness() and kurtosis() 
included in fBasics package (you need to download this package from CRAN website): 
 
library(fBasics) ## package loading 
skewness(x.norm) ## skewness of a normal distribution 
[1] 0.1242952 
kurtosis(x.norm) ## kurtosis of a normal distribution 
[1] 0.01372539 
 
skewness(x.wei) ## skewness of a Weibull distribution 
[1] 0.7788843 
kurtosis(x.wei) ## kurtosis of a Weibull distribution 
[1] 0.4331281 
 
 
 

 
 
 
 
 

���������������������������������������
10 See:  http://www.xycoon.com/Weibull.htm [2005-01-12]�
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[Fig. 9] 
 

 
4.0 Parameters’ estimate 
 
After choosing a model that can mathematically represent our data we have to estimate parameters of such 
model. There are several estimate methods in statistical literature, but in this paper we are focusing on these 
ones: 
 

1) analogic 
2) moments 
3) maximum likelihood 

 
Analogic method consists in estimating model parameters applying the same function to empirical data. I.e., 
we estimate the unknown mean of a normal population using the sample mean: 
 
mean.hat<-mean(x.norm) 
mean.hat 
[1] 9.935537 
 
The method of moments11 is a technique for constructing estimators of the parameters that is based on 
matching the sample moments with the corresponding distribution moments. This method equates sample 
moments to population (theorical) ones. When moment methods are available, they have the advantage of 
simplicity. We define sample (empirical) moments in this way: 
 

- t-th sample moment about  0: i

n

i

t
it yxm �

=
=

1

  t=0,1,2… 

���������������������������������������
11 See http://www.itl.nist.gov/div898/handbook/eda/section3/eda3651.htm [2005-02-08] 
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- t-th sample moment about mean: i
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while theorical (population) ones: 
 

-     t-th  population moment about 0: dx)�,(* xfxm t
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- t-th population moment about mean: dx)�,()('* xfxm t
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α
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µ  t=0,1,2… 

 
where β−α is the range where f(x,θθθθ) is defined, µ is the mean of the distribution, and yi are emprirical 
relative frequencies. I.e., we shall estimate parameters of a gamma distribution using the method of moments  
considering the first moment about 0 (mean) and the second moment about mean (variance): 
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where on the left there mean and variance of gamma distribution and on the right sample mean and sample 
corrected variance. Solving we can get parameters’ estimates:  
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x.gam<-rgamma(200,rate=0.5,shape=3.5) ## sampling from a gamma 
distribution with λ=0.5 (scale parameter12) and α=3.5 (shape parameter) 
 
med.gam<-mean(x.gam) ## sample mean 
var.gam<-var(x.gam) ## sample variance 
l.est<-med.gam/var.gam ## lambda estimate (corresponds to rate) 
a.est<-((med.gam)^2)/var.gam ## alfa estimate 
 
l.est 
[1] 0.5625486 
a.est 
[1] 3.916339 
 
The method of maximum likelihood13 is used in statistical inference to estimate parameters. We have a 
random variable with a known pdf f(x,θθθθ) describing a quantitative character in the population. We should 
estimate the vector of costant and unknown parameters θ  θ  θ  θ according to sampling data: x1, x2,… xn.  
Maximum likelihood estimation begins with the mathematical expression known as a likelihood function of 
the sample data.. Loosely speaking, the likelihood of a set of data is the probability of obtaining that 

���������������������������������������
12 In rgamma() we can assign a value to rate or to scale=1/rate; rate argument  corresponds toλ�
13See: http://www.weibull.com/LifeDataWeb/maximum_likelihood_estimation_appendix.htm, and 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3652.htm [2005-01-13] 
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particular set of data given the chosen probability model. This expression contains the unknown parameters. 
Those values of the parameter that maximize the sample likelihood are known as the maximum likelihood 
estimates (MLE). We define the likelihood function as: 
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i
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MLE consist in finding θ θ θ θ which maximizes ),,...,( 21 θnxxxL or its logarithmic function. 
We can employ mathematical analysis methods (partial derivates equal to zero) when the likelihood function 
is rather simple, but very often we optimise ),,...,( 21 θnxxxL  using iterative methods. MLE have several 
statistical properties and advantages. 
I. e., in case of a gamma distribution, the likelihood function is14:: 
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In R environment we can get MLE by two statements: 
 

1) mle() included in package stats4 
2) fitdistr()included in package MASS 

 
 mle()allows to fit parameters by maximum likelihood method using iterative methods of numerical 
calculus to minimize the negative log-likelihood (which is the same of maximizing the log-likelihood). You  
have to specify the negative log-likelihood analytical expression as argument and giving some starting 
parameters estimates. In case of a gamma distribution: 
  
library(stats4) ## loading package stats4 
ll<-function(lambda,alfa) {n<-200 
             x<-x.gam 
-n*alfa*log(lambda)+n*log(gamma(alfa))-(alfa-
1)*sum(log(x))+lambda*sum(x)} ## -log-likelihood function 
est<-mle(minuslog=ll, start=list(lambda=2,alfa=1)) 
summary(est) 
Maximum likelihood estimation 
 
Call: 
mle(minuslogl = ll, start = list(lambda = 2, alfa = 1)) 
 
Coefficients: 
        Estimate Std. Error 
lambda 0.5290189 0.05430615 
alfa   3.6829126 0.35287672 
 
-2 log L: 1044.282 
 
We supply as starting values of parameters estimates arbitrary ones, but, we could use estimates got by the 
methods of moments. The statement mle()allows to estimate parameters for every kind of pdf, it needs 
only to know the likelihood analytical expression to be optimised. 
 

���������������������������������������
14 See  http://www-mtl.mit.edu/CIDM/memos/94-13/subsection3.4.1.html [2005-01-12] 
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In MASS package is available fitdistr()for maximum-likelihood fitting of univariate distributions 
without any information about likelihood analytical expression. It is enough to specify a data vector, the type 
of pdf (densfun) and eventually the list of starting values for iterative procedure (start). 
 
library(MASS) ## loading package MASS 
fitdistr(x.gam,"gamma") ## fitting gamma pdf parameters 
     shape         rate    
  3.68320097   0.52910229  
 (0.35290545) (0.05431458) 
 
fitdistr(x.wei,densfun=dweibull,start=list(scale=1,shape=2))## fitting 
Weibull pdf parameters  
     scale        shape    
  1.04721828   2.04959159  
 (0.03814184) (0.11080258) 
 
fitdistr(x.norm,"normal") ## fitting gaussian pdf parameters 
     mean         sd     
  9.9355373   2.0101691  
 (0.1421404) (0.1005085) 
 
5.0 Measures of goodness of fit 
 
A goodness of fit measure is useful for matching empirical frequencies with fitted ones by a theorical model. 
We have absolute and relative measures. Among the absolute ones we can choice:  
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Usually those indexes are expressed by a percent measure of the corresponding mean. 
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Here is an example using R for count data (Poisson distribution): 
 
lambda.est<-mean(x.poi) ## estimate of parameter lambda  
tab.os<-table(x.poi)## table with empirical frequencies 
tab.os 
x.poi 
 0  1  2  3  4  5  6  7  8  
21 29 46 53 28 16  4  2  1 
 
freq.os<-vector() 
for(i in 1: length(tab.os)) freq.os[i]<-tab.os[[i]] ## vector of emprical 
frequencies 
freq.ex<-(dpois(0:max(x.poi),lambda=lambda.est)*200) ## vector of fitted 
(expected) frequencies 
freq.os 
[1] 21 29 46 53 28 16  4  2  1 
 
freq.ex 
[1] 15.0040080 38.8603808 50.3241931 43.4465534 28.1316433 14.5721912  
6.2903292 
[8]  2.3274218  0.7535028 
 
acc<-mean(abs(freq.os-trunc(freq.ex))) ## absolute goodness of fit index 
acc 
[1] 2.111111 
 
acc/mean(freq.os)*100 ## relative (percent) goodness of fit index 
[1] 17 
 
A graphical technique to evaluate the goodness of fit can be drawing pdf curve and histogram together (Fig. 
10): 
 
h<-hist(x.norm,breaks=15)  
xhist<-c(min(h$breaks),h$breaks)  
yhist<-c(0,h$density,0)  
xfit<-seq(min(x.norm),max(x.norm),length=40)  
yfit<-dnorm(xfit,mean=mean(x.norm),sd=sd(x.norm))  
plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)), main=”Normal pdf and 
histogram”)  
lines(xfit,yfit, col=”red”) 
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[Fig. 10] 

 
6.0 Goodness of fit tests 
 
Goodness of fit tests indicate whether or not it is reasonable to assume that a random sample comes from a 
specific distribution. They are a form of hypothesis testing where the null and alternative hypotheses are:  
 
H0: Sample data come from the stated distribution  
HA: Sample data do not come from the stated distribution 
 
These tests are sometimes called as omnibus test and they are distribution free, meaning they do not depend 
according the pdf. We shall point out our attention to normality tests. 
The chi-square test15 is the oldest goodness of fit  test dating back to Karl Pearson (1900).  The test may be 
thought of as a formal comparison of a histogram with the fitted density. 
An attractive feature of the chi-square (χ2) goodness of fit test is that it can be applied to any univariate 
distribution for which you can calculate the cumulative distribution function. The chi-square goodness of fit 
test is applied to binned data (i.e., data put into classes). This is actually not a restriction since for non-binned 
data you can simply calculate a histogram or frequency table before generating the chi-square test. However, 
the value of the chi-square test statistic is dependent on how the data is binned. Another disadvantage of this 
test is that it requires a sufficient sample size in order for the chi square approximation to be valid. The chi-
square goodness of fit test can be applied either to discrete distributions or continuous ones while the 
Kolmogorov-Smirnov and Anderson-Darling tests are restricted to continuous distributions. Estimating 
model parameters with sample is allowed with this test. The chi-square test is defined for the hypothesis:  
 
H0: the data follow a specified distribution   
HA: the data do not follow the specified distribution 

���������������������������������������
15 See: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm and 
http://www.itl.nist.gov/div898/handbook/prc/section2/prc211.htm [2005-01-14] 
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For the chi-square goodness of fit computation, the data are divided into k bins and the test statistic is 
defined in this way:   
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where Oi is the observed frequency for bin i and  Ei is the expected frequency for bin i. The expected 
frequency is calculated by cumulative distribution function. This statistic is distributed as a χ2 random 
variable with k-p-1 degrees of freedom (p is the number of  parameters estimated by sample data). The 
hypothesis that the data are from a population with the specified distribution is accepted if χ2 is lower than 
the chi-square percent point function with k - p-1 degrees of freedom and a significance level of α. The chi-
square test is sensitive to the choice of bins. 
 
In R environment there are three ways to perform a  chi-square test. 
In case of count data we can use goodfit()included in vcd package (to be downloaded from CRAN 
website): 
 
library(vcd)## loading vcd package 
 
gf<-goodfit(x.poi,type= "poisson",method= "MinChisq") 
summary(gf) 
 
           Goodness-of-fit test for poisson distribution 
 
             X^2 df  P(> X^2) 
Pearson 8.378968  7 0.3003653 
 
plot(gf,main="Count data vs Poisson distribution") 
 
In case of a continuous variable, such as a gamma distribution as in the following example, with parameters 
estimated by sample data: 
 
x.gam.cut<-cut(x.gam,breaks=c(0,3,6,9,12,18)) ##binning data 
table(x.gam.cut) ## binned data table 
x.gam.cut 
  (0,3]   (3,6]   (6,9]  (9,12] (12,18]  
     26      64      60      27      23 
 
## computing expected frequencies 
(pgamma(3,shape=a.est,rate=l.est)-pgamma(0,shape=a.est,rate=l.est))*200 
[1] 19.95678 
 
(pgamma(6,shape=a.est,rate=l.est)-pgamma(3,shape=a.est,rate=l.est))*200 
[1] 70.82366 
 
(pgamma(9,shape=a.est,rate=l.est)-pgamma(6,shape=a.est,rate=l.est))*200 
[1] 60.61188 
 
(pgamma(12,shape=a.est,rate=l.est)-pgamma(9,shape=a.est,rate=l.est))*200 
[1] 30.77605 
 
(pgamma(18,shape=a.est,rate=l.est)-pgamma(12,shape=a.est,rate=l.est))*200 
[1] 16.12495 
 
f.ex<-c(20,71,61,31,17) ## expected frequencies vector 
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f.os<-vector() 
for(i in 1:5) f.os[i]<- table(x.gam.cut)[[i]] ## empirical frequencies 
 
X2<-sum(((f.os-f.ex)^2)/f.ex) ## chi-square statistic 
 
gdl<-5-2-1 ## degrees of freedom 
1-pchisq(X2,gdl) ## p-value 
[1] 0.07652367 

 
H0 is accepted as the p-value is grater than of a significance level fixed al least in 5%. 

 
[Fig. 11] 

�
Whether we are dealing with a continuous variable and all its pdf  parameters are known we can use 
chisq.test(): 
 
## computing relative expected frequencies 
p<-c((pgamma(3,shape=3.5,rate=0.5)-pgamma(0,shape=3.5,rate=0.5)), 
(pgamma(6,shape=3.5,rate=0.5)-pgamma(3,shape=3.5,rate=0.5)), 
(pgamma(9,shape=3.5,rate=0.5)-pgamma(6,shape=3.5,rate=0.5)), 
(pgamma(12,shape=3.5,rate=0.5)-pgamma(9,shape=3.5,rate=0.5)), 
(pgamma(18,shape=3.5,rate=0.5)-pgamma(12,shape=3.5,rate=0.5))) 
 
chisq.test(x=f.os,p=p) ## chi-square test 
 
        Chi-squared test for given probabilities 
 
data:  f.os  
X-squared = 2.8361, df = 4, p-value = 0.5856 
 
We can’t reject null hypothesis as p-value is rather high, so probably sample data belong from a gamma 
distribution with shape parameter=3.5 and rate parameter=0.5. 
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The Kolmogorov-Smirnov16 test is used to decide if a sample comes from a population with a specific 
distribution. I can be applied both for discrete (count) data and continuous binned (even if some Authors do 
not agree on this point) and both for continuous variables. It is based on a comparison between the empirical 

distribution function (ECDF) and the theoretical one defined as �=
x

dyyfxF
α

θ ),()( , where f(y,θ) is the 

pdf. Given n ordered data points X1, X2, ..., Xn, the ECDF is defined as: 
 

Fn(Xi)=N(i)/n 
 
where N(i) is the number of points less than Xi (Xi are ordered from smallest to largest value). This is a step 
function that increases by 1/n at the value of each ordered data point. 
The test statistic used is: 
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that is the upper extreme among absolute value differencies between ECDF and theoretical CDF.  
The hypothesis regarding the distributional form is rejected if the test statistic, Dn, is greater than the critical 
value obtained from a table, or, which is the same, if the p-value is lower than the significance level. 
Kolmogorov-Smirnov test is more powerful than chi-square test when sample size is not too great. For large 
size sample both the tests have the same power. The most serious limitation of Kolmogorov-Smirnov test is 
that the distribution must be fully specified, that is, location, scale, and shape parameters can’t be estimated 
from the data sample. Due to this limitation, many analysts prefer to use the Anderson-Darling goodness-of-
fit test. However, the Anderson-Darling test is only available for a few specific distributions. 
In R we can perform Kolmogorov-Smirnov test using the function ks.test() and apply this test to a 
sample belonging from a Weibull pdf with known parameters (shape=2 and scale=1): 
 
ks.test(x.wei,"pweibull", shape=2,scale=1) 
 
        One-sample Kolmogorov-Smirnov test 
 
data:  x.wei  
D = 0.0623, p-value = 0.4198 
alternative hypothesis: two.sided 
 
We accept null hypothesis that the data follow a Weibull distribution because the p-value is enough higher 
than significance levels usually referred in statistical literature. 
In Fig.12 is drawn both ECDF and theoretical one  in the same plot:  
 
x<-seq(0,2,0.1) 
plot(x,pweibull(x,scale=1,shape=2),type="l",col="red", main="ECDF and  
Weibull CDF") 
plot(ecdf(x.wei),add=TRUE) 
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16 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm [2005-01-14] 
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[Fig. 12] 

 
 

6.1 Normality tests 
 
Very often a statistician is called to test if data collected come or not from a normal population, we shall 
examine the main normality tests17. 
There are in statistical literature some tests useful for testing only skewness or only kurtosis (or  both the two 
at the same time) of a distribution based on the well known b3 e b4 (or gamma3 e gamma4).18 
Shapiro-Wilk test19 is one of the most powerful normality tests, especially for small samples. Normality is 
tested by matching two alternative variance estimates: a non-parametric estimator got by a linear 
combination of ordered sample values and the usual parametric estimator. The weights (ai) are available in a 
statistical table: 
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The statement performing Shapiro-Wilk test is shapiro.test()and it supplies W statistic and the p-
value: 
 
shapiro.test(x.norm) 
 
        Shapiro-Wilk normality test 
 

���������������������������������������
17 E. Seier, Testing for normality and E. Seier, Comparison of tests for univariate normality [2005-02-18] 
18 See: http://www.xycoon.com/skewness_test_1.htm and http://www.xycoon.com/skewness_small_sample_test_2.htm 
[2005-02-10] 
19 See: http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm [2005-01-14] 
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data:  x.norm  
W = 0.9938, p-value = 0.5659 
 
The p-value is higher than significance levels usually used to test statistical hypotheses, we accept null 
hypothesis that is sample data belong form a gaussian distribution. 
  
Jarque-Bera test20 is used a lot to test normalità in Econometric. It is based on skewness and kurtosis 
measures of a distribution considering the asymptotic distribution of b3 e b4  which, under null hypothesis, is 
a chi-square with 2 degrees of freedom. 
In R such test is available in tseries package (it should be downloaded from CRAN website) using this 
statement: jarque.bera.test() which supplies the value of statistic, the degrees of freedom and the 
p-value: 
  
library(tseries) ## package tseries loading 
jarque.bera.test(x.norm) 
 
        Jarque Bera Test 
 
data:  x.norm  
X-squared = 0.539, df = 2, p-value = 0.7638 
 
A test proposed by Cucconi (an Italian statistician) allows to test normality without the problem of 
estimating parameters by sample data. Let  be nxxx ≥≥≥ ...21 a sample from a continuous variable and 

nζζζ ,..., 21  a set of standardized random normal numbers of size n; let be: 
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we consider a transformation of xi: 
n

rxx
qy i

i +−=
σ̂

�where x is the sample mean and σ̂ is the square 

root of the corrected sample variance. It could be demonstered that, if  xi come from a normal population, yi 
have a normal standardized distribution. We can employ Kolmogorov-Smirnov test to check this hypothesis. 
Here is an example of R code: 
 
zz<-rnorm(n=200,m=0,sd=1) ## sampling random numbers from N(0,1) 
r<-zz[200] 
q<-sd(zz[-200]) 
m<-mean(x.norm) 
s<-sqrt(var(x.norm)) 
y<-q*((x.norm-m)/s)+(r/sqrt(200)) 
ks.test(y,”pnorm”,m=0,sd=1) 
 
        One-sample Kolmogorov-Smirnov test 
 
data:  y  
D = 0.0298, p-value = 0.9943 
alternative hypothesis: two.sided  
 
A package called nortest (it should be downloaded from CRAN website) allows to perform 5 different 
normality test: 
 

���������������������������������������
20 See: http://homepages.uel.ac.uk/D.A.C.Boyd/JARQUE-B.PDF [2005-01-14] 
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1) sf.test()performs Shapiro-Francia test: 
library(nortest) ## package loading 
sf.test(x.norm) 
 
        Shapiro-Francia normality test 
 
data:  x.norm  
W = 0.9926, p-value = 0.3471 
 
2) ad.test()performs Anderson-Darling21 test: 
 
it is a modification of Kolmogorov-Smirnov test and it makes use of the specific distribution in calculating 
critical values. Currently, tables of critical values are available for the normal, lognormal, exponential, 
Weibull, extreme value type I, and logistic distributions. Anderson-Darling test is based on this statistic: 

 
A2=-n-S 

where: 
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S , n is the sample size and F(x) is the theoretical CDF (in our 

case is the normal CDF). In R environment this test can be used only to check normality: 
  
library(nortest) ## package loading 
ad.test(x.norm) 
 
        Anderson-Darling normality test 
 
data:  x.norm  
A = 0.4007, p-value = 0.3581 
 
3) cvm.test()performs Cramer-Von Mises test based on the statistic: 
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library(nortest) ## package loading 
cvm.test(x.norm) 
 
        Cramer-von Mises normality test 
 
data:  x.norm  
W = 0.0545, p-value = 0.4449 
 
4) lillie.test()performs Lilliefors22 test: 
 
It is a modification of Kolmogorov-Smirnov test which can’t be used normality when the mean and standard 
deviation of the hypothesized normal distribution are not known (i.e., they are estimated from the sample 
data),  it is particularly useful in case of small samples. The Lilliefors test evaluates the hypothesis that X has 
a normal distribution with unspecified mean and variance, against the alternative that X does not have a 
normal distribution. This test compares the empirical distribution of X with a normal distribution having the 
same mean and variance as X. It is similar to the Kolmogorov-Smirnov test, but it adjusts for the fact that the 
parameters of the normal distribution are estimated from X rather than specified in advance. 
 
library(nortest) ## package loading 

���������������������������������������
21 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm  [2005-01-18] 
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lillie.test(x.norm) 
Lilliefors (Kolmogorov-Smirnov) normality test 
data:  x.norm  
D = 0.0414, p-value = 0.5509 
 
5) pearson.test() performs Pearson’s chi-square test: 
it is the same χ2  test previously treated used to test the goodness of fit of a normal distribution: 
 
library(nortest) ## package loading 
pearson.test(x.norm) 
 
        Pearson chi-square normality test 
 
data:  x.norm  
P = 10.12, p-value = 0.753 
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Appendix 
 
List of R statements useful in fitting distributions. The package including statement is written in 
parenthesis.  
ad.test(): Anderson-Darling test for normality (nortest) 
chisq.test(): chi-squared test (stats) 
cut: divides the range of data vector into intervals 
cvm.test(): Cramer-von Mises test for normality (nortest) 
ecdf(): computes an empirical cumulative distribution function (stats) 
fitdistr(): Maximum-likelihood fitting of univariate distributions (MASS) 
goodfit(): fits a discrete (count data) distribution for goodness-of-fit tests (vcd) 
hist(): computes a histogram of the given data values (stats) 
jarque.bera.test(): Jarque-Bera test for normality (tseries) 
ks.test(): Kolmogorov-Sminorv test (stats) 
kurtosis(): returns value of kurtosis (fBasics) 
lillie.test(): Lilliefors test for normality (nortest) 
mle(): estimate parameters by the method of maximum likelihood (stats4) 
pearson.test(): Pearson chi-square test for normality (nortest) 
plot(): generic function for plotting of R objects (stats) 
qqnorm(): produces a normal QQ plot (stats)  
qqline(), qqplot(): produce a QQ plot of two datasets (stats) 
sf.test(): test di Shapiro-Francia per la normalità (nortest) 
shapiro.test():Shapiro-Francia  test  for normalità  (stats) 
skewness(): returns value of skewness (fBasics) 
table(): builds a contingency table (stats) 
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