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Chapter 1

Introduction

1.1 S, S-Plus, R, and Source References

S-Plus and R are supersets of the S language1, an interactive programming environment for data
analysis and graphics. Insightful Corporation in Seattle took the AT&T Bell Labs S code and
enhanced it producing many new statistical functions and graphical interfaces. In this text we use
S to refer to both S-Plus and R languages.

S is a unique combination of a powerful language and flexible, high-quality graphics functions.
What is most important about S is that it was designed to be extendable. Insightful, AT&T (now
Lucent Technologies), and a large community of S-Plus users and R developers and users are con-
stantly adding new capabilities to the system, all using the same high-level language. S allows users
to take advantage of an explosion of powerful new data analysis and statistical modeling techniques.
The richness of the S language and its planned extendability allow users to perform comprehensive
analyses and data explorations with a minimum of programming. As an example, S functions in the
Design library (see Chapter 9) can perform analyses and make graphical representations that would
take pages of programming in other systems if they could be done at all:

1S, which may stand for statistics, was developed by the same lab that developed the C language.

1
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# Fit binary logistic model without assuming linearity for age or

# equal shapes of the age relationship for the two sexes

# Represent age using a restricted cubic spline function with 4 knots

# This requires 3 age parameters per sex. Model has intercept + 6

# coefficients. x=T, y=T causes design matrix and response vector to

# be stored in the fit object f. This allows certain residuals to be

# computed later, and it allows the original data to be re-analyzed

# later (e.g., bootstrapping and cross-validation)

f ← lrm(death ∼ rcs(age,4)*sex, x=T, y=T)

# Test for age*sex interaction (3 d.f.), linearity in age (4 d.f.),

# overall age effect (6 d.f.), overall sex effect (4 d.f.),

# linearity of age interaction with sex (2 d.f.)

anova(f)

# Compute the 60:40 year odds ratio for females

summary(f, age=c(40,60), sex=’female’)

# Plot the age effects separately by sex, with confidence bands

plot(f, age=NA, sex=NA)

# Validate the model using the bootstrap - check for overfitting

validate(f)

# Draw a nomogram depicting the model, adding an axis for the

# predicted probability of death

nomogram(f, fun=plogis, funlabel=’Prob(death)’)

# Get predicted log odds of death for 40 year old male

predict(f, data.frame(age=40,sex=’male’))

# Make a new S-Plus function which analytically computes predicted

# values from the fitted model

g ← Function(f)

# Use this function to duplicate the above prediction for 40 year old male

g(age=40, sex=’male’)

By making a high-level language the cornerstone of S, you could say that S is designed to be
inefficient for some applications from a pure CPU time point of view. However, computer time
is inexpensive in comparison with personnel time, and analysts who have learned S can be very
much more productive in doing data analyses. They can usually do more complex and exploratory
analyses in the same time that standard analyses take using other systems.

In its most simple use, S is an interactive calculator. Commands are executed (or debugged)
as they are entered. The S language is based on the use of functions to perform calculations, open
graphics windows, set system options, and even for exiting the system. Variables can refer to single-
valued scalars, vectors, matrices, or other forms. Ordinarily a variable is stored as a vector, e.g.,
age will refer to all the ages of subjects in a dataset. Perhaps the biggest challenge to learning S for
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long-time users of single observation oriented packages such as SAS is to think in terms of vectors
instead of a variable value for a single subject. In SAS you might say

PROC MEANS; VAR age; *Get mean and other statistics for age;

DATA new; SET old;

IF age < 16 THEN ageg=’Young’; ELSE ageg=’Old’;

The IF statement would be executed separately for each input observation. In contrast, to reference
a single value of age in S, say for the 13th subject, you would type age[13]. To create the ageg
variable for all subjects you would use the S ifelse function, which operates on vectors2:

mean(age) # Computed immediately, not in a separate step

ageg ← ifelse(age < 16, ’Young’, ’Old’)

The assignment operator ← is typed as <-.
To show how function calls can be intermixed with other operations, look how easy it is to

compute the number of subjects having age < the mean age:

sum(age < mean(age)) # could have used table(age < mean(age))

# or to get the proportion, use mean(age < mean(age))

In S you can create and operate on very complex objects. For example, a flexible type of
object called a list can contain any arbitrary collection of other objects. This makes examination
of regression model fits quite easy, as a “fit object” can contain a variety of objects of differing
shapes, such as the vector of regression coefficients, covariance matrix, scalar R2 value, number of
observations, functions specifying how the predictors were transformed, etc.

S is object oriented. Many of its objects have one or more classes, and there are generic functions
that know what to do with objects of certain classes. For example, if you use S’s linear model
function lm to create a “fit object” called f, this object will have class ’lm’. Typing the commands
print(f), summary(f), or plot(f) will cause the print.lm, summary.lm, or plot.lm functions
to be executed. Typing methods(lm) or methods(class=’lm’) will give useful information about
methods for creating or operating on lm objects.

Basic sources for learning S are the manuals that come with the software. Another basic source
for learning S (and hence, S-Plus) is a book called the New S language (a.k.a. “the blue book”),
by Becker, Chambers and Wilks (1988). One step above the previous one is Chambers and Hastie
(1992). Good introductions are Spector (1994) and Krause and Olson (2000). Other excellent
books are Venables and Ripley (1999, 2000). Ripley has many useful S functions and other valuable
material available from his Web page (http://www.stats.ox.ac.uk/∼ripley/)3. A variety of
manuals come with S-Plusand R, from beginner’s guides to more advanced programmer’s manuals.
Also see F.E. Harrell’s book Regression Modeling Strategies (which has long case studies using
S with commands and printed and graphical output), and other references listed in the bibliography.
Another source of help are the S-news and R-help mailing lists (see biostat.mc.vanderbilt.edu/
rms).

Although not exclusively related to S and much of the material related to S packages is out of
date, the statlib Web server lib.stat.cmu.edu can provide specific software for some problems.

2Note that a missing value for age in SAS would result in the person being categorized as ’Young’. In S the result
would be a missing value (NA) for such subjects.

3Venables and Ripley’s MASS S library has a wide variety of useful functions as well as many datasets useful for
learning both biostatistical methods and S.

http://www.stats.ox.ac.uk/~ripley/
http://biostat.mc.vanderbilt.edu/rms
http://biostat.mc.vanderbilt.edu/rms
biostat.mc.vanderbilt.edu/rms
biostat.mc.vanderbilt.edu/rms
http://lib.stat.cmu.edu


4 CHAPTER 1. INTRODUCTION

Also consult Insightful’s Web page http://www.insightful.com. The AT&T / Lucent Technolo-
gies Web page (http://www.research.att.com/areas/stat/) points to many valuable technical
reports related to the S language. The “Visual Demo”, available from the Help button in Windows
S-Plus is a helpful introduction to the system.

We will concentrate on using S from a Linux or UNIX workstation or Windows S for Microsoft
Windows or NT. When we do not distinguish between the two platforms, most of the commands
described will work exactly the same in both contexts.

1.1.1 R

R is an open-source version of the S language (strictly speaking R uses a language that is very
compatible with but not identical to S). R runs on all major platforms including running in native
mode on some Macintosh operating systems. All of R’s source code is available for inspection and
modification. The system and its documentation is available from http://www.r-project.org. The
Hmisc and Design libraries are fully available for R. Almost all of the command syntax used in this
book can be used identically for R. There are many subtle differences in how graphical parameters
are handled. R uses essentially Version 3 of the S language but with different rules for how objects
are found from inside functions when they are not passed as arguments.

R has no graphical user interface on Linux and UNIX and only a rudimentary one on Windows.
It lacks many of the Microsoft Office linkages and data import/export capabilities that S-Plus has.
It has most of the functions S-Plus has, however. R runs slightly faster than S-Plus for certain
applications (especially highly iterative ones) and provides easy-to-use functions for downloading
and updating add-on libraries (which R calls “packages”). As R is free, it can readily be used in
conjunction with web servers. For a software developer, R’s online help files are somewhat better
organized than those in S-Plus.

1.2 Starting S

1.2.1 UNIX/Linux

For now, we will discuss the use of S interactively. Before you start S, you should have created a
directory where you will keep the data and code related to the particular project. For instance, in
UNIX from an upper level directory, type

mkdir sproject
cd sproject

Next type

mkdir .Data

At this point you may want to set up so that S-Plus does not write to an ever-growing audit file.
The .Audit file accumulates a file of all S-Plus activity across sessions. As this file can become
quite large, you can turn it off by forming a new empty .Audit using touch .Data/.Audit, and
setting the file to be non-writable using chmod -w .Data/.Audit.

Now you’re ready to invoke S-Plus.

http://www.insightful.com
http://www.research.att.com/areas/stat/
http://www.r-project.org
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Splus
S-PLUS : Copyright (c) 1988, 1995 MathSoft, Inc.
S : Copyright AT&T.
Version 3.3 Release 1 for Sun SPARC, SunOS 4.1.x : 1995
Working data will be in .Data
>

If you had not created a .Data (in what follows assume the name is _Data for Windows) directory
under your project area, S-Plus would have done it for you, but it would have placed it under your
home directory instead of the project-specific directory. Creating .Data yourself results in more
efficient management of your data, since (for now) everything will be stored permanently under
.Data.

In Linux/UNIX, R is invoked by issuing the command R at the shell prompt. R data management
is discussed in Section 4.2.

While in S, you have access to all the operating system commands. The command to escape
to the shell is !. So, if you want a list of the files in your .Data directory, including hidden files,
creation date and group ownership, you could type:

> !ls -lag .Data
total 90
drwxr-xr-x 2 cfa staff 1024 Jun 18 10:28 .
drwxr-xr-x 7 cfa staff 1536 Aug 11 1992 ..
-rw-r--r-- 1 cfa staff 85135 Jun 18 10:28 .Audit
-rw-r--r-- 1 cfa staff 132 Feb 14 1992 .First
-rw-r--r-- 1 cfa staff 16 Jun 18 10:10 .Last.value
-rw-r--r-- 1 cfa staff 64 May 5 1992 .Random.seed
-rw-r--r-- 1 cfa staff 229 May 5 1992 freqs
-rw-r--r-- 1 cfa staff 24 May 5 1992 i
-rw-r--r-- 1 cfa staff 520431 Nov 12 1992 impute.dframe

In R, use the system function to issue operating system commands. In either R or S-Plus you can
use the Hmiscsys command.

Notice the file called .First. Its purpose is similar to that of an autoexec.sas, that is, it
executes commands that you want done every time you start S. More on it later. (You could also
have a .Last as well, for things you want S to do when you leave the system). Another way to
execute operating system commands is to type unix("command"). The unix command is used more
frequently in a programming environment.

1.2.2 Windows

Windows users first need to decide whether they want to put all objects created by S-Plus in one
central .Data4 directory or in a project-specific area. The former is OK when you are first learning
the system. Later it’s usually best to put the data into a project-specific directory. That way
the directory stays relatively small, is easier to decide which objects can be deleted when you do
spring cleaning, and you can more quickly back up directories for active projects. Users can manage

4In S-Plus 2000 or earlier on Windows, .Data is Data.
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multiple project .Data directories using the Object Explorer in S-Plus(see Section 4.2.3), but this
method alone does not do away with the need for the Start in or current working directory to be
set so that the File menu will start searching for files with your project area. Defining the Start in
directory also allows S-Plus commands that read and write external files (e.g., source, cat, scan,
read.table) to easily access your project directory and not some hidden area. Note that S-Plus 6
has a menu option for easily changing between project areas.

The existence of the current working directory is what distinguishes S from Microsoft Word or
Excel, applications that can be easily started from isolated files. These applications do not need
to link binary data files with raw data files, program files, GUI preference files, graphics and other
types of objects. Therefore you do not need to create customized Windows shortcuts to invoke
Word, Excel, etc., although Microsoft Office Binder can be used to link related files when the need
arises.

The best way to set up for using Windows S-Plus is to use My Computer or Explorer to create
a shortcut to S-Plus from within your project directory (if you don’t have a project directory you
can create one using My Computer or Explorer). Right click and select New ... Shortcut. Then
Browse to select the file where Splus is stored. This will be under the cmd directory (under something
like splus or splusxx) and will have the regular S-Plus icon next to it. After creating the basic
default short cut, right click on its icon and select Properties. In the Command line: box click
to the right of Splus.exe and add something like S.DATA=.\.Data S CWD=. . In the Start in
box type the full path name of your project directory, e.g. c:\projects\myproject. By specifying
S CWD and S DATA, S-Plus will use a central area such as \splusxx\users\yourname for storing the
Prefs directory. Prefs holds details about the graphical user interface and any changes you may
have made to it such as system options. As Prefs is about 100K in size, this will save disk space
when you have many project, and let settings carry over from one project to another. If you want
a separate Prefs directory in each project area, substitute S PROJ=. for S CWD and S DATA in the
shortcut’s command line.

Creation of the S-Plus shortcut only needs to be done once per project (for S-Plus 6 you may
not need to do it at all). Then to enter S-Plus with everything pointed to my project, click or
double-click on the new S-Plus icon. Depending on how your default Object Explorer is set up
(see Section 4.2.3), once you are inside S-Plus you will sometimes need to tell the Object Explorer
where your .Data area is located so that its objects will actually appear in the explorer. Right mouse
click while in the Object Explorer left pane, and select Filtering. Then click on your .Data area
in the Databases window and click OK.

To quit S, simply type q() from the command line (i.e., after the > prompt), or click on File
→ Exit under Windows. Do not exit by clicking on the X in the upper right corner as this may not
close all of the files properly.

To execute DOS commands while under S-Plus use the dos function or !. Under R use system(),
and under the Hmisc library use sys() on any platform. For example, you can list the contents of
the current working directory by typing !dir. To execute Windows programs, use the win3 function.
The Hmisc library comes with a generic function sys that will issue the command to UNIX or DOS
depending on which system is actually running at the time.

See Chapter 13 for methods of running S in batch mode.
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1.3 Commands vs. GUIs

Windows S-Plus is built around a menu-based point–and–click graphical user interface. This kind of
interface is especially useful for analysts who use S less than once per week as there are no commands
to remember. However, relying solely on the GUI has disadvantages:

1. You can’t do simple computations such as
√

5.

2. You may want to do further calculations on quantities computed by using a menu or dialog
box, but the dialogs are designed to produce only a single result. If for example you want
to compute 2-sided P -values for a series of z-statistics, the distributions dialog box may only
provide 1-tailed probabilities.

3. There are many commands and options that have not been implemented in the GUI.

4. If you produce a complete analysis and then new data are obtained, you will have to re-select
all the menu choices to re-run the analysis5.

It is difficult to decide how to learn S-Plus because of the availability of both the graphical and
the command interface. Because of the richness of the commands, the fact that GUIs are not
available for add-on libraries, and the ability to save and re-use commands when data corrections or
additions are made, we will emphasize the command orientation. To introduce yourself to the GUI
approach, invoke the Visual Demo from the Help menu tab while S-Plus is running, or from the
S-Plus program directory. At first, go through the Data Import, Object Explorer, Creating a
Graph, and Correlations demonstrations. Also read Chapter 2 of the online S-Plus User’s Guide
and go through the Tutorial in Chapter 3. To access built-in example datasets for the tutorial,
press File ... Open and look for the Examples object explorer file (.sbf file) in for example the
\splusxx\cmd directory.

1.4 Basic S Commands

In its simplest form, the S command window serves as a fancy hand calculator. In the examples
below S expressions are entered after the command prompt (>). For Windows S-Plus you must
first open the Commands window by clicking on its icon, which looks like:

>

>x|

Results are displayed following the command line. Results are prefaced with a number in brackets
that indicates the element number of the first numeric result in each line. As the following commands
produce single numbers, these element numbers are not useful. Later we will see that when a long
series of results spanning several lines is produced, these counters are useful placeholders. Also note
that comments (prefaced with #) appear below.

> 1+1

[1] 2

5It is possible to save the commands produced by the dialogs and re-run these, but not all commands will run
properly in non-interactive mode, and the automatically generated commands are verbose.
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> 1+2*3+10 # note multiplication done before addition

[1] 17

> sqrt(16)

[1] 4

> 1+2^3 # note exponentiation (2 to the 3rd power) done first

[1] 9

> 1+2^3*7 # exponentiation done first, addition last

[1] 57

> 2*(3+4)

[1] 14

> 2*(3+4)^2

[1] 98

> x ← 4 # store 4 in variable x

> sqrt(x)-3/2

[1] 0.5

Even though S is useful for temporary calculations such as those above, it is more useful for operating
on variables, datasets, and other objects using higher-level functions for plotting, regression analysis,
etc.

The following series of S commands demonstrate a complete session in which data are defined, a
new variable is derived, two variables are displayed in a scatterplot, two variables are summarized
using the three quartiles, and a correlation coefficient is used to quantify the strength of relationship
between two variables.

> # Define a small dataset using commands rather than the usual

> # method of reading an external file

> Age <- c( 6, 5, 4, 8, 10, 5)

> height <- c(42, 39, 36, 47, 51, 37)

> Height <- height*2.54 # convert from in. to cm.

> options(digits=4) # don’t show so many decimal places

> Height # prints Height values

[1] 106.68 99.06 91.44 119.38 129.54 93.98

> plot(Age, Height)

> quantile(Age, c(.25,.5,.75))

25% 50% 75%

5 5.5 7.5

> quantile(Height, c(.25, .5, .75)) # also try summary(Height)

25% 50% 75%

95.25 102.9 116.2

> cor(Age, Height)

[1] 0.9884

> cor.test(Age,Height)

Pearson’s product-moment correlation

data: Age and Height

t = 13.03, df = 4, p-value = 0.0002

alternative hypothesis: true coef is not equal to 0

sample estimates:

cor
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0.9884

1.5 Methods for Entering and Saving S Commands

Once can choose from many approaches for developing S code, entering code interactively, and saving
code that runs successfully. A few of these are as follows.

1. You can enter commands to S one at a time, directly at the command prompt. Command
recall and editing (using ↑ and ↓ keys and within-line editing through the use of the Home and
End keys on Windows, for example) can be of great help in correcting statements. Typing
Enter while the cursor is anywhere inside the command will cause that line to be executed.

2. Commands can be written in an editor window (Notepad, Emacs, Xemacs, Word, Xedit, PFE,
WinEdt, UltraEdit, NoteTab, etc.) and then you can highlight/copy/paste desired commands
into the S command window. You can also save the file every time you edit it, and bring it
into S using the source command. You can save typing by doing something like:

k ← ’c:/mydir/myprog.s’

source(k) # input code to S-Plus

# Move to edit window and save

source(k) # redefine code to S-Plus

# Or use Hmisc’s src function:

src(myprog) # note absence of quotes and of .s

# Move to edit window and save

src() # redefines myprog.s to S-Plus

# file name remembered by src

See Section 1.5.1 for details on file name specification.

3. You can run the Emacs or Xemacs ESS package with its own interactive S window (especially
in Linux/UNIX) to edit the code in an Emacs window and easily execute parts of the code.

4. After entering commands interactively, selected commands (and possibly their output) can be
highlighted in the S command window and pasted into an editor window.

5. After entering commands interactively, the S History log can be copied to a file.

6. If your code is contained in an S function, you can have S edit the function.

myfunction ← edit(myfunction)

You may want to override the default editor, using options(editor = ’editorname’). 6Under
Windows you can also specify the editor using Options ... General Settings ... Computations.
You can also use the edit function to edit objects. This is especially handy for character

6For Windows Emacs you would use for example options(editor=’gnuclientw’). This will cause the Emacs
server (assuming Emacs had already been invoked before running the edit command) to open a new buffer containing
the character representation of the object being edited, but to not return control to S until the buffer has been closed
using for example Ctrl x #.



10 CHAPTER 1. INTRODUCTION

strings. In the following example, the levels of a categorical variable are changed interac-
tively:

levels(disease) ← edit(levels(disease))

A major problem with the use of edit is that if a function contains syntax errors you will lose
any changes made.

7. The fix function is an easier to use version of edit for editing functions and other objects:

fix(myfunction) # assigns result to myfunction

fix() # edit myfunction again - also allows

# editing of file used in previous invocation

# of fix when file contained syntax errors

When first learning S, method 1 is very expeditious. After learning S, method 2 has some advantages.
One of these is that multiple-line commands that are not part of functions can easily be re-executed
as needed. Windows S-Plus has a builtin script editor which includes a facility for syntax checking
code before it is submitted for execution. It also provides for easy submission of selected statements
for execution after they are highlighted in the script editor.

One of the advantages of saving all the S code in a file is that the program can be run again in
batch mode if the data or some of the initial commands change.

For managing analysis projects we have found it advantageous to have a “History” file in each
project directory, where key results and decisions are noted chronologically. The History file can be
constructed by copying and pasting from a batch output listing file or from the command window
if using S-Plus interactively. Other options for saving pieces of output include the sink function
described in Section 3.5.4, and running the program in batch mode as described in Section 13.1.

As alluded to above, Windows S-Plus has a new option for entering and editing code and saving
results. You can open an existing “script” file (suffix .scr) by clicking on File : Open... or
start a new one by clicking on File : New. You can submit code for execution using the F10
key. If you highlight code, F10 will cause only the highlighted code to be executed. Otherwise,
the entire program will be executed. You can also highlight a function name (if it is a built-in
function), right click, and select Help to see that function’s documentation. By default, results will
be displayed in a lower part of the window showing your code. You may want to drag the horizontal
bar separating the program from its output to allow more space for the output window. You can
control where results are outputted by clicking on Options then Text output routing. One place
to store output is a Report window, which can be saved to a file in rich text format (rtf). Unlike
the lower half of the script program window, the report window has a scroll bar that makes it easy to
show analyses done much earlier. After clicking on Options : Text output routing : Report
click on Window Tile Vertical to see the report window alongside the program window. Another
advantage of the report window is that you can copy from the graph sheet into the report.

If you want to store a program you’ve edited in the script program window click on File :
Save or File : Save As. If you do use a suffix in the file name box, the suffix will be .scr. If
you name a suffix such as .s, that suffix will be used instead. If you like .s to denote S programs
as many users do, you will have to click on File : Open then select All Files to view non–.scr
files.
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In S-Plus for Windows, the Script editor does bracket, brace, and parenthesis matching and
context-sensitive indenting. By default, it will also type the matching right brace when you type a
left brace.

Those who want commands executed immediately (without hitting F10) should open a command
window. The output from commands can be interspersed with the commands or they can be directed
to a report window.

1.5.1 Specifying System File Names in S

In UNIX, directory levels are separated using / both at the system prompt as well as inside S. In
Windows, file names use \ outside of S (e.g., when defining shortcuts or in pop-up windows from
the S-Plus File ... menu). Inside Windows S you must use \\ inside quoted file names. You can
also use / (single slash), as S is kind enough to translate / to \\. \\ is used instead of \ because
inside a quoted character string \ is considered an “escape” character that modifies the meaning of
another character. For example, the character string ’\n’ is a newline character.

1.6 Differences Between S and SAS

Four of the most important distinctions between S and SAS are (1) the S language was designed to
be extendable; (2) it is very easy for users to write their own S functions; (3) SAS graphics require
a large amount of programming, are non-interactive, are inflexible, and have poor appearance; and
(4) SAS is much more efficient than S for analyzing very large databases. On (1), S makes it very
easy for users to add to the basic S language. For example, they can add new operators and new
data attributes such as comment attributes for variables or data frames and flags to mark that some
values are imputed.

Regarding (2), when SAS first began to be widely used around 1969, it was very easy for users to
write their own procedures in Fortran. They could easily define the notation to be used for their new
PROC statement, and read SAS datasets using Fortran. Many users wrote SAS procedures, including
Harrell’s PROCs PHGLM and LOGIST, which gave SAS the capability to fit logistic and Cox regression
models in 1978 and 1979, respectively. In the late 1980’s, SAS converted to a new mode for writing
procedures, first in PL/I then in C. The interface became much more difficult to program, and in
fact SAS started selling the interface as a separate product (the SAS Toolkit). So not only did all
old SAS procedures written by users all over the U.S. become obsolete, but users had great difficulty
in writing add-on procedures. On the other hand, the most basic S language texts tell you how
to write your own functions, in the same language that S and S developers use. Within your own
functions you can also call Fortran or C subroutines extremely easily. As a result, modern statistical
methods are available in S long before they become available in SAS if at all.

In terms of ease of learning, anecdotal reports indicate that S is easier to learn than SAS for
users who don’t already know SAS. For previous SAS users, the vector and interactive programming
orientation of S may take a bit of getting used to.

The following table compares SAS with S in several areas.
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Table 1.1: Comparisons of SAS and S

Feature SAS S

Numeric value
storage

Floating point, 3-8 bytes
Integer, float single, float double (4,
4, 8 bytes)

Character value
storage

1-200 bytes, fixed length (although
dataset may be compressed)

no limit, variable length

Variable names

Up to 8 letters (31 for Version
8), case-insensitive (case-sensitive
for V8), special character possible:

Any length, case-sensitive, special
character possible: .

Variable labels Up to 40 letters (256 for V8) Any length, user-defined attribute

Value labels
Created by PROC FORMAT, stored
separate from data

Intrinsic attribute stored with data
in factor variables

Standard missing
values

., check using x=. NA, check using is.na(x)

Special missing
values

Values .A,...,.Z, part of standard
language

User-added attributes created auto-
matically by sas.get function

Missing val-
ues in logical
expressions

Treated as the smallest number, log-
ical expression will never result in
missing

Uses correct rules, e.g., T | NA is T,
F | NA is NA, NA < 50 is NA
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Feature SAS S

User-defined
attributes

Not possible

Added at will. Examples:
comment(x) ← ’Variable was

corrected 4/1/97’

is.imputed(x), partial dates,
name of image file containing page
of data form where variable was
entered

Processing of Ob-
servations

Record by record As vectors or matrices

Dataset format dataset = rectangular table
data frame = list of vectors and ma-
trices; can attach attributes to data
frame

By-processing
Run PROC SORT then use BY state-
ment on PROC to group analysis

Execute functions in a loop, for dif-
ferent subsets (subscripts) of obser-
vations, or use tapply or related
functions

Post-processing of
analysis output

Some printed output not available
in procedure output datasets (Out-
put Delivery System does help).
Hard for user to derive secondary
estimates/simulate/bootstrap.

All calculated values are stored in
objects created by functions. Easy
to compute other estimates or feed
output to bootstrap procedure.

Handling huge
datasets (e.g.,
100,000 obser-
vations on 50
variables)

Limited only by disk space
Limited by memory. Will be very
slow if data must be stored in virtual
memory that is swapped to disk.
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Feature SAS S

Speed Linear in dataset size
Faster for small-moderate datasets;
slower for large ones if use virtual
RAM

Merging General, efficient General, slower

Inputting Raw
Data

Flexible, reads non-standard data
formats

Flexible for ASCII files

Processing steps
Separate DATA and PROC steps exe-
cuted in batch mode

Line-by-line interactive, can mix
data generation and analysis steps

User-written pro-
cedures

Computational modules can be
written using a separate procedure
(IML). Can not mix standard PROCs
using this mode.
Symbolic macro language can mix
PROC,DATA steps. Macro language
is harder to write and is not “live”.
PROCs are very difficult to write, and
users cannot add online help files for
them.

User writes functions using stan-
dard S language. No symbolic
macros are needed. Commands are
“live”, i.e., can sense data values
and attributes at time of execution.
For example, the describe function
has a statement like the following
to give output appropriate to the
type of input variable:
if(is.category(x) |
length(unique(x)) < 20)

table(x) else quantile(x).
Easy to call C or Fortran routines
from S functions.
User-written online help looks
builtin.

Vector and matrix
operations

Available while running PROC IML Intrinsic part of language
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Feature SAS S

System Source
Code

Not available

Visible for most functions by typ-
ing function name. Can learn from,
adopt, modify, correct system func-
tions.

Graphics
non-interactive, difficult to pro-
gram, restrictive, ugly

interactive and batch, best statisti-
cal graphics available

Handling of cate-
gorical variables
in regression
models

Some procedures allow CLASS state-
ment and generate dummy vari-
ables; many do not.

Dummies always automatically gen-
erated

Nonlinear effects
in models

One or two procedures will generate
quadratic terms; most require user
to code nonlinear component vari-
ables.

All models allow general transfor-
mations of predictors directly in the
model formula

Interaction effects

Few PROCs will generate these; users
must code products (in DATA step)
and test them manually

Automatic

Tests of nonlin-
earity and pooled
interaction effects

Must be done manually
Automatic when using the Design li-
brary

Plot how each
predictor is
represented in
model

Must create auxilliary datasets and
program

Single statement using Design
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Feature SAS S

Robust covari-
ance estimation
for fitted models

Macros for “sandwich” estimator
available for certain models

“Sandwich” or bootstrap, with clus-
ter sampling adjustment, available
using a single statement with Design

Model validation Not available Single statement using Design

Computing
Predicted Values

Must create dataset containing pre-
dictor settings, add to original
dataset, and re-run model fit

If saved result of fitting function
(“fit object”) can obtain predictions
for any desired predictor settings us-
ing predict(fit,...) or using the
Design library’s Function function

Graphical sum-
mary of model

Not available
Effect plots and nomograms with
Design

Missing value im-
putation

PROC MI for linear imputations mod-
els with normal distributions

General method using Hmisc’s
aregImpute and impute functions

Bayesian infer-
ence

Not available BUGS package interfaces with S

Mixed models

PROC MIXED for linear models has
nice features for Gaussian, binary,
Poisson responses

A few models are available, includ-
ing nonlinear mixed models; compu-
tational properties not as good as
PROC MIXED.
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Feature SAS S

Penalized maxi-
mum likelihood
estimation

Ridge regression for linear Gaussian
models

More general penalized MLE for lin-
ear Gaussian model and binary and
ordinal logistic models, with differ-
ential penalization by type of term
in model

Penalized estima-
tion with variable
selection

Not available lasso function in Statlib

Tree models
(CART)

Not available except in Enterprise
Miner

rpart function and graphical repre-
sentation

Generalized addi-
tive models

Recently available Builtin

Nonparametric
smoothing

Extremely slow PROC IML macro;
new features for V8

Builtin, variety of smoothers



18 CHAPTER 1. INTRODUCTION

The following table lists SAS procedures and corresponding S functions. In this table, ols,lrm,psm,bj,

Table 1.2: SAS Procedures and Corresponding S Functions

SAS Procedures S Functions
ANOVA aov
REG,GLM lm,glm,ols,bj,manova
LOGISTIC glm,lrm
LIFEREG survreg,psm,bj
LIFETEST surv.diff,survfit,cph
PHREG coxph,cph
FREQ table,crosstabs,summary.formula

mantelhaen.test,fisher.test,chisq.test
TABULATE summary.formula
MEANS,SUMMARY,UNIVARIATE mean,var,quantile,summary,describe
CORR corr,rcorr
VARCLUS varclus
PRINQUAL transcan
BY statement tapply,by,aggregate,split,summary.formula,

summarize,for

and cph are from the Design library, and summary.formula, summarize, rcorr, describe, varclus,
and transcan are from the Hmisc library. Other functions are built-in.

1.7 A Comparison of UNIX/Linux and Windows for Run-
ning S

The UNIX/Linux operating system is a better environment for software developers because of the
wide variety of tools available7. UNIX/Linux is also a good choice if you are processing large
databases, as it is cost-effective to have a “compute server” on your UNIX/Linux network that can
be used by many users for large applications8. Having used both UNIX and Windows extensively,
we feel that UNIX (and hence Linux) is a more efficient and reliable environment for every day S
users, as UNIX window navigation is more efficient than Windows. Windows users tend to spend
too much time navigating menus and Windows operates significantly slower than Linux because of
the design and massive size of Windows operating systems. However, the greatest advantage of
UNIX is probably that a nice system administrator would have already installed the tools you need,
including Emacs, Ghostview, LATEX, and a variety of print utilities. Many versions of Linux come
with all of these tools automatically. But Windows has a few advantages also: (1) ease of installing
add-on S-Plus and R libraries; (2) faster online help for S-Plus; (3) outputting graphs in Windows

7Windows users can not-so-easily install versions (e.g., GNU) of many of the UNIX tools, such as a bash shell
command window.

8You can also program a UNIX system to compress large databases that haven’t been read in a week. That way
your disks will not fill up nearly as quickly.
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metafile and other formats for easy inclusion and editing using Microsoft PowerPoint or Word9;
and (4) only the Windows version of S-Plus has menus for doing standard analyses and graphics.
S-Plus 6 is available for UNIX, Linux, and Windows. This has resulted in a partial convergence of
Linux/UNIX and Windows S-Plus, with a more or less a common graphical user interface10.

See http://biostat.mc.vanderbilt.edu/s/howto/linux.setup.html for more information
on setting up a Linux system and installing software of interest to data analysts.

1.8 System Requirements

For UNIX/Linux a minimum amount of RAM is 64MB. For PCs, 128MB is minimal. If you will be
analyzing large databases (roughly speaking, > 40000 observations), you may need at least 256MB of
RAM. For analyzing very large databases (say > 100000 observations), more than 256MB of RAM
will usually be needed. Windows 2000 and XP use memory much more inefficiently than earlier
versions of Windows, so add more RAM accordingly. RAM is cheap, so it’s best to order your PC
with 256MB. If you have only occasional need for more than 256MB of RAM, you may want to
endure the slowness of virtual memory for those applications.

A minimum PC CPU for running Windows S-Plus is a 400 MHz Pentium. R requires less
memory to run than S-Plus.

1.9 Some Useful System Tools

There are several system tools that can greatly assist the S user. UNIX users usually have an
advantage in that their system administrator would have already installed most of the tools, and
many linux packages come with all of the important tools pre-installed. For Windows users, Web
addresses for obtaining the software are provided. biostat.mc.vanderbilt.edu/EmacsLaTeXTools
has a large amount of information on obtaining an installing Emacs, LATEX, and related programs.

Emacs editor: Emacs is an incredibly powerful editor for editing text files of various types. Emacs
is especially powerful for editing S code, as it has a special mode which highlights different
kinds of S statements in different colors or fonts and it does indentation according to the level
of nesting. It also makes it easy to check for matching parentheses, brackets, and braces.
Emacs for Windows (all 32MB of it when uncompressed!) is available from ftp://ftp.gnu.org/-
gnu/windows/emacs/latest. Harrell’s version of the Emacs startup file (.emacs) is available
from the Utilities area of the UVa Web page This .emacs file has several useful default
settings for how Emacs operates. S-mode for Emacs using the ESS Emacs package may be
obtained from http://software.biostat.washington.edu/statsoft/ess. S-mode can also
run S-Plus or R itself, allowing for such capabilities as object name completion in the editing
window if you enter the first few letters of an object’s name. This mode is known to work well
under UNIX/Linux.

9Windows S-Plus can output graphics directly into Powerpoint Presentation format as well as Adobe Acrobat
.pdf files (see below), and R can make .pdf files. Note however that using Windows metafiles to include graphics
into Microsoft Office applications frequently does not preserve all aspects of the graphics. Postscript is still the most
reliable graphics format.

10This version is based on the version 4 engine of the S language, which will require some functions to be modified
unfortunately. All modifications have been made in Harrell’s libraries.

http://biostat.mc.vanderbilt.edu/s/howto/linux.setup.html
http://biostat.mc.vanderbilt.edu/s/howto/linux.setup.html
http://biostat.mc.vanderbilt.edu/s/howto/linux.setup.html
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
biostat.mc.vanderbilt.edu/EmacsLaTeXTools
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
ftp://ftp.gnu.org/gnu/windows/emacs/latest
ftp://ftp.gnu.org/gnu/windows/emacs/latest
http://software.biostat.washington.edu
http://software.biostat.washington.edu/statsoft/ess
http://software.biostat.washington.edu
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Windows users may find that Xemacs is a bit more user-friendly, and Xemacs has a menu
for automatically downloading and installing packages such as ESS. Like Emacs, Xemacs can
be automatically installed when you install Linux. Windows users may obtain Xemacs from
www.xemacs.org.

Ghostview: This is a previewer for postscript graphics and documents. It is available for Win-
dows from http://www.cs.wisc.edu/∼ghost/. Ghostview comes with Ghostscript, which
can convert postscript files to .pdf files (but not as efficiently as Adobe Acrobat) among other
things.

LATEX: This system is excellent for composing technical documents and advanced tables. It is the
typesetting system used to make this document, and it is used by many book publishers. An
excellent commercial version of LATEX for Windows can be obtained by contacting Personal TEX
Inc. at texsales@pctex.com or http://www.pctex.com. If you want to be able to produce
electronic documents (e.g., .pdf files) with hyperlinks, the full TEX package from Y&Y Inc.
is recommended. See www.YandY.com. Perhaps the best versions of LATEX for Windows are
free versions, FPTEX by Fabrice Popineau and MikTEX, both available at http://www.ctan.-
org. FPTEX’s DVI previewer allows postscript graphics to be displayed, assuming you have
installed Ghostscript. Several tools for creating .pdf files are also included in FPTEX. See
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf for a nice free book for learning
LATEX.

Adobe Acrobat Reader: Available from www.adobe.com, this free program nicely displays .pdf
files. You can create these graphics files directly in Windows S-Plus using the pdf.graph
device function. Occasionally this will get around printer memory problems when printing
complex graphs, and a few graphs can only be faithfully printed in Windows this way.

Metafile Companion: This program, for which a free trial version is available from www.-
companionsoftware.com, allows you to edit Windows metafiles, a graphics format you can
produce either with the dev.print function in S 3.2+ or using the File ... Export Graph
dialog. Metafile Companion is one of the nicest graphics editors available anywhere. It allows
you to edit any detail of the graph.

Mayura Draw: This shareware program is a nice scientific drawing program. It can take as
input an Adobe Illustrator file, which can be converted by Ghostscript from a postscript file.
Using that combination of programs gives you the ability to nicely edit postscript graphs. See
www.mayura.com for information about Mayura Draw.

graphviz: This is an amazing command language from AT&T for drawing complex tree diagrams.
Linux, UNIX, and Windows versions are available from http://www.graphviz.org

Xmouse: You can make a Windows 95 mouse work like a mouse in UNIX X-windows by in-
stalling Microsoft’s PCToys package and running its Xmouse program. That way when you
move the mouse from an editor window to the S command window you do not need to click
the left mouse button to make the S window have the mouse’s focus. This really helps in
copying text from the editor to S. Also, if you had to click the left mouse button, the editor
window would usually disappear. For Windows 95, obtain Xmouse from the Powertoys pack-
age at www.microsoft.com/windows95/downloads/contents/wutoys/w95pwrtoysset. For

http://www.xemacs.org
www.xemacs.org
http://www.xemacs.org
http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/
http://www.pctex.com
http://www.YandY.com
http://www.ctan.org
http://www.ctan.org
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
http://www.adobe.com
http://www.companionsoftware.com
http://www.companionsoftware.com
http://www.mayura.com
http://www.graphviz.org
http://www.graphviz.org
http://www.graphviz.org
http://www.microsoft.com/windows95/downloads/contents/wutoys/w95pwrtoysset
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Windows 98, this functionality is in the tweakUI package that is an optionally installed com-
ponent of the Win 98 installation disk. With Windows 98 tweakUI you can also specify an
option to have the “currently focused on window” automatically move to the top.

UltraEdit: Users who want a powerful programmer’s editor that is not as comprehensive (or as
large) as Emacs may want to consider buying UltraEdit (www.idmcomp.com).

WinEdt: Next to Emacs this is probably the best editor for Windows/NT users, especially when
used in conjunction with LATEX. Trial and licensed copies may be ordered from www.winedt.-
com.

NoteTab: This is a nice editor for Windows that has a flexible macro language for making the ed-
itor language-sensitive and allowing submission of code to an open window (using ctrl-space
(repeat last macro)). A free version is available from www.notetab.com. Dieter Menne
(<dieter.menne@menne-biomed.de>) wrote the following macros for using NoteTab with R.

^!FocusDoc
;Save the file if it has been modified
;^!Save
;Select the highlighted block.
^!If ^$GetSelSize$ = 0 END ELSE SelectLines

:SelectLines
:GetSelection
^!Set %AnyText%=^$GetSelection$
;Write the selected text to a temporary file in the Windows temp. dir.
^!Set %fileName%=^$GetTmpPath$std0001.r
^!Set %fileName%=^$StrReplace(\;/;^%fileName%;True;False)$

^!TextToFile ^%fileName% ^%AnyText%
; Copy "source" to the clipboard
^!SetClipboard source("^%fileName%")
; Switch to R
^!FocusApp RGui*
;ESC to clear the Command window, paste the command, hit enter
^!Keyboard ESC
^!Keyboard CTRL+V
^!Keyboard ENTER

Dieter also wrote the following reg-file to start R from Windows Explorer .

REGEDIT4

[HKEY_CLASSES_ROOT\Directory\shell\Run R]

http://www.idmcomp.com
http://www.winedt.com
http://www.winedt.com
http://www.notetab.com


22 CHAPTER 1. INTRODUCTION

[HKEY_CLASSES_ROOT\Directory\shell\Run R\command]
@="\"C:\\Program Files\\R\\rw1050\\bin\\Rgui.exe\" --internet2"

TeXmacs: This is a WYSIWYG front-end to LATEX for Linux and UNIX users that gives you a full
equation editor. It is available from www.math.u-psud.fr/∼anh/TeXmacs/TeXmacs.html.

PFE: A nice small and free programmers editor is PFE which may be downloaded from http://www.-
lancs.ac.uk/people/cpaap/pfe/. PFE is an excellent replacement for NOTEPAD even if
you just use it for viewing files. If PFE is already open and you invoke it on another file,
it will add the new file to the list of files it is currently managing. Emacs can do this using
its GNUCLIENT feature. To use PFE as your default editor, you can issue the S command
options(editor=’c:/pfe/pfe32’) if pfe32.exe is stored on the c:\pfe directory, or enter
the Options ... General Settings ... Computations dialog.

Microsoft Word Damien Jolley (djolley@ariel.ucs.unimelb.EDU.AU) wrote a Microsoft Word
macro that allows one to execute send highlighted code to S for execution. His macro definition
follows.

Sub MAIN
If SelType() <> 2 Then EditSelectAll
’Select all if none current
EditCopy
SendKeys "%w1+{insert}{enter}^{F6}"
AppActivate "S-PLUS for Windows"
End Sub

A Word 97 version of the macro follows.

Public Sub MAIN()
If WordBasic.SelType() <> 2 Then WordBasic.EditSelectAll
’Select all if none current
WordBasic.EditCopy
WordBasic.SendKeys "%w1+{insert}{enter}^{F6}"
WordBasic.AppActivate "S-PLUS for Windows"
End Sub

To quote from Damien: “I have this stored as a macro which I can execute from a user-defined
button on the Toolbar. So, when I’m ready to test my bit of code, I just click the button,
and Windows switches over to S-Plus, copies the code into the S-Plus command buffer and
execution takes place immediately. I use ALT-TAB to return to Word either to fiddle with
the code or to save it to a text file”. To enter the macro, record and then edit a macro. You
start the recorder and enter a random command, then stop the recorder and give the macro a
name. Then edit it to make the real macro.

John Miyamoto jmiyamot@u.washington.edu has a series of Word 6 macros for interfac-
ing with S-Plus. These macros are available from the Utilities area under Statistical
Computing Tools on the UVa Web page.

http://www.math.u-psud.fr/~anh/TeXmacs/TeXmacs.html
http://www.lancs.ac.uk/people/cpaap/pfe/
http://www.lancs.ac.uk/people/cpaap/pfe/
mailto:djolley@ariel.ucs.unimelb.EDU.AU
mailto:jmiyamot@u.washington.edu
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JED This is a nice small version of Emacs available from John Davis at
http://space.mit.edu/∼davis/jed.html.

http://space.mit.edu/~davis/jed.html
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Chapter 2

Objects, Getting Help, Functions,
Attributes, and Libraries

2.1 Objects

In SAS, one has several concepts which refer to different types and characteristics of data, like data
files, data views, data catalogs, format catalogs, libraries, etc. You get results from these data by
using a PROC step. S has different entities representing data such as vectors, factors, matrices,
data frames, lists, etc. These entities have different characteristics called attributes such as names,
class, dim, dimnames etc., and we get results by applying functions to them. In general, any
entity in S is designated by the general name of an object.

The names of objects in S can be of any length, and can contain digits, mixtures of lower and
upper case letters, and periods. Names may not contain underscores and may not start with a digit.
In some cases you will want the names to be very descriptive (e.g., age.years) but in other cases
it’s best to use a short name (e.g., age) and then to assign a longer label as an attribute 1.

Names in S are case–sensitive, so that vectors age and Age would refer to two different objects.
This can be handy for distinguishing between various versions of the same basic information. For
example, age might refer to the original age variable whereas Age might refer to age values after
certain data corrections or missing value imputations.

2.2 Getting Help

Suppose we want to get help on a function, and see if it has any options that we may want to use.
There are several ways to do this. A very simple one is to type ?mean (or whatever the name of the

1This can be done using the label function which is in the Hmisc library described below, e.g., label(age) ← ’Age

in years’. When using the sas.get function to convert SAS datasets to S data frames, SAS labels are automatically
carried to S in this fashion.

25
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function is). Equivalently, we could type help(mean). In the case that the function contains special
characters, its name should be enclosed in quotation marks, thus help("%*%") means help for the
matrix-product function.

>?mean

Mean Value (Arithmetic Average)

DESCRIPTION:

Returns a number which is the mean of the data. A frac-

tion to be trimmed from each end of the ordered data can

be specified.

USAGE:

mean(x, trim=0, na.rm=F)

REQUIRED ARGUMENTS:

x: numeric object. Missing values (NAs) are allowed.

OPTIONAL ARGUMENTS:

trim: fraction (between 0 and .5, inclusive) of values to be

trimmed from each end of the ordered data. If trim=.5,

the result is the median.

na.rm: logical flag: should missing values be removed before

computation?

VALUE:

(trimmed) mean of x.

DETAILS:

If x contains any NAs, the result will be NA unless

na.rm=TRUE. If trim is nonzero, the computation is per-

formed to single precision accuracy.

When you use either of these two forms of help, the system looks for a file in some directory and
then displays the help file. This means that a window will pop up with options to print the help
file, search for character strings, etc.2 If you are running on a UNIX workstation, you may want
to initiate the interactive help system. Type help.start() and a window listing all functions and
categories of functions will appear. Just click on the one you want help about, and a new window
will pop-up with help specifically on that function. You can then look at it, close it to keep it around
or send it to the printer. With this method you can also type something like regres* in the topic
field of the help window, to get a list of all functions which start with ‘regres’. The disadvantage is
that this is slower. To quit the window type help.off().

A third way, if you don’t want full help but to just be reminded of what the arguments to the
function are, is to use the args function built in to S.

2Under UNIX X–Windows it is beneficial to use e.g. options(pager=’xless’) to use a full–screen pop–up window
instead of the system default in which the less command is run inside of the S command window.
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> args(mean)

function(x, trim = 0, na.rm = F)

The function has three arguments, x for the vector of which we want the mean, trim= if we
want trimmed means, na.rm=, to remove missing values. The defaults are trim=0 and na.rm=F.
Here T is the logical true value, so we interpret na.rm=T as saying that the na.rm argument
is turned “on.” If you name the arguments, they can be given in any position. For example
mean(x,na.rm=F,trim=.5). See Section 2.3 for more about functions and arguments.

You can also use names(functionname) to list the arguments, or
functionname$argumentname to list the default argument value. A quick way to get an alphabetic
listing of a function’s arguments is to type
sort(names(function.name)). Note that there is an extra element with a blank name that should
be ignored.

> sort(names(mean))

[1] "" "na.rm" "trim" "x"

The object orientation of S can make it difficult to know the full name of the function you are really
using. For example, if you need help in plotting a logistic regression fit using the Design library,
you may not know that the pertinent plot function is plot.Design. You can get a list of all of the
plot methods by typing methods(plot). You can get a list of all of the methods for handling the
fit object by typing methods(class=class(f)) if the fit object is f.

If you are having troubles understanding what the function does or how it is doing things, you
can always look at the function itself.

> mean

function(x, trim = 0, na.rm = F)

{
if(na.rm)

x <- x[!is.na(x)]

else if(any(is.na(x)))

return(NA)

if(mode(x) == "complex") {
if(trim > 0)

stop("trimming not allowed for complex data")

return(sum(x)/length(x))

}
x <- as.double(x)

if(trim > 0) {
if(trim >= 0.5)

return(median(x))

n <- length(x)

i1 <- floor(trim * n) + 1

i2 <- n - i1 + 1

x <- sort(x, unique(c(i1, i2)))[i1:i2]

}
sum(x)/length(x)

}

Yet another possibility is to look at the help files without even starting S-Plus. You may find yourself
in this situation if you are running a job in batch mode and want to find out why it didn’t work.
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In UNIX it’s easy to define shell programs to facilitate this, as well as to list help files associated
with keywords. Under Windows, you can use Explorer or My Computer to click on a .hlp file in
the main S-Plus area or in an add–on library area (see below).

Last, but not least, consult the back of the blue book or the S-Plus User’s manual. The help
here is exactly the same as the on-line help but not all functions are listed. In S-Plus Version 4.x
and later the manuals are online with some search capability.

The following is a list of major help topics for S-Plus as it is distributed from MathSoft. This
list will help in understanding the components of the system as well as how you can find a function
when you don’t know its name. In Windows you could click on any of these topics to see all functions
related to that topic. In UNIX you use the help.start() command to put up the list of topics.

Add to Existing Plot
All Datasets
ANOVA Models
Categorical Data
Character Data Operations
Clustering
Complex Numbers
Computations Related to Plotting
Customizable Dialog functions
Customizable Menu functions
Data Attributes
Data Directories
Data Manipulation
Data Types
Dates Objects
Demo Library
Demonstration of S-PLUS
Deprecated Functions
Documentation
Dynamic Graphics
Error Handling
Graphical Devices
High-Level Plots
Input/Output–Files
Interacting with Plots
Interfaces to Other Languages
Library of Chapter 11 Functions from The New S Language
Library of Chronological Functions
Library of Drawing Functions from Programmer’s Manual
Library of Examples from Programmer’s Manual
Library of Examples from The New S Language
Linear Algebra
Lists
Loess Objects
Logical Operators
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Looping and Iteration
Mathematical Operations
Matrices and Arrays
Methods and Generic Functions
Miscellaneous
Multivariate Techniques
Non-linear Regression
Nonparametric Statistics
Optimization
Ordinary Differential Equations
Printing
Probability Distributions and Random Numbers
Programming
Quality Control
Regression
Regression and Classification Trees
RELEASE NOTES
Robust/Resistant Techniques
Smoothing Operations
S-PLUS Session Environment
Statistical Inference
Statistical Models
Survival Analysis
Time Series
Trellis Displays Library
Utilities

2.3 Functions

You are starting to see that unless you are using the pull–down menu system in S-Plus, almost
everything is done by calling functions3. A function is an object in S and in many ways it can be
operated on as data. Most functions have arguments that pass values to the function for it to work
on or to specify detailed options on how it should do its work. It is common for example to pass
a vector of data (representing a single variable) to a function along with scalars or other shorter
vectors specifying options such as confidence levels, quantiles, plotting and printing options, etc.

Arguments are given to the function either by name or by their sequential position in the series
of arguments. It is very common to specify a “major” argument without its name, in position one,
then to specify “minor” arguments by name. This is because there are so many “minor” arguments
and it is hard (and risky) to try to remember their order. For example, we can compute the mean
age using the command mean(age, na.rm=T), which means to compute the mean of the age vector
ignoring missing values. We could use the equivalent statement mean(age, , T), i.e., we can assign
the logical “true” value (T) to the third argument to mean, which we can see from mean’s help file
is the na.rm argument. The extra comma is a placeholder to specify that we are not specifying the

3Menu choices are actually executed by secretly calling functions.
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second argument which is trim. trim will receive its default value of zero. As mentioned above,
this is a dangerous method so we prefer mean(age, na.rm=T).

When we examined the help file for the mean function we saw na.rm=F in the list of arguments.
This means that the default value for na.rm is F, so that na.rm will be assumed to be F if you do
not specify this argument. Default values can also be vectors, lists, matrices, and other objects as
the need arises. Often you will see that the default for an argument is a vector of values when the
argument really needs to be a scalar. In these cases, the vector of values frequently specifies the

list of possible values of the argument, with the default value listed first. For example, look at the
argument list for the residuals.lm function:

> args(residuals.lm)

function(object, type = c("working", "pearson", "deviance"))

Here the type argument can take on three possibilities. If you do not specify type, ’working’
residuals will be computed.

2.4 Vectors

A statement to create a vector interactively could be something like this

> x ← c(3.1,2.6,3.4,5.9,7.6)

In creating x we used two S operators, the assignment statement “←” which is read “x gets ...”
and the concatenation function c(). A synonym for ← is the underscore sign (_). Of course the
assignment could have been written in a reversed way,

> c(3.1,2.6,3.4,5.9,7.6) → x or

> c(3.1,2.6,3.4,5.9,7.6) _ x

Two or more assignments could be made on the same line if separated by a semicolon. A line
could also be split among two or more lines. Just hit return at the end of your line and you will
get a continuation prompt "+" at the beginning of the next line, then continue typing. You can
concatenate two or more existing vectors and include other data as an argument to the c() function.

> y ← 10.6:2.3;z ← c(x,c(1,2,3),y

+ y^2)

Syntax error: name ("y") used illegally at this point:

z ← c(x,c(1,2,3),y

y

Here, we forgot the comma after y on the first line.

> y ← 10.6:2.3;z ← c(x,c(1,2,3),y,

+ y^2,y+1)

If we want to see what’s stored in the vectors y and z just type their names

> y

[1] 10.6 9.6 8.6 7.6 6.6 5.6 4.6 3.6 2.6

> z
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[1] 3.10 2.60 3.40 5.90 7.60 1.00 2.00 3.00 10.60 9.60

[11] 8.60 7.60 6.60 5.60 4.60 3.60 2.60 112.36 92.16 73.96

[21] 57.76 43.56 31.36 21.16 12.96 6.76 11.60 10.60 9.60 8.60

[31] 7.60 6.60 5.60 4.60 3.60

There are several things to notice here. First, the operator a:b produces a sequence from a to
b starting with a and adding (or subtracting) 1 to each element until you get a number greater
in absolute value than |b|. (You may want to experiment to see what happens when a or b are
negative). Second, we have y^2 which just squares each element of y. All functions which return a
single numerical result from a single numerical argument such as exp,sqrt,sin,cos,tan,atan,log,
etc. act on each element of the vector. Finally, adding a number to a vector just adds the number
to each component of the vector.

What happens if we add two vectors of different length? Let’s see.

> x ← 1:9

> y ← 1:10

> x+y

[1] 2 4 6 8 10 12 14 16 18 11

Warning messages:

Length of longer object is not a multiple of the length of the shorter object

in: x + y

When adding (or subtracting) two or more vectors of different length, the shorter vectors are recycled
until they reach the length of the longest vector and then the operation is performed and a warning
message is issued. Also notice that we did not assign the result of the sum, but printed it directly
instead.

To list vectors left over from a previous session, use objects(). To delete them, use rm(x,y,z)
where x, y and z are the vectors to be deleted. This function works in exactly the same way with
objects other than vectors. You can also use the more versatile remove function to delete objects,
e.g., remove(c(’x’,’y’,’z’)).

Next, let us do some statistics on these vectors. How many observations do we have? What is
the mean? And the standard deviation?

> length(z)

[1] 35

> mean(z)

[1] 17.384

> sqrt(var(z))

[1] 26.59949

2.4.1 Numeric, Character and Logical Vectors

All elements of a vector must be of the same type, that is integers, real numbers, complex numbers,
logical values (T or F), or character strings. Examples of each kind are c(3,6,9), c(1+2i,.2,-3-5.6i),(T,T,F)
and c("x","y","z"). To determine what kind of vector we have, we could type mode(x) and this
will return a character string telling us the kind of vector. It is also possible to assign a value to the
mode of a vector forcing it to be something else.

> x ← c(3.1,2.6,3.4,5.9,7.6)
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> x

[1] 3.1 2.6 3.4 5.9 7.6

> mode(x)

[1] "numeric"

> mode(x) ← "character"

> x

[1] "3.1" "2.6" "3.4" "5.9" "7.6"

>

There are a number of functions to test for the mode of a vector and to change it. In general,
if we try to operate on a vector whose mode is not appropriate for that kind of operation, S will
automatically convert it to another kind trying to lose the least possible amount of information in
the process. Thus, c(T,F)+c(3,4) yields c(4,4) (Fs are converted to zeros and Ts are converted to
ones). The functions to test and change modes are

is.numeric,as.numeric

is.character,as.character

is.logical,as.logical

A useful function in the Hmisc library which may save you some typing is Cs(a,b,c,d). It is
equivalent to c("a","b","c","d") but it won’t work if your character strings have an _ in them
(since _ is equivalent to ←).

2.4.2 Missing Values and Logical Comparisons

Missing values in numeric and logical vectors are represented by the symbol NA (not available). In
general, any operation (mathematical or logical) performed on a missing value will return a missing
value. The logical operators are >, >=, <, <=, ==, !=, &, |,!. Notice that the operator to test
equality is == rather than =, which is reserved for named arguments to a function. ! is used for
negation and & and | for logical ‘and’ and ‘or’. Consider for instance

> x ← c(3,6,9,10,2.2,NA,NA,6.7); y ← c(1,6,9,2,NA,5.1,0,-1)

> x > y

> [1] T F F T NA NA NA T

The operator == is not appropriate to test for missing values. Instead, use the function is.na.

> is.na(x > y)

[1] F F F F T T T F

Suppose that we have two vectors of the same length, and we want to know the joint distribution
of their missing values.

> x

[1] 1 1 1 NA NA 2 2 2 2 2 2 NA

> y

[1] 2 2 2 2 2 NA 4 NA 1 1 1 1

One way would be to use the table function
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> table(is.na(x),is.na(y))

FALSE TRUE

FALSE 7 2

TRUE 3 0

You can also tabulate all patterns of NAs using the builtin function na.pattern (but note that
na.pattern was omitted from S-Plus 2000):

> na.pattern(list(x,y))

00 01 10

7 2 3

Also see the naclus function described under the varclus function in the Hmisc library discussed
below.

2.4.3 Subscripts and Index Vectors

It is possible to select subsets of a vector by subscripting or indexing its elements. This is equivalent
to using a WHERE statement in SAS, but it is more flexible. The expression to use is x[i] where i
could be another vector, or an expression which evaluates to a numeric, logical or character vector.
In all cases, we’ll think of the elements of x as being subscripted by the indexes 1:length(x) when
[ ] is not present.

1. If i is a numeric vector, all its elements must be >=0 or all <=0 (NAs are allowed). Before
selecting the subset, S drops all zeros from the index vector. If all elements of i are positive,
then x[i] selects only those elements of x whose subscripts match the elements of i. If the
elements of i are negative, then x[i] selects the elements of x whose subscript does not match
any element in i. If the kth element of i is NA then the kth element of x[i] will be NA as well.
(0s are ignored). i can be any length.

2. If i is a logical vector, it is indexed starting at 1 and those elements of x whose subscripts
have a value of T in the corresponding index of i are selected. The same rule as in 1. apply
to NAs. For this case, the length of the index vector should equal length(x).

3. If i is a character string (of any length), the rules are a little bit different. In this case x is
required to have what’s called a names attribute. A names attribute is a vector of character
strings of the same length as x which effectively names each element of x. Assuming that x
already has a names attribute, the expression x[c("a","b")] selects the first element of x
named a and the first element named b. We will talk more about names when we discuss
attributes in general.

Examples:

> x

[1] 3.0 6.0 9.0 10.0 2.2 NA NA 6.7

> y

[1] 1.0 6.0 9.0 2.0 NA 5.1 0.0 -1.0

> x[3]

[1] 9
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> x[1:3]

[1] 3 6 9

> x[-2]

[1] 3.0 9.0 10.0 2.2 NA NA 6.7

> x[c(F,T,T,F,F,F,F,F)]

[1] 6.0 9.0

> x[x > y]

[1] 3.0 10.0 NA NA NA 6.7

> x[!is.na(x)]

[1] 3.0 6.0 9.0 10.0 2.2 6.7

> z ← x[!is.na(x)] # get rid of missing values

It is instructive to look at the help file for the subsetting operator "[" (type ?"[") and work out
some examples. This is a very useful function that you will be using all the time, but is also very
easy to get confused and end up selecting values that you didn’t mean to select. Try to always check
that you have the right vector by using the length function.

For a simple example of character indexing, let’s create a simple named vector.

> w ← c(cat=1, dog=3, giraffe=11)

> w[’cat’]

[1] 1

> w[c(’cat’,’giraffe’)]

[1] 1 11

2.5 Matrices, Lists and Data Frames

2.5.1 Matrices

A collection of vectors may represent several different variables in your dataset, but is not the most
convenient way of handling your data. We can construct matrices by putting together vectors of
the same length and the same mode using the functions cbind and rbind. The first one takes its
arguments and puts them together as columns of a matrix, while the second one makes them into
the rows of a matrix.

> x1 ← c(2,4,6,8,0)

> x2 ← c(1,3,5,7,9)

> x3 ← c(3,7,11,15,9)

> cx ← cbind(x1,x2,x3)

> rx ← rbind(x1,x2,x3,c(2,6,10,14,8))

> cx

x1 x2 x3

[1,] 2 1 3

[2,] 4 3 7

[3,] 6 5 11

[4,] 8 7 15

[5,] 0 9 9

>rx

[,1] [,2] [,3] [,4] [,5]

x1 2 4 6 8 0
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x2 1 3 5 7 9

x3 3 7 11 15 9

2 6 10 14 8

Notice that that the columns of cx are labeled and so are the rows of rx except for the last one,
since the last argument to rbind was not given a name. Another way to create a matrix is to use
the function matrix(data,nrow,ncol,...). This function will read data in a stream from the data
argument and put it in a nrow × ncol matrix in column order by default. (In fact only one of nrow
and ncol is needed if data is of length nrow*ncol). The ... represent other arguments to allow to
read the data in row order and give labels to rows and columns.

A useful function to use with matrices is apply. It is invoked by
apply(x,margin,fun,...) where x is a matrix, margin is the dimension over which the function
is to be applied (1 for rows, 2 for columns), and fun is the function to be applied to the rows or
columns of x.

> apply(cx,2,mean)

x1 x2 x3

4 5 9

gives us the means of the columns of cx.
Actually apply can be use more generally with multidimensional arrays. Other functions related

to matrices are dim, dimnames, is.matrix, ncol, nrow and t. t(x) returns the transpose of x.
Matrices can be indexed in a similar way to vectors. Usually, our purpose is to select a few

columns (variables we want to look at) and rows (observations) satisfying a given condition. Since
we have two indexes now, we can look at both

> cx[2:5,c(2,3)]

x2 x3

[1,] 3 7

[2,] 5 11

[3,] 7 15

[4,] 9 9

> cx[2:5,c("x2","x3")]

x2 x3

[1,] 3 7

[2,] 5 11

[3,] 7 15

[4,] 9 9

The second example above shows another way of selecting two particular columns. Since they
are named, we can just list their names in the appropriate place in the indexing bracket. If we
don’t want to impose any restrictions in a particular dimension, we just leave it blank. Thus,
cx[,c("x2","x3")] lists all rows of cx for columns x2 and x3. There are of course, a number of
functions to do mathematical operations on matrices: *, %*%, crossprod, and outer which perform
element by element multiplication, matrix product, cross products, and outer products, respectively
on matrices of the appropriate sizes.

To most efficiently determine which rows of a matrix x have a column containing an NA, use the
expression
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is.na(x %*% rep(1,ncol(x)))

To subset the matrix to contain only rows with all non–missing values you can use the Hmisc nomiss
function, e.g., nomiss(x).

2.5.2 Lists

Lists are collections of objects of different kinds. The components of a list could be vectors, matrices
or other lists and they can have different length and types. An example of a list is the names of the
rows and columns of a matrix.

> dimnames(cx) ← list(1:5,c("x","y","z"))

> cx

x y z

1 2 1 3

2 4 3 7

3 6 5 11

4 8 7 15

5 0 9 9

The function dimnames is used to name the rows and columns of a matrix and it is required to be a
list, so, we used the function list to create it. The arguments to list could be anything, and they
can be name just as the rows or columns of a matrix.

> list1 ← list(rowmatrix=rx,dimnames(cx),c("a","b","c"))

> list2 ← list(cx,indexes=1:9)

> list1

$rowmatrix:

[,1] [,2] [,3] [,4] [,5]

x1 2 4 6 8 0

x2 1 3 5 7 9

x3 3 7 11 15 9

x4 2 6 10 14 8

[[2]]:

[[2]][[1]]:

[1] "1" "2" "3" "4" "5"

[[2]][[2]]:

[1] "x" "y" "z"

[[3]]:

[1] "a" "b" "c"

> list2

[[1]]:

x y z

1 2 1 3

2 4 3 7
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3 6 5 11

4 8 7 15

5 0 9 9

$indexes:

[1] 1 2 3 4 5 6 7 8 9

Components of a list can be selected in one of two ways: the more general method extracts
the component by referring to it by its position on the list. list2[[2]] selects the second com-
ponent of the list list2. If the components are named, we may select them using the expression
list$component or list[[’component’]]. In the example above, list1$rowmatrix selects the
matrix rx. Ocassionally, you may need the unlisted results. The function unlist serves just such
purpose.

There is virtually no limit to what can be stored in a list, including other lists:

> us ← list(Alabama=list(counties=c(’Autauga’,’Baldwin’,

+ ’Barbour’,’Bibb’,...),

+ pop=4273084,capital=’Montgomery’),

+ Alaska=list(counties=c(’Aleutians East’,’Aleutians West’,

+ ’Anchorage’,’Bethel’,...),

+ pop=602545, capital=’Juneau’),

+ ...)

> us$Alabama # Print information for one state

> # same as us[[1]] or us[[’Alabama’]]

> us$Alabama$counties # Print counties in Alabama

> us$Alabama$counties[1:5] # Print first 5 counties

> us[c(’Alabama’,’Alaska’)] # Print a sub-list containing 2 states

Section 2.6.2 provides more information on selecting elements of lists and vectors. You can see that
lists provide a natural way to represent hierarchical structures.

In the above example we might as well associate some data with the counties, such as the
population:

> us ← list(Alabama=list(counties=c(Autauga=40061,Baldwin=123023,

+ Barbour=26475,Bibb=18142,...),

+ pop=4273084,capital=’Montgomery’),

+ Alaska=list(counties=c(’Aleutians East’=2305,

+ ’Aleutians West’=5259,

+ Anchorage=251336,Bethel=15525,...),

+ pop=602545, capital=’Juneau’),

+ ...)

> # Note: need to enclose non-legal S-Plus object names in quotes

> sum(us$Alabama$counties) - us$Alabama$pop # should be zero

> us$Alaska$counties[’Aleutians East’] # print one county’s population

> us$Alaska$counties[’Bethel’] # print another

> us$Alaska$counties[c(’Anchorage’,’Bethel’)] # print two

> Ak ← us$Alaska # subset of list for Alaska

> Ak$counties # print Alaska county pops

Lists are a very convenient mechanism to summarize in one object all the information related
to a particular task. Many functions give as a result a list object. For instance, most modeling
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functions produce a list whose components are quantities of statistical interest. The function ols
in the Design library, for example, fits an ordinary least squares model and returns an object of
mode list. Among its components are: the model formula, vector of coefficients, summary of missing
values, and, optionally, vectors of predicted values, residuals, and the design matrix and response
variable values.

2.5.3 Data Frames

Data frames are just a particular kind of list where all its components have the same length. They
behave pretty much like matrices in the sense that you can operate on rows and columns and select
its elements in the same way, except that the components can be of different type. You may have
some columns that are character vectors and other columns that are numeric or logical vectors.
Moreover, an entire matrix can be part of a data frame, as long as its columns are of the same
length as the other components of the data frame. They are the most similar entity to a SAS
dataset that you will find in S, and they are used most frequently in modeling situations, thinking
of rows as observations and columns as variables.

There are several ways to create data frames. First, there’s the File ... Import dialog.
Second, you can read the data into a data frame from an external ASCII or SAS dataset by using
the functions read.table or sas.get (to be described later), or construct it from existing objects
using the function data.frame.

> obs ← Cs(id1,id2,id3,id4,id5,id6) # Hmisc shorthand for c(’id1’,...)

> # Hmisc shorthand for c(’id1’,’id2’,’id3’,’id4’,’id5’,’id6’)

> treat ← c(rep("Treatment 1",3),rep("Treatment 2",3))

> treat

[1] "Treatment 1" "Treatment 1" "Treatment 1" "Treatment 2" "Treatment 2"

[6] "Treatment 2"

> x ← c(2.5,3.5,3.0,4.6,5.5,5.3)

> df ← data.frame(treat,x,row.names=obs)

> df

treat x

id1 Treatment 1 2.5

id2 Treatment 1 3.5

id3 Treatment 1 3.0

id4 Treatment 2 4.6

id5 Treatment 2 5.5

id6 Treatment 2 5.3

The argument row.names gives names to the rows of the data frame. If provided, its values must
be unique. If it is not provided S will try to construct it from the arguments to data.frame. For
instance, if one of the arguments is a matrix with a dimnames attribute, it will try to use that. If it
can’t find any vector to construct the row names, it will simply number them.

The Hmisc naclus and naplot functions are useful for displaying patterns of NAs in data frames
in various ways. naclus also returns a vector containing the number of missing variables for each
observation. naclus does this using the statements

na ← sapply(my.data.frame, is.na) * 1

na.per.obs ← apply(na, 1, sum)
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naclus also returns the mean number of other variables that are missing in observations for which
variable i is missing, for i = 1, . . . . See also the builtin na.pattern function (Section 2.4.2, but
note that na.pattern does not work correctly for factor variables).

Data frames may be subsetted using the same notation as matrices (see Section 2.5.1).

2.6 Attributes

We have mentioned certain characteristics of S objects that are typical of that kind of object, and
others that are common to all of them. Among the latter ones we can mention the length and the
mode of an object. Length is easy to describe and just counts the number of elements of a vector or
matrix, or the number of major components of a list. As a data frame is also a list and its major
components are variables, the length of a data frame is the number of variables it contains. The
mode refers to the type of object which could be numeric, complex, logical, character (these are
called atomic objects) or list (which are called recursive objects). The functions to find out these
characteristics are length and mode respectively.

The other characteristics that describe an object are referred to as the attributes of an object.
They include names, dim, dimnames, class, levels, row.names and any other that you may want to
create. Corresponding to each of these attributes there is a function to extract them; thus, to know
the dim attribute of the matrix cx type dim(cx). To know if a particular observation is in your data
frame, we could use the row.names attribute.

> row.names(df)[row.names(df)=="id9"]

character(0)

The result is a character vector of length zero, meaning that said observation is not in the data
frame. Here you could also just print the number of observations with that id using the command
sum(row.names(df)==’id9’).

In many cases the attribute determines just what kind of and object we have. For instance, a
matrix (or more generally, an array) is just a vector with a dim attribute which allow functions such
as apply to act accordingly. Other functions do not make that distinction and will consider it just
a vector.

> length(cx)

[1] 15

Attributes can be changed or deleted

> dim(rx) ← NULL # or attr(rx,’dim’) ← NULL

> rx

[1] 2 1 3 2 4 3 7 6 6 5 11 10 8 7 15 14 0 9 9 8

> dim(rx) ← c(5,4)

> rx

[,1] [,2] [,3] [,4]

[1,] 2 3 11 14

[2,] 1 7 10 0

[3,] 3 6 8 9

[4,] 2 6 7 9

[5,] 4 5 15 8
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rx was a 4 × 5 matrix. We first made it into a vector by deleting its dim attribute and then made
into a 5× 4 matrix by assigning a new one. One could also create a new attribute with the function
attr.

> # For Windows use date() to get the current date as a character value

> attr(df,"creation date") ← unix("date") ; attributes(df)

$names:

[1] "treat" "x"

$row.names:

[1] "id1" "id2" "id3" "id4" "id5" "id6"

$class:

[1] "data.frame"

$"creation date":

[1] "Wed Jun 30 10:42:29 EDT 1993"

> names(attributes(df))

[1] "names" "row.names" "class" "creation date"

In this example, the attr function assigns a new attribute called “creation date” to the data
frame df, by calling the unix command “date”, for example. Next, we listed all the attributes of df
using the function attributes. This, not only tells us what attributes df has, but also how they
are composed. This might be too much information (specially if you have over a thousand ids in
row.names). We can reduce it by typing names(attributes(...)). Notice that the attributes is
in general a list with named components, which allows us to use the names function on it.

2.6.1 The Class Attribute and Factor Objects

Notice in the example above, that one of the attributes is called class. This is a very special
attribute related to the concept of methods. When the class attribute is present, functions will
act in different ways depending on the class of the object. plot will act in a different way if its
arguments have a class of data.frame. As usual, the class attribute of an object can be extracted
using the function class.

> class(df)

[1] "data.frame"

They can also be unclassified by means of unclass. The result of using unclass is that df will
print as a list rather than as a data frame.

> df

treat x

id1 Treatment 1 2.5

id2 Treatment 1 3.5

id3 Treatment 1 3.0

id4 Treatment 2 4.6

id5 Treatment 2 5.5

id6 Treatment 2 5.3
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> unclass(df)

$treat:

[1] "Treatment 1" "Treatment 1" "Treatment 1" "Treatment 2" "Treatment 2"

[6] "Treatment 2"

$treat: Levels:

[1] "Treatment 1" "Treatment 2"

$x:

[1] 2.5 3.5 3.0 4.6 5.5 5.3

attr(, "row.names"):

[1] "id1" "id2" "id3" "id4" "id5" "id6"

attr(, "creation date"):

[1] "Wed Jun 30 10:42:29 EDT 1993"

(Note: there is an implicit use of the print function when you type df). Of particular interest
are the objects of class “factor”. A factor is an object with a discrete set of levels like those that
arise from a classification variable. In SAS we could have a variable x taking k different values,
say x1, . . . , xk, with formatted values l1, . . . , lk. In S this will become a factor object with internal
numeric codes 1, . . . , k and levels l1, . . . lk.

The syntax for the factor function is

factor(x,levels,labels,exclude=NA)

x is of course the vector to be factored, levels is a vector with the unique set of values of x that you
want to keep in the factor, and labels is the corresponding set of optional labels for the values of x.
Note the very confusing fact that the labels specified to factor will become the levels attribute
of the resulting vector. Those elements of x not matching any element of levels will be considered
NA. The exclude argument is a vector of values to be excluded from forming levels. For instance,
if x was already a vector of character strings, you may want to set exclude to "" to prevent empty
strings from becoming a level.

If you need to use the internal values of x rather than its levels for some reason, the function
unclass comes in handy again.

> x ← c(2,2,2,3,3,3)

> l ← c("2","3")

> f ← factor(x,l)

> x

[1] 2 2 2 3 3 3

> unclass(f)

[1] 1 1 1 2 2 2

attr(, "levels"):

[1] "2" "3"

It is not possible to do mathematical transformations of a factor object. The reason is that factors
represent categorical variables that may or may not be interval scaled or even ordinal. For example
if x and y are factors, it does not make sense to add them.

In summary a factor is a categorical object with a levels attribute, but which is treated
internally as having the values 1:length(levels(x)). If no levels argument is provided, the
sorted unique values of x are used.
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2.6.2 Summary of Basic Object Types

Table 2.1 summarizes some of the types of objects we have discussed. Note that a factor is a
special case of a vector, a matrix is a special case of an array, and a data frame is a special case
of a list. The table also describes how elements are selected (subscripted) from an object named x.
There row and col are vectors of positive, negative, or zero–valued integers, logicals, or character
strings (strings are allowed when the pertinent dimension of the object x has a names or dimnames
attribute). Zero–valued subscripts are ignored, and negative values denote “get all but the subscripts
listed, suppressing their signs.” When a subscript is omitted and its place is held by a comma, that
means to fetch all elements of the omitted dimension. For lists and data frames, there are 3 methods
for selecting elements. The first of these, x[col], results in a new list or data frame containing the
elements (usually variables) corresponding to col. The last 2 methods result in individual variables.
There colname is the name of one of the elements (variables). Below, length is listed as an attribute
although it should officially be labeled as a basic property of the object.

Table 2.1: Comparison of Some S Objects

Type Description Main Attributes

vector
x[row]

single column of numbers (integer,
single, or double precision) or char-
acter strings
Usually thought of as a variable

length number of elements

names (optional) names of ele-
ments

factor
x[row]

categorical variable, with categories
coded as integers 1, 2, 3, . . .

length no. elements

names (optional) names of ele-
ments

class ’factor’

levels vector of character strings
defining labels that corre-
spond to integer codes

matrix
x[row,col],

x[row,],

x[,col]

rectangular table of numbers or
character strings

length number of rows × number
of columns

dim vector of length 2 containing
no. rows, no. columns

dimnames list of length 2 contain-
ing a vector of row names (or
NULL) and a vector of column
names (or NULL)
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Type Description Main Attributes

list
x[col],
x$colname,
x[[’colname’]]

an arbitrary collection of S objects
including other lists; can be thought
of as a tree;
elements do not need to have equal
lengths

length number of major elements

names names of major elements

data frame
x[col],
x$colname,
x[[’colname’]],
x[row,col],
x[row,], x[,col]

a rectangular dataset; a list in which
all elements have the same number
of rows. Each element in the list is
a variable, and some of the variables
may be matrices

length number of variables

names names of variables

class ’data.frame’

row.names row (observation)
names

2.7 When to Quote Constants and Object Names

In S you can use single quotes, double quotes, or the Hmisc Cs function (when the symbols being
quoted are legal S names) to specify character strings. Here are some general rules about use of
quotes.

character constants : Character constants should always be quoted when appearing in S pro-
grams. Examples:

age[sex==’female’]

dframe[c(’patienta’,’patientb’,’patientc’),]

sex ← ’female’

object names, general : When a data frame or an object naming a vector or matrix is used as
the input to a function, do not quote the name. Here are examples:

summary(dframe)

attach(dframe)

summary(varname)

mean(varname)

attach(dframe[dframe$sex==’male’,])

summary(dframe[,c(’age’,’sex’)])

When giving a function the name of an object to create, this name is quoted (see detach in
the following item).

data frames : When detaching search position 1 into a data frame, quote its name. E.g., detach(1,
’newdframe’) (failing to quote data frame names in detach is a common problem that causes
the search list to be corrupted). Otherwise, data frame names are generally not quoted.
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variables : These names are generally unquoted except when used to select columns of a data
frame, e.g., dframe[,c(’age’,’sex’)]. If you tried to use dframe[,c(age,sex)], S would
combine the values of the age and sex variables and try to use these values as column numbers
to retrieve.

list elements : These are generally not quoted (e.g., when used with $) unless their names are not
legal variable names. In that case use a statement such as objectname[[’element name’]]
or objectname$’element name’

removing objects : Do not quote object names given to rm (e.g., rm(age, sex, dframe)). Quote
a vector of character constants given to remove, e.g. remove(c(’age’, ’sex’)).

get and assign : These functions need object names to be quoted, but not the object representing
a value for assign to transmit.

accessing libraries Library names are unquoted when using the library function. They are
quoted when using help().

2.8 Function Libraries

S comes with over 2000 functions, organized in the main system areas and in a library of advanced
graphics functions called trellis, as well as other libraries. In Windows S-Plus at least, trellis is
automatically available to the user without the need of a library(trellis) command. Other series
of functions which are supplied with S are organized into other libraries which must be requested for
attachment by the user using the library function. For example, to get access to advanced matrix
functions you can type the command library(Matrix). In version 4.5+ you can use the File ...
Load Library pull–down menu to issue the library call. For libraries in need of being loaded early
in the search list (i.e., those requiring first=T), check the Attach at top of search list box.

Many users have developed add–on libraries of S functions for UNIX, Windows, or both platforms.
Frank Harrell has developed two freely available S libraries for UNIX and Windows that are available
in the Statlib archive in lib.stat.cmu.edu or from the UVa web page. The Hmisc library (“Harrell
Miscellaneous”) is described in Section 2.9, and the Design library is described in Chapter 9. Once
these libraries are installed4, get access to their functions and datasets by typing

library(Hmisc, T) # Reference Hmisc before referencing Design

library(Design,T) # Design requires Hmisc to work

The T (first=T in expanded notation) is needed because Hmisc and Design override a few builtin
functions.

Hmisc contains a family of latex functions for converting certain S objects to typeset LATEX
representation. The output of these functions is a text file containing LATEX code. You can also
preview typeset LATEX files while running S.

4These functions are built–in to S-Plus2000 and later (on Windows only) but they still must be accessed using
library() or File ... Load Library

http://lib.stat.cmu.edu
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2.9 The Hmisc Library

The Hmisc library contains around 200 miscellaneous functions useful for such things as data analysis,
high–level graphics, utility operations, functions for computing sample size and power, translating
SAS datasets into S, imputing missing values, advanced table making, variable clustering, character
string manipulation, conversion of S objects to LATEX code, recoding variables, and bootstrap re-
peated measures analysis. The help categories for Hmisc serve to describe the areas covered by this
library:

ANOVA Models
Add to Existing Plot
Bootstrap
Categorical Data
Character Data Operations
Clustering
Computations Related to Plotting
Data Directories
Data Manipulation
Documentation
Grouping Observations
High-Level Plots
Interfaces to Other Languages
Linear Algebra
Logistic Regression Model
Mathematical Operations
Matrices and Arrays
Methods and Generic Functions
Miscellaneous
Multivariate Techniques
Nonparametric Statistics
Overview
Power and Sample Size Calculations
Predictive Accuracy
Printing
Probability Distributions and Random Numbers
Regression
Repeated Measures Analysis
Robust/Resistant Techniques
Sampling
Smoothing Operations
Statistical Inference
Statistical Models
Study Design
Survival Analysis
Utilities
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A list of functions in Hmisc along with a brief description follows.

Function Name Purpose
_____________ _______________________________________________________

abs.error.pred Computes various indexes of predictive accuracy based
on absolute errors, for linear models

approxExtrap Linear extrapolation
aregImpute Multiple imputation based on additive regression,

bootstrapping, and predictive mean matching
all.is.numeric Check if character strings are legal numerics
areg.boot Nonparametrically estimate transformations for both

sides of a multiple additive regression, and
bootstrap these estimates and R^2

ballocation Optimum sample allocations in 2-sample proportion test
binconf Exact confidence limits for a proportion and more accurate

(narrower!) score stat.-based Wilson interval
(Rollin Brant, mod. FEH)

bootkm Bootstrap Kaplan-Meier survival or quantile estimates
bpower Approximate power of 2-sided test for 2 proportions

Includes bpower.sim for exact power by simulation
bpplot Box-Percentile plot

(Jeffrey Banfield, umsfjban@bill.oscs.montana.edu)
bsamsize Sample size requirements for test of 2 proportions
bystats Statistics on a single variable by levels of >=1 factors
bystats2 2-way statistics
calltree Calling tree of functions

(David Lubinsky, david@hoqax.att.com)
character.table Shows numeric equivalents of all latin characters

Useful for putting many special chars. in graph titles
(Pierre Joyet, pierre.joyet@bluewin.ch)

ciapower Power of Cox interaction test
cleanup.import More compactly store variables in a data frame, and clean up

problem data when e.g. Excel spreadsheet had a non-
numeric value in a numeric column

combine.levels Combine infrequent levels of a categorical variable
comment Attach a comment attribute to an object:

comment(fit) <- ’Used old data’
comment(fit) # prints comment

confbar Draws confidence bars on an existing plot using multiple
confidence levels distinguished using color or gray scale

contents Print the contents (variables, labels, etc.) of a data frame
cpower Power of Cox 2-sample test allowing for noncompliance
Cs Vector of character strings from list of unquoted names
csv.get Enhanced importing of comma separated files labels
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cut2 Like cut with better endpoint label construction and allows
construction of quantile groups or groups with given n

datadensity Snapshot graph of distributions of all variables in
a data frame. For continuous variables uses scat1d.

dataRep Quantify representation of new observations in a database
ddmmmyy SAS "date7" output format for a chron object
deff Kish design effect and intra-cluster correlation
describe Function to describe different classes of objects.

Invoke by saying describe(object). It calls one of the
following:

describe.data.frame
Describe all variables in a data frame (generalization

of SAS UNIVARIATE)
describe.default

Describe a variable (generalization of SAS UNIVARIATE)
do Assists with batch analyses
dot.chart Dot chart for one or two classification variables
Dotplot Enhancement of Trellis dotplot allowing for matrix

x-var., auto generation of Key function, superposition
drawPlot Simple mouse-driven drawing program, including a function

for fitting Bezier curves
ecdf Empirical cumulative distribution function plot
eip Edit an object "in-place" (may be dangerous!), e.g.

eip(sqrt) will replace the builtin sqrt function
errbar Plot with error bars (Charles Geyer, U. Chi., mod FEH)
event.chart Plot general event charts (Jack Lee, jjlee@mdanderson.org,

Ken Hess, Joel Dubin; Am Statistician 54:63-70,2000)
event.history Event history chart with time-dependent cov. status

(Joel Dubin, joel.dubin@yale.edu)
find.matches Find matches (with tolerances) between columns of 2 matrices
first.word Find the first word in an S expression (R Heiberger)
fit.mult.impute Fit most regression models over multiple transcan imputations,

compute imputation-adjusted variances and avg. betas
format.df Format a matrix or data frame with much user control

(R Heiberger and FE Harrell)
ftupwr Power of 2-sample binomial test using Fleiss, Tytun, Ury
ftuss Sample size for 2-sample binomial test using " " " "

(Both by Dan Heitjan, dheitjan@biostats.hmc.psu.edu)
gbayes Bayesian posterior and predictive distributions when both

the prior and the likelihood are Gaussian
getHdata Fetch and list datasets on our web site
gs.slide Sets nice defaults for graph sheets for S-Plus 4.0 for

copying graphs into Microsoft applications
hdquantile Harrell-Davis nonparametric quantile estimator with s.e.
histbackback Back-to-back histograms (Pat Burns, Salomon Smith

Barney, London, pburns@dorado.sbi.com)
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hist.data.frame Matrix of histograms for all numeric vars. in data frame
Use hist.data.frame(data.frame.name)

histSpike Add high-resolution spike histograms or density estimates
to an existing plot

hoeffd Hoeffding’s D test (omnibus test of independence of X and Y)
impute Impute missing data (generic method)
%in% Find out which elements a are in b : a %in% b
interaction More flexible version of builtin function
is.present Tests for non-blank character values or non-NA numeric values
james.stein James-Stein shrinkage estimates of cell means from raw data
labcurve Optimally label a set of curves that have been drawn on

an existing plot, on the basis of gaps between curves.
Also position legends automatically at emptiest rectangle.

label Set or fetch a label for an S-object
Lag Lag a vector, padding on the left with NA or ’’
latex Convert an S object to LaTeX (R Heiberger & FE Harrell)
ldBands Lan-DeMets bands for group sequential tests
list.tree Pretty-print the structure of any data object

(Alan Zaslavsky, zaslavsk@hcp.med.harvard.edu)
Load Enhanced version of load
mask 8-bit logical representation of a short integer value

(Rick Becker)
matchCases Match each case on one continuous variable
matxv Fast matrix * vector, handling intercept(s) and NAs
mem mem() types quick summary of memory used during session
mgp.axis Version of axis() that uses appropriate mgp from

mgp.axis.labels and gets around bug in axis(2, ...)
that causes it to assume las=1

mgp.axis.labels
Used by survplot and plot in Design library (and other

functions in the future) so that different spacing
between tick marks and axis tick mark labels may be
specified for x- and y-axes. ps.slide, win.slide,
gs.slide set up nice defaults for mgp.axis.labels.
Otherwise use mgp.axis.labels(’default’) to set defaults.
Users can set values manually using
mgp.axis.labels(x,y) where x and y are 2nd value of
par(’mgp’) to use. Use mgp.axis.labels(type=w) to
retrieve values, where w=’x’, ’y’, ’x and y’, ’xy’,
to get 3 mgp values (first 3 types) or 2 mgp.axis.labels.

minor.tick Add minor tick marks to an existing plot
mtitle Add outer titles and subtitles to a multiple plot layout
mulbar.chart Multiple bar chart for one or two classification variables
%nin% Opposite of %in%
nomiss Return a matrix after excluding any row with an NA
panel.bpplot Panel function for trellis bwplot - box-percentile plots
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panel.plsmo Panel function for trellis xyplot - uses plsmo
pc1 Compute first prin. component and get coefficients on

original scale of variables
plotCorrPrecision Plot precision of estimate of correlation coefficient
plsmo Plot smoothed x vs. y with labeling and exclusion of NAs

Also allows a grouping variable and plots unsmoothed data
popower Power and sample size calculations for ordinal responses

(two treatments, proportional odds model)
prn prn(expression) does print(expression) but titles the

output with ’expression’. Do prn(expression,txt) to add
a heading (’txt’) before the ’expression’ title

p.sunflowers Sunflower plots (Andreas Ruckstuhl, Werner Stahel,
Martin Maechler, Tim Hesterberg)

ps.slide Set up postcript() using nice defaults for different types
of graphics media

pstamp Stamp a plot with date in lower right corner (pstamp())
Add ,pwd=T and/or ,time=T to add current directory
name or time
Put additional text for label as first argument, e.g.
pstamp(’Figure 1’) will draw ’Figure 1 date’

putKey Different way to use key()
putKeyEmpty Put key at most empty part of existing plot
rcorr Pearson or Spearman correlation matrix with pairwise deletion

of missing data
rcorr.cens Somers’ Dyx rank correlation with censored data
rcorrp.cens Assess difference in concordance for paired predictors
rcspline.eval Evaluate restricted cubic spline design matrix
rcspline.plot Plot spline fit with nonparametric smooth and grouped estimates
rcspline.restate

Restate restricted cubic spline in unrestricted form, and
create TeX expression to print the fitted function

recode Recodes variables
reShape Reshape a matrix into 3 vectors, reshape serial data
rm.boot Bootstrap spline fit to repeated measurements model,

with simultaneous confidence region - least
squares using spline function in time

rMultinom Generate multinomial random variables with varying prob.
samplesize.bin Sample size for 2-sample binomial problem

(Rick Chappell, chappell@stat.wisc.edu)
sas.get Convert SAS dataset to S data frame
sasxport.get Enhanced importing of SAS transport dataset in R
Save Enhanced version of save
scat1d Add 1-dimensional scatterplot to an axis of an existing plot

(like bar-codes, FEH/Martin Maechler,
maechler@stat.math.ethz.ch/Jens Oehlschlaegel-Akiyoshi,
oehl@psyres-stuttgart.de)
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score.binary Construct a score from a series of binary variables or
expressions

sedit A set of character handling functions written entirely
in S. sedit() does much of what the UNIX sed
program does. Other functions included are
substring.location, substring<-, replace.string.wild,
and functions to check if a string is numeric or
contains only the digits 0-9

setpdf Adobe PDF graphics setup for including graphics in books
and reports with nice defaults, minimal wasted space

setps Postscript graphics setup for including graphics in books
and reports with nice defaults, minimal wasted space
Internally uses psfig function by
Antonio Possolo (antonio@atc.boeing.com).
setps works with Ghostscript to convert .ps to .pdf

setTrellis Set Trellis graphics to use blank conditioning panel strips,
line thickness 1 for dot plot reference lines:
setTrellis(); 3 optional arguments

show.col Show colors corresponding to col=0,1,...,99
show.pch Show all plotting characters specified by pch=.

Just type show.pch() to draw the table on the
current device.

showPsfrag Use LaTeX to compile, and dvips and ghostview to
display a postscript graphic containing psfrag strings

solvet Version of solve with argument tol passed to qr
somers2 Somers’ rank correlation and c-index for binary y
spearman Spearman rank correlation coefficient spearman(x,y)
spearman.test Spearman 1 d.f. and 2 d.f. rank correlation test
spearman2 Spearman multiple d.f. rho^2, adjusted rho^2, Wilcoxon-Kruskal-

Wallis test, for multiple predictors
spower Simulate power of 2-sample test for survival under

complex conditions
Also contains the Gompertz2,Weibull2,Lognorm2 functions.

spss.get Enhanced importing of SPSS files using R’s read.spss function
src src(name) = source("name.s") with memory
stata.get Enhanced importing of Stata files using R’s read.dta function
store store an object permanently (easy interface to assign function)
strmatch Shortest unique identifier match

(Terry Therneau, therneau@mayo.edu)
subset More easily subset a data frame
substi Substitute one var for another when observations NA
summarize Generate a data frame containing stratified summary

statistics. Useful for passing to trellis.
summary.formula General table making and plotting functions for summarizing

data
symbol.freq X-Y Frequency plot with circles’ area prop. to frequency
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sys Execute unix() or dos() depending on what’s running
tex Enclose a string with the correct syntax for using

with the LaTeX psfrag package, for postscript graphics.
transace ace() packaged for easily automatically transforming all

variables in a matrix
transcan automatic transformation and imputation of NAs for a

series of predictor variables
trap.rule Area under curve defined by arbitrary x and y vectors,

using trapezoidal rule
trellis.strip.blank

To make the strip titles in trellis more visible, you can
make the backgrounds blank by saying trellis.strip.blank().
Use before opening the graphics device.

t.test.cluster 2-sample t-test for cluster-randomized observations
uncbind Form individual variables from a matrix
units Set or fetch "units" attribute - units of measurement for var.
upData Update a data frame (change names, labels, remove vars, etc.)
varclus Graph hierarchical clustering of variables using squared

Pearson or Spearman correlations or Hoeffding D as similarities
Also includes the naclus function for examining similarities in
patterns of missing values across variables.

xy.group Compute mean x vs. function of y by groups of x
xYplot Like trellis xyplot but supports error bars and multiple

response variables that are connected as separate lines
win.slide Setup win.graph or win.printer using nice defaults for

presentations/slides/publications
wtd.mean, wtd.var, wtd.quantile, wtd.ecdf, wtd.table, wtd.rank,
wtd.loess.noiter, num.denom.setup

Set of function for obtaining weighted estimates
zoom Zoom in on any graphical display

(Bill Dunlap, bill@statsci.com)

The web page listed at the front of this document contains several datasets useful in learning
about the Hmisc and Design libraries. Two of the data frames are especially useful for learning about
logistic modeling with the Design library: titanic and titanic2. Both describe the survival status
of individual passengers on the Titanic. The titanic data frame does not contain information from
the crew, but it does contain actual ages of half of the passengers.

2.10 Installing Add–on Libraries

For Windows, many of the libraries available in Statlib are transported as compressed (.zip) files.
Installation in this case is trivial, as the user merely needs to unzip5 the file into the S-Plus library

5Use a recent version of WinZip (from www.winzip.com) or a recent version of unzip that preserves long file names
for Windows 95. A good version of unzip is available under Utilities in the Web page listed on the cover of this
document. The UVa Web page, under Statistical Computing Tools, has more instructions for installing add–on
libraries using WinZip.
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area6.
Windows S libraries that call Fortran or C routines (as Hmisc and Design do) are so easy to

install because the object modules for these routines is stored in a standard format that works on
all Windows machines7. Therefore the user does not have to have a compiler on her machine. UNIX
users install the libraries using a Makefile which invokes compilers as needed. Some users do not
have a Fortran 77 or Fortran 90 compiler on their UNIX system; they have to install such a compiler
before installing Hmisc or Design. A Fortran–to–C translator produces Fortran code that is too
inefficient to be used. Some of the code that needs to be compiled is actually structured Fortran
(Ratfor), which needs a Ratfor pre–processor to translate it to Fortran. Users without Ratfor can
get pre–processed code already translated to Fortran from FE Harrell8.

To install or update the Hmisc or Design library for R, download the appropriate file from
http://biostat.mc.vanderbilt.edu/RS (.zip file for Windows; .tar.gz file for Linux/Unix) and
store it in a directory for holding temporary files. If using Windows select the appropriate menu to
install/update the package from a local file. If using Linux/Unix issue a shell command like R CMD
INSTALL /tmp/packagename.tar.gz while logged in as superuser. When Hmisc and Design become
part of CRAN, they may be installed like other CRAN packages (e.g., by issuing a command like
install.packages(’Hmisc’) or update.packages(’Hmisc’) at the R command prompt).

2.11 Accessing Add–On Libraries Automatically

As described in more detail in Section 13.6, you can create a special function in your _Data area
that is executed each time S is invoked from your project area. The function is called .First. A
common use of .First is to do away with the need to issue a library command each time you
invoke S. You can define a .First function once and for all by entering statements such as these in
a Commands or Script window.

.First ← function() {
library(Hmisc,T)

invisible()

}

The invisible function prevents the .First function from printing anything when it is invoked.
For R use the command library(Hmisc) instead of library(Hmisc,T). If you create a .First

function for R it will be stored in .RData.
Because Hmisc has a variety of basic functions that are useful in routine data analysis and

because attaching the Hmisc library carries almost no overhead, it can be a good idea to create such
a .First function for each project area 9.

6E.g., /splus/library as most .zip files for add–on libraries have been created so that during extraction they will
be stored in the correct subdirectory of /splus/library.

7Similarly, help files are stored in compiled Microsoft Help format, so these also install easily.
8But note that S-Plus comes with a Ratfor pre–processor too.
9Hmisc overrides the system subscripting method for factor vectors and date vectors, and it defines functions

is.na.dates and is.na.times to check for NAs in date and time vectors. The [.factor redefinition by Hmisc
causes by default unused levels to be dropped from the factor vector’s levels attribute when the vector is sub-
scripted. This can be overridden by using for example x ← x[,drop=F] or by specifying a system option as follows:
options(drop.factor.levels=F).

http://biostat.mc.vanderbilt.edu/RS
http://biostat.mc.vanderbilt.edu/RS
http://biostat.mc.vanderbilt.edu/RS


Chapter 3

Data in S

3.1 Importing Data

If you are using Windows S-Plus, most datasets you will need to analyze will be in a format
that can be imported easily using the File ... Import dialog. For example, Excel spreadsheets,
text (ASCII) files, and data from other popular statistical software can be converted to S-Plus
internal format this way. This method is fast but not all data attributes (e.g., SAS variable labels
and value labels) may be imported (see Section 3.2.3). Watch out for non-numeric values in Excel
numeric columns, which S-Plus will import as infinity rather than NA. The Hmisc cleanup.import
function will change such values to NA as well as set the storage mode of numeric variables to
’single’ or ’integer’ depending on whether fractional values are present. This will result in
cutting storage in half for numeric variables, as S-Plus imports these as double precision variables
(16 significant digits). cleanup.import also fixes another problem where numeric variables are
mistakenly converted to factors. The Hmisc upData function does some of the same functions of
cleanup.import in addition to allowing one to change the data frame in many ways (see Section
4.1.5).

The remainder of this chapter deals with commands (functions) for reading and converting data.

3.2 Reading Data into S

3.2.1 Reading Raw Data

The two main functions for reading ASCII datasets into S are scan and read.table. scan is the
most versatile of the two, and read.table is easier to use. read.table expects the input data sets
to be arranged in tabular form, where the first line may or may not be the variable names. The
syntax is

> args(read.table)

53
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function(file, header = F, sep = "", row.names = NULL,

col.names = paste("V", 1:

fields, sep = ""), as.is = F, na.strings = "NA")

The first argument is a character string reflecting the dataset name; header is set to T if the first
line of the file contains the variable names; sep is the separator between fields (by default, any
number of blanks); the row.names argument can be an already existing vector of the same length as
the number of observations or the name of a variable in the dataset. In either case, it should have
no duplicates. col.names is used to give names to variables when header is F and as.is controls
which fields are converted to factors. By default, character fields are always made into factor objects.
Finally, na.strings can be used whether certain values in character strings should be included as
levels of a factor. The result of read.table is a data frame.

The function scan is more complicated and we will only give a sketch here.

> args(scan)

function(file = "", what = double(0), n = -1, sep = "", multi.line = F, flush

= F, append = F, skip = 0, widths = NULL, strip.white = NULL)

The most important arguments here are file and what. The first one is just the name of your
dataset, and what is sort of like an INPUT statement. It is a list giving the names and the modes
of the data. Example,

> z ← scan("myfile",list(pop=0,city=character()))

In this case, we are reading from the dataset "myfile" the first two columns and naming them pop
and city. The 0 after the equal sign in pop only means that it is going to be read as a numeric
variable. Any other number or the expression numeric(0) would have had the same effect. Similarly
with the character() expression.

In S-Plus for Windows you can also read ASCII files using point-and-click methods through the
File menu.

3.2.2 Reading S-Plus Data into R

The best way to transport S-Plus vectors, matrices, and data frames to other computers or other
versions of S-Plus or to R is to run data.dump() in S-Plus to create a dumpdata-format (S-Plus
transport format or .sdd file, as described in Section 3.5.2. If using S-Plus version 5 or later, use
the oldStyle=T option to data.dump. Then convert the object to an R object using code such as
the following.

library(foreign)

data.restore(’/tmp/my.sdd’) # name of resulting object comes from

# original name when my.sdd created

You can read binary S objects in _Data or .Data directories and convert them to R objects in some
cases using R’s read.S function in R’s foreign library, if the object was created by S-Plus versions
before version 5 (e.g., conversion of S-Plus 2000 binary objects usually works). Here is an example:

library(foreign)

# Print file _Data/___nonfi to see mapping of renamed files
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# to object names

newobj ← read.S(’_Data/__7’) # must provide a name to hold result

Check the resulting object carefully, because read.S is not foolproof.

3.2.3 Reading SAS Datasets

In many cases, the easiest way to read external files is to read SAS datasets directly. This can be
done two ways. First, you can use File ... Import or a standalone database conversion utility
such as DBMSCOPY. This approach has the advantages of speed of execution, ease of use, and lack
of need of creating temporary ASCII files1. There are several disadvantages for either fast import
method, however: (1) They do not carry SAS variable labels into S. (2) They ignore value labels for
categorical variables created using SAS PROC FORMAT. (3) They do not transport SAS special
missing values. (4) S variable names constructed from SAS names are in all upper case2.

The sas.get function in the Hmisc library for UNIX or Windows is the other approach to
convert SAS datasets. sas.get preserves all SAS data attributes, and if categorical variables have
customized FORMATs associated with them, sas.get has several options for defining the category
labels to S (typically as factor variables).

Long before converting SAS data to S, you should have prepared the SAS dataset so that it
would be as useful as possible in SAS. Then sas.get can also profit from this setup. Here are the
relevant points to consider when creating your SAS dataset:

1. Define LABELs on all variables that are not totally self-documenting. The labels should contain
mostly lower case letters, as such labels are not only easier to read but they will result in
prettier SAS and S output. If you did not take the time to create pretty SAS labels, you can
create or override labels after reading the data into S.

2. Use the minimum SAS LENGTH that will store each character or numeric variable. For number
variables, SAS uses a default of 8 bytes of storage, which is 16 significant digits. Such precision
is very seldom needed, and it will result in highly inflated SAS and S datasets. Many SAS
variables can be stored as 3 byte floating points, which yields 4 significant digits.

3. Define category level definitions using PROC FORMAT, and associate the formats permanently
with the appropriate variables.

4. Don’t store dummy variables and other derived variables (e.g., interaction products) in the
permanent SAS dataset, and if you do, don’t retrieve them into S as S derives such variables
on the fly.

If you do not have nice variable labels or category levels set up in SAS, you can always create
them or redefine them in S:

sex ← factor(sex, 1:2, c(’female’,’male’))

levels(treatment)[3] ← ’Dextran’

levels(location) ← edit(levels(location)) # edit them interactively

label(location) ← ’Location of last inspection’

1The sas.get function has to create temporary ASCII files to do the SAS to S translation.
2This can easily be remedied — see Section 3.4.
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The Label function which is documented under the label function will create a text file con-
taining S code defining the existing labels for all the variables in a data frame. You can edit that
code, overriding any labels you don’t like (including blank ones) and source that file back into S.
Call Label using the syntax Label(dataframename, file=). Omit ,file= to write labels to the
command window for copying and pasting into an editor window.

Here is the help file for the Windows version of sas.get. The UNIX version does not have the
sasout argument, and there are a few other differences. When one or more of the variables you
are rescuing from SAS has a PROC FORMAT format associated with it, it is best to use the recode=T
option (the default) when invoking sas.get.

sas.get Convert a SAS Dataset to an S Dataset sas.get

Converts a SAS dataset into an S data frame. You may choose to extract only a subset
of variables or a subset of observations in the SAS dataset. You may have the function
automatically convert PROC FORMAT-coded variables to factor objects. The original
SAS codes are stored in an attribute called sas.codes and these may be added back to
the levels of a factor variable using the code.levels function. Information about special
missing values may be captured in an attribute of each variable having special missing val-
ues. This attribute is called special.miss, and such variables are given class special.miss.
There are print, [], format, and is.special.miss methods for such variables. The chron

function is used to set up date, time, and date-time variables. If a date variable repre-
sents a partial date (.5 added if month missing, .25 added if day missing, .75 if both),
an attribute partial.date is added to the variable, and the variable also becomes a class
imputed variable. The describe function uses information about partial dates and special
missing values. There is an option to automatically PKUNZIP compressed SAS datasets.

sas.get works by composing and running a SAS job that creates various ascii files that
are read and analyzed by sas.get. You can also run the SAS sas_get macro, which writes
the ascii files for downloading, in a separate step or on another computer, and then tell
sas.get to access these files instead of running SAS.

sas.get(library, member, variables=<<see below>>, ifs=<<see below>>,

format.library=library, sasout,

formats=F, recode=formats, special.miss=F, id=<<see below>>,

as.is=.5, check.unique.id=T, force.single=F,

keep.log=T, log.file="_temp_.log", macro=sas.get.macro,

clean.up=T, sasprog="sas", where, unzip=F)

is.special.miss(x, code)

x[...]

print(x)

format(x)

sas.codes(x)

x ← code.levels(x)

ARGUMENTS

library: character string naming the directory in which the the dataset is kept. The default is
library=".", indicating that the current directory is to be used.
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member: character string giving the second part of the two part SAS dataset name. (The first part
is irrelevant here — it is mapped to the directory name.)

x: a variable that may have been created by sas.get with special.miss=T or with recode in
effect.

variables: vector of character strings naming the variables in the SAS dataset. The S dataset will
contain only those variables from the SAS dataset. To get all of the variables (the default),
an empty string may be given. It is a fatal error if any one of the variables is not in the
SAS dataset.

ifs: a vector of character strings, each containing one SAS ”subsetting if” statement. These
will be used to extract a subset of the observations in the SAS dataset.

format.library: The directory containing the file formats.sc2, which contains the definitions of
the user defined formats used in this dataset. By default, we look for the formats in the
same directory as the data. The user defined formats must be available (so SAS can read
the data).

sasout: If SAS has already run to create the ascii files needed to complete the creation of the S
data frame, specify a vector of 4 character strings containing the names of the files (with
full path names if the files are not on the current working directory). The files are in the
following order: data dictionary, data, formats, special missing values. This is the same
order that the file names are specified to the sas_get macro. For files which were not
created and hence not applicable, specify "" as the file name. The presence/absence of
formats and special missing data files is used to set the formats and special.miss arguments
automatically by sas.get.

sasout may also be a character string of length one, in which case it is assumed to be the
name of a .zip file, and sas.get automatically runs the DOS PKUNZIP command to extract
the component files to the current working directory. The files that are present in the
.zip file must have names "dict","data","formats","specmiss" (although "formats" and
"specmiss" do not have to be present). When sas.get is finished, these extracted files are
automatically deleted. .zip files are useful for downloading large datasets.

formats: Set formats to T to examine the format.library for appropriate formats and store them as
the formats attribute of the returned object (see below). A format is used if it is referred to
by one or more variables in the dataset, if it contains no ranges of values (i.e., it identifies
value labels for single values), and if it is a character format or a numeric format that is
not used just to label missing values. If you set recode to T, 1, or 2, formats defaults to T.
To fetch the values and labels for variable x in the dataset d you could type: f ←attr(d$x,
”format”) formats ←attr(d, ”formats”) formats$f$values; formats$f$labels

recode: This parameter defaults to T if formats is T. If it is T, variables that have an appropriate
format (see above) are recoded as factor objects, which map the values to the value labels
for the format. Alternatively, set recode to 1 to use labels of the form value:label, e.g.
1:good 2:better 3:best. Set recode to 2 to use labels such as good(1) better(2) best(3).
Since sas.codes and code.levels add flexibility, the usual choice for recode is T.
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special.miss: For numeric variables, any missing values are stored as NA in S. You can recover spe-
cial missing values by setting special.miss to T. This will cause the special.miss attribute
and the special.miss class to be added to each variable that has at least one special miss-
ing value. Suppose that variable y was .E in observation 3 and .G in observation 544. The
special.miss attribute for y then has the value list(codes=c(”E”,”G”),obs=c(3,544))) To
fetch this information for variable y you would say for example s ←attr(y, ”special.miss”)
s$codes; s$obs or use is.special.miss(x) or the print.special.miss method, which will
replace NA values for the variable with E or G if they correspond to special missing values.
The describe function uses this information in printing a data summary.

id: The name of the variable to be used as the row names of the S dataset. The id variable
becomes the row.names attribute of a data frame, but the id variable is still retained as
a variable in the data frame. You can also specify a vector of variable names as the id

parameter. After fetching the data from SAS, all these variables will be converted to
character format and concatenated (with a space as a separator) to form a (hopefully)
unique ID variable.

as.is: SAS character variables are converted to S factor objects if as.is=F or if as.is is a number
between 0 and 1 inclusive and the number of unique values of the variable is less than the
number of observations (n) times as.is. The default if as.is is .5, so character variables
are converted to factors only if they have fewer than n/2 unique values. The primary
purpose of this is to keep unique identification variables as character values in the data
frame instead of using more space to store both the integer factor codes and the factor
labels.

check.unique.id: If id is specified, the row names are checked for uniqueness if check.unique.id=T.
If any are duplicated, a warning is printed. Note that if a data frame is being created with
duplicate row names, statements such as my.data.frame["B23",] will retrieve only the first
row with a row name of "B23".

force.single: By default, SAS numeric variables having LENGTHs > 4 are stored as S double precision
numerics, which allow for the same precision as a SAS LENGTH 8 variable. Set force.single=T
to store every numeric variable in single precision (7 digits of precision). This option is
useful when the creator of the SAS dataset has failed to use a LENGTH statement.

keep.log: logical flag: if F, delete the SAS log file upon completion.

log.file: the name of the SAS log file.

macro: the name of an S object in the current search path that contains the text of the SAS
macro called by S. The S object is a character vector that can be edited using, for example,
sas.get.macro ←editor(sas.get.macro).

clean.up: logical flag: if T, remove all temporary files when finished. You may want to keep these
while debugging the SAS macro.

sasprog: the name of the system command to invoke SAS
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unzip: set to F by default. Set it to T to automatically invoke the DOS PKUNZIP command if
member.zip exists, to uncompress the SAS dataset before proceeding. This assumes you
have the file permissions to allow uncompressing in place. If the file is already uncom-
pressed, this option is ignored.

where: by default, a list or data frame which contains all the variables is returned. If you specify
where, each individual variable is placed into a separate object (whose name is the name
of the variable) using the assign function with the where argument. For example, you can
put each variable in its own file in a directory, which in some cases may save memory over
attaching a data frame.

code: a special missing value code (A through Z or underscore) to check against. If code is
omitted, is.special.miss will return a T for each observation that has any special missing
value.

VALUE

A data frame resembling the SAS dataset. If id was specified, that column of the data
frame will be used as the row names of the data frame. Each variable in the data frame
or vector in the list will have the attributes label and format containing SAS labels and
formats. Underscores in formats are converted to periods. Formats for character variables
have $ placed in front of their names. If formats is T and there are any appropriate format
definitions in format.library, the returned object will have attribute formats containing
lists named the same as the format names (with periods substituted for underscores and
character formats prefixed by $). Each of these lists has a vector called values and one
called labels with the PROC FORMAT; VALUE ... definitions.

SIDE EFFECTS

if a SAS error occurs the SAS log file will be printed under the control of the pager function.

DETAILS

If you specify special.miss=T and there are no special missing values in the data SAS
dataset, the SAS step will bomb.

For variables having a PROC FORMAT VALUE format with some of the levels undefined, sas.get
will interpret those values as NA if you are using recode.

If you leave the sasprog argument at its default value of "sas", be sure that the SAS
executable is in the PATH specified in your autoexec.bat file. Also make sure that you invoke
S so that your current project directory is known to be the current working directory. This
is best done by creating a shortcut in Windows95, for which the command to execute will
be something like drive:\spluswin\cmd\splus.exe HOME=. and the program is flagged to
start in drive:\myproject for example. In this way, you will be able to examine the SAS
log file easily since it will be placed in drive:\myproject by default.

SAS will create SASWORK and SASUSER directories in what it thinks are the current working
directories. To specify where SAS should put these instead, edit the config.sas file or spec-
ify a sasprog argument of the following form: sasprog="\sas\sas.exe -saswork c:\saswork
-sasuser c:\sasuser".

When sas.get needs to run SAS it is run in iconized form.
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The SAS macro sas_get uses record lengths of up to 4096 in two places. If you are
exporting records that are very long (because of a large number of variables and/or long
character variables), you may want to edit these LRECLs to quadruple them, for example.

NOTE

If sasout is not given, you must be able to run SAS on your system.

If you are reading time or date-time variables, you will need to execute the command
library(chron) to print those variables or the data frame.

BACKGROUND

The references cited below explain the structure of SAS datasets and how they are stored.
See SAS Language for a discussion of the “subsetting if” statement.

AUTHORS

Frank Harrell, University of Virginia, Terry Therneau, Mayo Clinic, Bill Dunlap, University
of Washington and MathSoft.

REFERENCES

SAS Institute Inc. (1990). SAS Language: Reference, Version 6. First Edition. SAS
Institute Inc., Cary, North Carolina.

SAS Institute Inc. (1988). SAS Technical Report P-176, Using the SAS System, Release
6.03, under unix Operating Systems and Derivatives. SAS Institute Inc., Cary, North
Carolina.

SAS Institute Inc. (1985). SAS Introductory Guide. Third Edition. SAS Institute Inc.,
Cary, North Carolina.

SEE ALSO

data.frame, describe, impute, chron, print.display, label

EXAMPLE

> mice ← sas.get("saslib", mem="mice", var=c("dose", "strain", "ld50"))

> plot(mice$dose, mice$ld50)

> nude.mice ← sas.get(lib=unix("echo $HOME/saslib"), mem="mice",

ifs="if strain=’nude’")

> nude.mice.dl ← sas.get(lib=unix("echo $HOME/saslib"), mem="mice",

var=c("dose", "ld50"), ifs="if strain=’nude’")

> # Get a dataset from current directory, recode PROC FORMAT; VALUE ...

> # variables into factors with labels of the form "good(1)" "better(2)",

> # get special missing values, recode missing codes .D and .R into new

> # factor levels "Don’t know" and "Refused to answer" for variable q1

> d ← sas.get(mem="mydata", recode=2, special.miss=T)

> attach(d)

> nl ← length(levels(q1))

> lev ← c(levels(q1), "Don’t know", "Refused")

> q1.new ← as.integer(q1)

> q1.new[is.special.miss(q1,"D")] ← nl+1

> q1.new[is.special.miss(q1,"R")] ← nl+2
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> q1.new ← factor(q1.new, 1:(nl+2), lev)

> # Note: would like to use factor() in place of as.integer ... but

> # factor in this case adds "NA" as a category level

>

> d ← sas.get(mem="mydata", recode=T)

> sas.codes(d$x) # for PROC FORMATted variables returns original data codes

> d$x ← code.levels(d$x) # or attach(d); x ← code.levels(x)

> # This makes levels such as "good" "better" "best" into e.g.

> # "1:good" "2:better" "3:best", if the original SAS values were 1,2,3

> # For the following example, suppose that SAS is run on a

> # different machine from the one on which S is run.

> # The sas_get macro is used to create files needed by

> # sas.get (To make a text file containing the sas_get macro

> # run the following S command, for example:

> # cat(sas.get.macro, file=’/sasmacro/sas_get.sas’, sep=’\n’)
>

> # Here is the SAS job. This job assumes that you put

> # sas_get.sas in an autocall macro library.

>

> # libname db ’/my/sasdata/area’;

> # %sas_get(db.mydata, dict, data, formats, specmiss,

> # formats=1, specmiss=1)

>

> # Substitute whatever file names you may want.

> # Next the 4 files are moved to the S machine (using

> # ascii file transfer mode) and the following S

> # program is run:

>

> mydata ← sas.get(sasout=c(’dict’,’data’,’formats’,’specmiss’),

+ id=’idvar’)

>

> # If PKZIP is run after sas_get, e.g. "PKZIP port dict data formats"

> # (assuming that specmiss was not used here), use

>

> mydata ← sas.get(sasout=’a:port’, id=’idvar’)

>

> # which will run PKUNZIP port to unzip a:port.zip, creating the

> # dict, data, and formats files which are interpreted (and leter

> # deleted) by sas.get

sas.get calls a SAS macro which produces an ASCII dataset and then uses scan to read it into
an S object. If there are errors during the SAS macro processing step, the log file is displayed on the
screen (unless quiet=T). This way you can usually know what type of error you have. A common
error is that your dataset is in some directory and your formats catalog is in another while omitting
the formats.library argument to sas.get (see below). Another error you may find is the message
“file such and such not found”. On some systems, this condition may occur if your SAS dataset has
not been modified in a while and the system compressed it automatically. Set uncompress=T in this
case. Also, if you don’t have special missing values, do not set special.miss to T.

The sas_get SAS macro specifies the system option NOFMTERR, so if customized formats or format
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libraries are not found, SAS will procede as if the offending variables did not have a format associated
with them. This works fine when the undefined formats correspond to variables not requested for
retrieval. If however you request a variable having a missing format, you may not know about it
until you run describe or other functions.

3.2.4 Handling Date Variables in R

R has a comprehensive way of storing and operating on date, time, and date/time values based
on POSIX notation. Type ?DateTimeClasses for details. If you import SAS datasets into R using
sas.get, SAS date, time, and date/time variables are automatically converted into R’s POSIXct
variables.

If you read date/time fields from ASCII text files, the following example shows how to convert
into POSIXct variables. Suppose that a comma separated file test.csv contains the following data:

age,date
21,12/31/02
22,01/01/03
23,1/1/02
24,12/1/02
25,12/1/02
26,

The following program can read and recode the data.

> mydata

age date

1 21 12/31/02

2 22 01/01/03

3 23 1/1/02

4 24 12/1/02

5 25 12/1/02

6 26

> d ← mydata$date

> d

[1] 12/31/02 01/01/03 1/1/02 12/1/02 12/1/02

Levels: 01/01/03 1/1/02 12/1/02 12/31/02

> d ← as.POSIXct(strptime(as.character(d),format=’%m/%d/%y’))

> # For 4-digit years, use format=’%m/%d/%Y’

> # If data were in the format yyyy-mm-dd the conversion would

> # be as simple as d <- as.POSIXct(d)

> d

[1] "2002-12-31 EST" "2003-01-01 EST" "2002-01-01 EST" "2002-12-01 EST"

[5] "2002-12-01 EST" NA

> format(d, ’%d%b%Y’)

[1] "31Dec2002" "01Jan2003" "01Jan2002" "01Dec2002" "01Dec2002" NA

> # Create a function to make it easy to reformat multiple variables
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> dtrans ← function(x, format=’%m/%d/%y’)

+ as.POSIXct(strptime(as.character(x),format))

>

> mydata$date ← dtrans(mydata$date)

> mydata

age date

1 21 2002-12-31

2 22 2003-01-01

3 23 2002-01-01

4 24 2002-12-01

5 25 2002-12-01

6 26 <NA>

> unclass(mydata$date) # internal values

[1] 1041310800 1041397200 1009861200 1038718800 1038718800 NA

3.3 Displaying Metadata

The Hmisc contents function displays data about a data frame, including variable labels (if any),
units (if any) storage modes, number of NAs, and the number of levels for factor variables. Here
is an example.

> contents(pbc)

418 observations and 19 variables Maximum # NAs:136

Labels Levels Storage NAs

bili Serum Bilirubin (mg/dl) single 0

albumin Albumin (gm/dl) single 0

stage Histologic Stage, Ludwig Criteria single 6

protime Prothrombin Time (sec.) single 2

sex Sex 2 integer 0

fu.days Time to Death or Liver Transplantation single 0

age Age single 0

spiders Spiders 2 integer 106

hepatom Hepatomagaly 2 integer 106

ascites Ascites 2 integer 106

alk.phos Alkaline Phosphatase (U/liter) single 106

sgot SGOT (U/ml) single 106

chol Cholesterol (mg/dl) single 134

trig Triglycerides (mg/dl) single 136

platelet Platelets (per cm^3/1000) single 110

drug Treatment 3 integer 0

status Follow-up Status single 0

edema Edema 3 integer 0

copper Urine Copper (ug/day) single 108

> con <- contents(pbc)

> print(con, sort=’names’) # or sort=’labels’,’NAs’
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418 observations and 19 variables Maximum # NAs:136

Labels Levels Storage NAs

age Age single 0

albumin Albumin (gm/dl) single 0

alk.phos Alkaline Phosphatase (U/liter) single 106

ascites Ascites 2 integer 106

. . . .

3.4 Adjustments to Variables after Input

Whether raw data or a SAS dataset is used to create a data frame, and whether you used a command
or a mouse click to import the data, it is frequently the case that variable names, labels, or value codes
need adjustment. These items may be easily changed once and for all or they may be changed every
time the data frame is “attached” (see Section 4.1.1). To change variable attributes permanently,
the recommended approach is to use the Hmisc upData function (Section 4.1.5). But here are some
of the basic methods that are available. For changing individual variables in a list or data frame we
rely first on the $ operator for addressing individual variables in a permanent list of variables. This
was introduced in Section 2.5.2. The advantage of making permanent changes in the data frame is
that all interactive analyses of that data frame will take advantage of all the new variable names
and annotations without prefacing the analysis with statements such as those found below.

In S-Plus Version 4.x and 2000 it is easy to change variable names by editing column names on
a data sheet, but you will have to re-do this every time the source dataset changes and is in need
of re-importing. The following method using the edit function has the same disadvantage but it
works in all versions of S-Plus. Suppose that df is the newly created permanent data frame. The
names may be edited using

names(df) ← edit(names(df))

or you can change individual names using for example

names(df)[2] ← ’Age’

This changed the name of the second variable on the data frame. Here is a trick for changing all the
names to lower case:

names(df) ← casefold(names(df)) # casefold is builtin

Note: When the data are imported from an ASCII file, the best way to specify variable names is to
enter them into the “column names” box under the Options tab during the file import operation.

To permanently change or define labels for variables, you can use statements such as the following.

label(df$age) ← ’Age in years’

label(df$chol) ← ’Cholesterol (mg%)’

To define or change value labels we use the factor function and the levels attribute (if the variable
is already a factor). Suppose that one variable, sex, has values 1 and 2 and that we need to define
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these as ’female’ and ’male’, respectively, so that reports and plots will be annotated. Suppose
that another variable is already a factor vector, but that we do not like its levels (’a’,’b’,’c’).
The following statements will fix both problems.

df$sex ← factor(df$sex, 1:2, c(’female’,’male’))

levels(df$treat) ← c(’Treatment A’,’Treatment B’,’Treatment C’)

# This can also be done with the following command

df$treat ← factor(df$treat, c(’a’,’b’,’c’),

c(’Treatment A’,’Treatment B’,’Treatment C’))

When a variable is already a factor and you wish to change its levels, you can also use the edit
function:

levels(v) ← edit(levels(v))

Sometimes the input data will contain a factor variable having one or more unused levels. You can
delete unused levels from the levels attribute of a variable, say x, by typing x ← x[,drop=T]. If
the Hmisc library is in effect you merely have to type x ← x[] as Hmisc uses a default value of
drop=T for its [.factor factor subsetting method.

Other sections show how to define labels and value labels when you only want temporary assign-
ments. This is simpler as you do not need the data frame prefix as in the statements above. You
can also attach the data frame in search position one to alleviate the need for the $ prefixing:

attach(df, pos=1, use.names=F)

sex ← factor(sex, 1:2, c(’female’,’male’))

levels(treat) ← ...

label(w3) ← ’A-V area’

detach(1, ’df’)

See Section 4.1.1 for more on this point. See section Section 4.4 for more details about recoding
variables, Section 4.1.3 for how to add new variables, and Section 4.1.4 for how to delete variables.
Section 4.5 has a review of the many steps one typically goes through to create ready–to–analyze
data frames.

See Section 3.1 for more about the cleanup.import function, which can be run on any data
frame.

3.5 Writing Out Data

There are generally two instances in which you want to write output to a file. To produce a printed
report (which may be enhanced by using some kind of publishing software), or to produce a dataset
which may be shared with other users. In the latter case, especially if the other users are not using
S-Plus, the most straightforward way is to use File ... Export or DBMSCOPY or to write an
ASCII file. The latter approach can be done with the function write.table.

3.5.1 Writing ASCII files

write.table is very similar to read.table. Its arguments and an example follow.
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> args(write.table)

function(data, file = "", sep = ",", append = F, quote.strings = F,

dimnames.write = T, na = NA, end.of.row = "\n")
> write.table(df,"df.ascii",sep=" ",dimnames.write=F,quote.strings=T)

> !less df.ascii # escaping to UNIX and using the ’less’ pager

> # Could use !notepad df.ascii under Windows

"Treatment 1" 2.5

"Treatment 1" 3.5

"Treatment 1" 3.0

"Treatment 2" 4.6

"Treatment 2" 5.5

"Treatment 2" 5.3

3.5.2 Transporting S Data

S-Plus stores objects in an internal binary format that is specific to each hardware platform. For-
tunately there is an ASCII transport format that can be used to move objects between any two
machines. This format is called dumpdata or transport file format. You can write any S-Plus object
to a transport file using the data.dump function3, and you can read such files using data.restore.
These functions also allow you to write or read a single file containing any number of objects. You
can use the File ... Export Data or File ... Import Data dialogs to write or read transport
files. When you read, all the objects are created or re-created into search position one.

3.5.3 Customized Printing

The basic function for producing customized output is the cat function. When used in conjunction
with other functions like paste, round and format, it can print nicely formatted reports. The basic
syntax for cat is cat("character string 1",object,"character string 2"). Ex:

> cat("The mean of x is",mean(x))

The mean of x is 4.06666666666667>

Two problems are immediately apparent here: one is that mean(x) is producing too many decimals.
The other is that cat is not going to a new line after being executed. To go to a new line, the newline
character \n must be included explicitly. To control the number of digits the functions round or
format can be used. round(mean(x),3) will round the output of mean(x) to three significant digits,
while format(mean(x)) will print mean(x) with as many digits as the digits options is set.

> cat("The mean of x is",round(mean(x),3),"\n")
The mean of x is 4.067

> options()$digits

[1] 7

> options(digits=4)

> cat("The mean of x is",format(mean(x)),"\n")
The mean of x is 4.067

The options function controls some of the system options that are assumed by default such as
maximum object size, number of digits, width of a printed line, etc. You can see all the options by

3To make the result backward compatible, specify oldStyle=T to data.dump when running on S-Plus 5 or 6.
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typing options(). The result of this action is a list, that’s why we typed options()$digits to get
the value of just the digits option. The effect of format is to coerce objects to become character
strings using a common format.
cat prints its arguments in the order in which it encounters them, so, to print something like “value
1 value 2 ... value 10” you would have to type cat("value 1", ... ,"value 10"). The paste
function is more efficient for this purpose

> paste("Value",1:10)

[1] "Value 1" "Value 2" "Value 3" "Value 4" "Value 5" "Value 6"

[7] "Value 7" "Value 8" "Value 9" "Value 10"

Using cat in conjunction with paste will give us a nicer output

> cat(paste("Value",1:10),fill=8)

Value 1

Value 2

Value 3

Value 4

Value 5

Value 6

Value 7

Value 8

Value 9

Value 10

paste returned a character string, using cat deleted the quotation marks. The argument fill
instructed cat to put a new line at 8 characters. Other arguments to cat include file to send the
output to a file that you name, append to cause cat to append any new output to an existing file
(or destroy the contents of the file), and sep to insert characters between the arguments to cat in
the output. (sep=" " is the default. It can be changed to "" for no spaces).

The print.char.matrix function built-in to S-Plus is useful for printing hierarchical tables, as
it automatically draws boxes separating cells of a table, and each cell can comprise multiple output
lines. For R, print.char.matrix is in the Hmisc library.

3.5.4 Sending Output to a File

You can have S send the output of all commands to a file by using the sink function. cat will only
send the results of its output to a file, while sink will send the results of every command to a file
you name (or a command) until you instruct it not to do so.

> sink("myfile") # Send output to file myfile

> cat("The mean of x is",round(mean(x),3))

> sink() # Redirect output to the S session

3.6 Using the Hmisc Library to Inspect Data

Once the data are read into S, the Hmisc library can be helpful in understanding them as well as
checking for “holes” and invalid data. Suppose a data frame named w has been created. Here is a
suggested program for taking some initial looks. See Section 4.3.3 for more on the sapply function.



68 CHAPTER 3. DATA IN S

w.des ← describe(w) # save describe() output

page(w.des, multi=T) # put it in a Window that can linger

win.graph() # open graphics window - openlook(), motif(), X11() for UNIX

# not needed for S-Plus 4.x or later

# First make a dot chart of the number of NAs for each variable,

# sorting variables so that the worst offender is at the top

m ← sapply(w,function(x)sum(is.na(x)))

dotplot(sort(m), xlab=’NAs’) # naplot below does this automatically

na.pattern(m) # gets frequencies of all NA patterns but

# treats factor variables as always non-NA

nac ← naclus(w) # compute all pairwise proportions of missing

# data and cluster variables according to similarity

# of occurrences of NAs

nac # print matrix of pairwise proportions

plot(nac) # cluster NA patterns graphically

naplot(nac) # other displays of patterns of NA

hist.data.frame(w) # matrix of histograms for all non-binary variables

# also shows number of NAs

datadensity(w) # make single graph with strip plots (1-dimensional

# scatterplots or rug plots) for all variables in w

# also consider using builtin plot(w)

ecdf(w) # draw empirical cumulative distributions for all

# continuous variables. Also consider using bpplot().

# Now depict how the variables cluster, using squared Spearman rank

# correlation coefficients as similarity measures. varclus uses

# rcorr which does pairwise deletion of NAs

plot(varclus(∼ x1 + x2 + x3 + ..., data=w))

# Assumes variables are named x1, x2, x3, ...

# Use plot(varclus(∼., data=w)) to analyze all variables

# If any of the variables is missing frequently (say x2), find out what

# predicts its missingness. Use a regression tree

f ← tree(is.na(x2) ~ x1 + x3, data=w)

# Could have used attach(w) to avoid data= above

plot(f, type=’uniform’)

text(f)

# Other useful functions for more detailed examinations of the data

# are bwplot, bpplot (box-percentile plots), bwplot with

# panel=panel.bpplot, and symbol.freq (for depicting

# two-way contingency tables).

See Section 11.3 for information about the ecdf, datadensity, and bpplot functions, and Section
6.1 for information about symbol.freq. See also the builtin function cdf.compare. And don’t forget
a wonderful built-in function ‘plot.data.frame’ that nicely displays continuous variables (using CDFs
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turned sideways) and categorical ones (using frequency dot charts). With a high-resolution printer
you can see up to 40 variables clearly on a single page. Here is an example.

par(mfrow=c(5,8)) # allow up to 40 plots per page

plot(w) # invokes plot.data.frame since w is a data frame

par(mfrow=c(1,1)) # reset to one plot per screen

See Section 11.4 for examples of the use of the trellis library instead of datadensity for drawing
“strip plots” for depicting data distributions and data densities stratified by other variables.

When you permanently store the result of the describe function (here, in w.des), you can
quickly replay it as needed, either by printing it by simply stating its name, or by using page to put
it in a new window. If page had already been run with multi=T you merely click on that window’s
icon to restore it. Note that the page command4 causes the pop-up window to remain after you exit
from S-Plus when multi=T. That way you can open the data description whether you are currently
in S-Plus or not. In addition to displaying the w.des object, you can easily display any subset of
the variables it describes:

w.des[20:30] # display description of variables 20-30

page(w.des[c(1:10,30:40)]) # page display variables 1-10, 30-40

w.des[c(’age’,’sex’)] # display 2 variables

w.des$age # display single variable

4This is true for Windows, and for UNIX if you set your pager to be a window utility such as xless.
An excellent pager for Windows is the PFE editor described in Section 1.9. You can set this up by typ-
ing options(pager=’/pfe/pfe32’) or clicking on Options ... General Settings ... Computation, for example.
Then by using multiple commands of the form page(object,multi=T) you can have PFE manage all of the pager
windows, as by default PFE will add new open files when it is called repeatedly, i.e., it will not invoke an entirely new
copy of pfe32.exe. Perhaps an even better pager is an Emacs client. In Windows 95/NT you would set this up by
using the command options(pager=’gnuclient -q’).
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Chapter 4

Operating in S

4.1 Reading and Writing Data Frames and Variables

In the introduction we created a subdirectory of your working directory called .Data (or _Data)
because this allows for more organized data management, and because this is the default location
in which S-Plus places new data. This way, all the objects that you create for a particular project
are available since S-Plus will search by default in .Data if it exists. However, .Data is not the
only directory available to you to store or search for objects. By default, when you start S, a search
list is established and a series of directories is accessed sequentially looking for objects or functions.
Said list can be modified. The function to display the search list is search(). Its purpose is similar
to the PATH command in DOS or UNIX. search() will give us a list of all the directories that S
searches looking for functions and data.

> library(Hmisc, T)
> library(Design,T)
> search()
[1] "_Data"
[2] "D:\\SPLUSWIN\\library\\Design\\_Data"
[3] "D:\\SPLUSWIN\\library\\hmisc\\_Data"
[4] "D:\\SPLUSWIN\\splus\\_Functio"
[5] "D:\\SPLUSWIN\\stat\\_Functio"
[6] "D:\\SPLUSWIN\\s\\_Functio"
[7] "D:\\SPLUSWIN\\s\\_Dataset"
[8] "D:\\SPLUSWIN\\stat\\_Dataset"
[9] "D:\\SPLUSWIN\\splus\\_Dataset"
[10] "D:\\SPLUSWIN\\library\\trellis\\_Data"

The above search list contains directories, but you can also attach data frames to the list. When
a data frame is in the search list, the variables within that data frame are available without using
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the name of the data frame as a prefix to the variable name.

4.1.1 The attach and detach Functions

To be able to reference objects (data frames, functions, vectors, etc.) that are not in the default
search path, you can use the attach function. The main argument to attach is a directory name
in single or double quotes or the name of a data frame or list without quotes. As an example, let us
attach another directory that contains a variety of S objects. Recall that even in Windows we can
specify forward slashes in file and directory names inside of S-Plus. You can also use a backward
slash but it must be doubled, as \ is an escape character when inside character strings.

> attach(’c:/analyses/support/_Data’)
> search()
[1] "_Data"
[2] "c:/analyses/support/_Data"
[3] "D:\\SPLUSWIN\\library\\Design\\_Data"
[4] "D:\\SPLUSWIN\\library\\hmisc\\_Data"
[5] "D:\\SPLUSWIN\\splus\\_Functio"
[6] "D:\\SPLUSWIN\\stat\\_Functio"
[7] "D:\\SPLUSWIN\\s\\_Functio"
[8] "D:\\SPLUSWIN\\s\\_Dataset"
[9] "D:\\SPLUSWIN\\stat\\_Dataset"
[10] "D:\\SPLUSWIN\\splus\\_Dataset"
[11] "D:\\SPLUSWIN\\library\\trellis\\_Data"

Now list the individual objects in /analyses/support/_Data, which is in search position 2. The
objects function (a replacement for an older function, ls) will do this.

> objects(2)

[1] ".First" ".Last.value" ".Random.seed" "backward"

[5] "combined" "combphys" "desc.combined" "dnrprob"

[9] "last.dump" "mdemoall"

The objects.summary function will provide a more detailed listing. First let’s find out how to call
it.

> args(objects.summary)

function(names. = NULL, what = c("data.class", "storage.mode",

"extent", "object.size", "dataset.date"), where = 1, frame =

NULL, pattern = NULL, data.class. = NULL, storage.mode. =

NULL, mode. = "any", all.classes = F, order. = NULL, reverse

= F, immediate = T)

> objects.summary(where=2)

data.class storage.mode extent object.size

.First function function 1 282

.Last.value describe list 14 11904

.Random.seed numeric integer 12 81

backward data.frame list 6201 x 9 280180

combined data.frame list 10281 x 150 7610275
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combphys data.frame list 10281 x 166 7025122

desc.combined describe list 152 129733

dnrprob data.frame list 10281 x 27 1283865

last.dump list list 3 353

mdemoall data.frame list 1757 x 14 136496

dataset.date

.First 96.04.11 6:28

.Last.value 97.04.11 10:18

.Random.seed 0

backward 96.04.11 6:31

combined 97.04.08 14:56

combphys 97.04.11 10:18

desc.combined 97.04.08 15:01

dnrprob 96.09.17 17:23

last.dump 97.03.06 14:07

mdemoall 97.04.11 10:18

For examples to follow we will use the data frames pbc and prostate. You may obtain these
from the Vanderbilt Biostatistics web site under Datasets. The file suffixes are .sdd so they may be
easily imported as S-Plus transport files using File ... Import. Let us suppose these datasets
have already been imported into the current project area’s D̆ata area. If you are using R or a recent
version of the Hmisc library (with wget.exe installed if using Windows) you can easily download
and access datasets from the Vanderbilt web site using the Hmisc library’s getHdata function.

> getHdata(prostate) # downloads, imports, runs cleanup.import
> find(prostate)
[1] "_Data"

First let’s examine the variables in prostate using the describe function in Hmisc. We will first
call describe on individual variables. As prostate has not yet been attached, we must prefix its
variables with prostate.

> names(prostate)

[1] "patno" "stage" "rx" "dtime" "status" "age" "wt" "pf"

[9] "hx" "sbp" "dbp" "ekg" "hg" "sz" "sg" "ap"

[17] "bm" "sdate"

> describe(prostate$age)

prostate$age : Age in Years

n missing unique Mean .05 .10 .25 .50 .75 .90 .95

501 1 41 71.46 56 60 70 73 76 78 80

lowest : 48 49 50 51 52, highest: 84 85 87 88 89

-------------------------------------------------------------------------------

> describe(prostate$rx)

prostate$rx : Treatment

n missing unique

502 0 4

placebo (127, 25%), 0.2 mg estrogen (124, 25%), 1.0 mg estrogen (126, 25%)

5.0 mg estrogen (125, 25%)

-------------------------------------------------------------------------------
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In this example names(prostate) gave us the variables in the data frame and describe(
prostate$age ) and describe( prostate$rx ) some basic statistics on a couple of variables.
describe recognizes automatically the type of variable (continuous, categorical (factor), or binary)
and gives appropriate descriptive statistics (mean and quantiles, frequency table1, or proportion, re-
spectively), Except for binary variables, the 5 lowest and highest unique values are also given, and
for any variable the sample size, number of unique values, and number of missing values is given.
When the impute function has been used to impute missing values with “best guesses”, describe
prints the number of imputed values. When the variable was imported from SAS using sas.get,
special missing values were present, and the special.miss option was used, describe will also
report the frequency of the various special missing values.

Notice that since prostate is a data frame, we are using the $ notation to refer to its components.
This can be rather inconvenient and cumbersome. To make things simpler, we can use the attach
function to attach the data frame in position one (or two, or whatever) in the search list. By default,
attach will place objects (which should be data frames or lists) in position 2. The remaining items
move down one position.

> attach(prostate) # Default placement is search position 2

> search()

[1] "_Data"
[2] "prostate"
[3] "c:/analyses/support/_Data"
[4] "D:\\SPLUSWIN\\library\\Design\\_Data"
[5] "D:\\SPLUSWIN\\library\\hmisc\\_Data"
[6] "D:\\SPLUSWIN\\splus\\_Functio"
. . . .

> describe(age)
age : Age in Years

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
501 1 41 71.46 56 60 70 73 76 78 80
lowest : 48 49 50 51 52, highest: 84 85 87 88 89
-------------------------------------------------------------------------------

When the data frame (or any other recursive object, e.g., a list) is attached to the search list
all its components can be accessed directly. This is the case regardless of the position on the
search list. The advantage of using position one is that if you have another version of a vari-
able in another dataframe or directory in the search list, then you can be sure you are operat-
ing on the intended version since the search list is accessed sequentially (i.e., we could have used
attach(prostate,pos=1,use.names=F)). However, this will use more memory.

If the object is attached in position one, all objects created from now on will be kept in memory
and disappear when we quit S-Plus or detach the object unless we intstruct it to save them (using
for example detach(1, ’prostate’)). Keep in mind that for large data frames the attach function
may take a while to take effect and it will use a lot of memory.

R does not support attaching a data frame in search position one, and at any rate this practice
has been found to cause major problems to many programmers, especially those forgetting to detach
the data frame upon completion of the modifications to it.

1If the variable has more than 20 unique values, the frequency table is omitted.
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Another way to make attach use less memory in S-Plus is to specify the use.names=F param-
eter2. By default, attaching a data frame causes the row.names attribute of the data frame to
be copied to each object within the frame, as that object’s name attribute. When for example the
row.names represent a subject ID, this can be helpful in identifying observations. But this can result
in a doubling of memory usage. It is more efficient to associate names with only the variables whose
observations you need to identify, or to just reference the row.names. The example below illustrates
these.

> attach(titanic, use.names=F)

> record.id ← row.names(titanic)

> names(pclass) ← names(age) ← record.id

> # This isn’t so effective here as row.names(titanic) were just

> # record numbers in character form, not passenger names

> # We could have done names(pclass) ← name

The function to take the data frame off the search list is detach. It has two arguments, what and
save. what is usually a number denoting a postion in the search list and save could be a character
string with the name of the object where we will store the (possibly) modified data frame.

> attach(prostate,pos=1,use.names=F)

> ageg50 ← age[age>50]

> length(ageg50)

[1] 497

> sqrt.age ← sqrt(age)

> length(sqrt.age)

[1] 502

> detach(1,save="pros")

Deleted before detaching: ageg50

Here we had the data frame prostate attached in position one. We created two new vectors, ageg50
and sqrt.age. Since ageg50 is shorter than the rest of the variables in the data frame it was deleted
before detaching and not added to the new data frame pros.

> names(pros)

[1] "patno" "stage" "rx" "dtime" "status" "age"

[7] "wt" "pf" "hx" "sbp" "dbp" "ekg"

[13] "hg" "sz" "sg" "ap" "bm" "sdate"

[19] "sqrt.age"

sqrt.age is a new variable. We could have also said detach(prostate,save=F) which would have
deleted sqrt.age before detaching. This form works much faster than trying to save new variables.
There is a way to save the value of ageg50 with the dataframe by making it into a parametrized
dataframe. See Spector’s book page 37 for an example. Whether it makes any sense to do this is
another matter. Also, we question whether it is useful to create easily derived variables such as
sqrt.age, as sqrt(age) may be used in any future S expression where age is analyzed. See Section
4.4.3.

Because attach modifies the search list, its use is sometimes to be discouraged. In R the with
function is an excellent substitute in many contexts. This allows one to reference variables inside a
data frame using for example

2R does not have this parameter, and does not put data frame row.names as names attribute of vectors.



76 CHAPTER 4. OPERATING IN S

with(prostate, tapply(age, stage, mean, na.rm=T))

Multiple commands may reference variables inside a data frame using for example

with(prostate,

{
ma ← mean(age, na.rm=T)

fr ← table(stage)

print(ma)

})

R also allows the analyst to add new variables to a data frame or to recompute existing variables
without attach and detach using the transform function.

4.1.2 Subsetting Data Frames

In many cases, one analyzes all of the observations and most of the variables in a data frame. If a
subset of the data needs to be analyzed for a small part of the job, one can easily process temporary
subsets as in the following examples.

plot(age[sex==’male’],height[sex==’male’])

s ← sex==’male’

plot(age[s], height[s]) # equivalent to last example

f ← lrm(death ∼ age*height, subset=sex==’male’)

When you want to subset the observations or variables in a data frame for an entire sequence of
operations, it may be better to subset the entire data frame. You can do this by creating a new
data frame using

df.males ← df[df$sex==’male’,]

but more typically by attaching a subset of the data frame. Here are several examples. One of them
uses the %nin% operator in the Hmisc library, which returns a vector of T and F values according to
whether the corresponding element of the first vector is not contained in the second vector. %nin%
is the opposite of the %in% operator in Hmisc.

attach(df[,c(’age’,’sex’)]) # only make age and sex available - save memory

attach(df[c(’age’,’sex’)]) # another way to subset variables using fact

# that df is a list in addition to a data frame

attach(df[,Cs(age,sex)]) # use the Cs function in Hmisc to save quoting

attach(df[df$sex==’male’,]) # get all variables but only for males

# need df$sex instead of sex because attach

# hasn’t taken effect yet

attach(df[1:100,c(1:2,4:7)])# get first 100 rows and variables 1,2,4,5,6,7

attach(df[,-4]) # don’t get variable number 4

attach(df[,names(df) %nin% c(’age’,’sex’)]) # get all but age and sex

attach(df[df$treat %in% c(’a’,’b’,’d’), names(df) %nin% Cs(age,sex)])

# get rows for treatments a,b,d and all but 2 var

attach(df[!(is.na(df$age) | is.na(df$sex)),]) # omit rows containing NAs

attach(df[!is.na(df$age+df$height),]) # shortcut if both vars numeric
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After the attach is in effect, referencing any of the included variables will reference the desired
subset of rows of the data frame which were attached.

In some ways a more elegant approach is to use the Hmisc subset function which is a copy of
the R subset function. The advantages of subset are that variable names do not need prefixing by
dataframe$, and subset provides an elegant notation for subsetting variables by looking up column
numbers corresponding to column names given by the user, which allows consecutive variables to
keep or drop to be specified. Here are some examples:

> # Subset a simple vector

> x1 ← 1:4

> sex ← rep(c(’male’,’female’),2)

> subset(x1, sex==’male’)

[1] 1 3

> # Subset a data frame

> d ← data.frame(x1=x1, x2=(1:4)/10, x3=(11:14), sex=sex)

> d

x1 x2 x3 sex

1 1 0.1 11 male

2 2 0.2 12 female

3 3 0.3 13 male

4 4 0.4 14 female

> subset(d, sex==’male’)

x1 x2 x3 sex

1 1 0.1 11 male

3 3 0.3 13 male

> subset(d, sex==’male’ & x2>0.2)

x1 x2 x3 sex

3 3 0.3 13 male

> subset(d, x1>1, select=-x1)

x2 x3 sex

2 0.2 12 female

3 0.3 13 male

4 0.4 14 female

> subset(d, select=c(x1,sex))

x1 sex

1 1 male

2 2 female

3 3 male

4 4 female

> subset(d, x2<0.3, select=x2:sex)

x2 x3 sex

1 0.1 11 male

2 0.2 12 female
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> subset(d, x2<0.3, -(x3:sex))

x1 x2

1 1 0.1

2 2 0.2

> attach(subset(d, sex==’male’ & x3==11, x1:x3))

4.1.3 Adding Variables to a Data Frame without Attaching

Attaching your data frame in search position one will allow you to add or change any number of
variables. There are other ways to add new variables to an existing data frame if you don’t want
to have the overhead of attaching it. Suppose that we wish to add two variables, x1 and x2, to an
existing data frame called df. Here are two approaches:

df$x1 ← pmax(df$y1, df$y2, df$y3)

df$x2 ← (df$y1 + df$y2 + df$y3) / 3

df ← data.frame(df, x1=pmax(df$y1, df$y2, df$y3),

x2=(df$y1 + df$y2 + df$y3)/3)

4.1.4 Deleting Variables from a Data Frame

Setting a variable to the NULL value will cause it to be deleted permanently from the list3:

df$age ← NULL

df[c(’age’,’sex’)] ← NULL # delete 2 variables

df[Cs(age,sex)] ← NULL # same thing

To remove variables that are inside a data frame currently attached in position 1, use statments
such as the following.

age ← NULL

sex ← pressure ← NULL

Do not use rm(varname), remove(’varname’), or remove(’df$varname’) to remove a variable
from a data frame. Use one of the two methods above, or use the object explorer.

4.1.5 A Better Approach to Changing Data Frames: upData

Attaching data frames in search position one turns out to be one of the most confusing and dangerous
things to new S-Plus users. New users tend to forget to detach search position one, and attach a
data frame again in search position one, which can at worst corrupt the search list and at best make
things very confusing. The Hmisc upData function provides a unified framework for updating a data
frame. It accomplishes the following, listed in order in which changes are executed by the function:

1. optionally changes names of variables to lower case

2. renames variables
3This is assuming that the data frame is in a directory that is in search position 1, e.g., the Data directory. This

will not work if store() is in effect.
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3. adds new variables

4. recomputes existing variables from the original variable and/or from other variables in the
data frame

5. changes the storage mode of variables to the most efficient mode (as done with cleanup.import)
(by default, floating point variables are stored in single precision,4 always integer-valued vari-
ables are stored as integers)

6. drops variables

7. adds, changes, and combines levels of factor variables

8. adds or changes variable label attributes

9. adds or changes variable units (units of measurement) attributes

Here is an example.

dat ← data.frame(a=(1:3)/7, y=c(’a’,’b1’,’b2’), z=1:3)

dat2 ← upData(dat, x=x^2, x=x-5, m=x/10,

rename=c(a=’x’), drop=’z’,

labels=list(x=’X’, y=’test’),

levels=list(y=list(a=’a’,b=c(’b1’,’b2’))))

# Note that levels b1 and b2 of y are collapsed to ’b’

Input object size: 662 bytes; 3 variables

Renamed variable a to x

Modified variable x

Modified variable x

Added variable m

Dropped variable z

New object size: 818 bytes; 3 variables

dat2

x y m

1 -4.979592 a -0.4979592

2 -4.918367 b -0.4918367

3 -4.816327 b -0.4816326

describe(dat2)

dat2

3 Variables 3 Observations

---------------------------------------------------------------------------

x : X

n missing unique Mean

3 0 3 -4.905

4This is not in R, which has no single precision.
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-4.816 (1, 33%), -4.918 (1, 33%), -4.980 (1, 33%)

---------------------------------------------------------------------------

y : test

n missing unique

3 0 2

a (1, 33%), b (2, 67%)

---------------------------------------------------------------------------

m

n missing unique Mean

3 0 3 -0.4905

-0.4816 (1, 33%), -0.4918 (1, 33%), -0.4980 (1, 33%)

---------------------------------------------------------------------------

A safe approach is to return the result of upData into a new object name, then to check the object
(using describe, for example) and to copy it back into the original data frame name. For example,

dat ← dat2

rm(dat2) # remove data frame created by upData

There are two ways to turn a variable into a factor using upData. First, you can use levels =
list(varname = list(...)) as was done above. This is flexible because you can combine levels
into “super levels”.5 Note that new levels are on the left hand side of equal signs, and that these
only need to be in quotes if they are not legal S names. The second approach involves recomputing
a variable, for example:

d ← data.frame(a=1:2)

d ← upData(d, a=factor(a,1:2,c(’a’,’b’)))

4.1.6 assign and store

Up to now we have been storing any new objects that we created permanently in the .Data sub-
directory in S-Plus. Another way to work is to attach the data frame in position one and create
temporary objects that we may need with the option to save them later along with the dataframe.
If we wanted to save them independently of the dataframe, or you want to put an object in any
directory of your choice, the function to use is assign.

> args(assign)

function(x, value, frame, where = NULL, ...)

> assign("ageg50",ageg50,where="_Data") # or .Data in UNIX

> # use assign(...., where=’c:/mine/project/_Data’) to use another directory

This way of working has the advantage to let us create objects temporarily and save only those that
we need. That is very useful in an interactive system such as S where one tends to create objects
with names like x, y, m, f, etc. The disadvantage is that you have to attach the dataframe in position
one, which uses a lot of memory and may slow us down. The store function in Hmisc can help you
keep your S-Plus .Data directory from filling up with temporary objects. It can also help in storing
objects in permanent locations of your choosing. For the latter purpose store works similarly to
assign except that the order of its arguments is different.

5This is done implicitly using the S-Plus merge.levels function; see its documentation for details.
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> args(store)

function(object, name = as.character(substitute(object)), where = ".Data")

If you type store() with no arguments, then a temporary directory is attached in position one; that
way any new objects reside in this temporary area until you quit S-Plus or decide to store them,
either in a dataframe or directly into a subdirectory.

> store()

> attach(prostate)

> ageg50 ← age[age>50]

> sqrt.age ← sqrt(age)

> search()
[1] "D:\\SPLUSWIN\\TMP\\file5C9.AD4"
[2] "_Data"
[3] "prostate"
[4] "c:/analyses/support/_Data"
[5] "D:\\SPLUSWIN\\library\\Design\\_Data"
. . . .
> objects()
[1] ".Last" ".Last.value" "ageg50" "sqrt.age"

> pros ← data.frame(prostate,sqrt.age)

> store(pros) # adds a new variable sqrt.age to the prostate data frame

# and store the result in a new permanent data frame pros

Warning messages:

"pros" assigned on database 3 but hidden by an object of the same name on

database 1 in: assign(name, object, where = where, immediate = T)

> store(ageg50,"age.greater.than.50") # store age50 under the name

# age.greater.than.50, permanently

If you have used store(), you can use another function, stores, which is also documented with the
store function. stores causes the list of objects (without quotes) to be copied from the temporary
directory in search position one to _Data or .Data. Here is an example program that stores two fit
objects in the project’s _Data directory.

df ← sas.get(’/my/sasdata’,’sasmem’,recode=T)

store()

fit1 ← lrm(death ∼ age*sex)

fit2 ← ols(blood.pressure ∼ age*sex)

stores(fit1,fit2) # same as store(fit1);store(fit2)

4.2 Managing Project Data in R

R uses a different mechanism from S-Plus for managing objects that does away with the need to use
store(). By default, R stores all the objects created in your session in a single file .RData. When
running R interactively, R asks whether you want to update .RData to contain newly created objects
upon termination of the session. As many of the objects are temporary, it is often best to answer
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n to this question and not use the .RData mechanism. It is appropriate however to store some of
your newly created data frames and selected other objects (such as regression fit objects that took
significant execution time to create) permanently. This can be done using R’s save function, and if
save’s compress option is used, the resulting file will be stored very compactly. Here is an example
session that creates and stores two objects.

a ← lm(y ∼ x1 + x2)

mydata ← read.csv(’/tmp/mydata.csv’) # import, creating data frame

save(a, mydata, file=’my.rda’, compress=TRUE)

# same as save(list=c(’a’,’mydata’), file=’my.rda’, compress=TRUE)

To retrieve the two objects in a future session use

load(’my.rda’)

When you wish to store objects in .rda files using the same base file name as the name of the object,
Hmisc has another way to and objects: the Load and Save functions. :

options(LoadPath=’../myrdata’) # omit to use current working directory

Save(mydataframe) # creates ../myrdata/mydataframe.rda

. . .

Load(mydataframe) # loads ../myrdata/mydataframe.rda

# creates object mydataframe in .GlobalEnv

Save always uses compression, and goes to extra trouble so that the internal name of the saved object
will be the name of the argument passed to Save. That way upon Load the newly created object
will be referenced by the original object name that was Save’ed. This method has the advantage of
having the user define the path for saved objects at the top of the program using options().

4.2.1 Accessing Remote Objects and Different Objects with the Same
Names

Ocassionally, we may want to have access to objects stored in some other directory but we don’t
really want to attach that directory. For example, a fitted model could be stored in some subdirectory
and we need to get predicted values from that model using data in the current directory. The get
function works very nicely in this case.

> z ← get("model", where=" ... ") # 2nd argument: full or relative path

Now the model object is available in the temporary directory (under the name z) and we can use it
for our needs.

Note: As mentioned above, attaching very big data frames takes a lot of memory and may cause
S to slow down significantly unless you have a great deal of RAM installed. It is best to attach only
part of the dataframe with the variables and observations you need for each particular problem, if
these are a small subset of the entire data.

If you have variables with the same name in the data frame attached in position one and in other
directories on the search list as well and you are getting strange or unexpected answers it may be
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the case that you are not doing your calculations on the desired variables. For example, suppose
that the data frames prostate and pbc have different versions of the age variable and they are
attached in positions three and two respectively. If we mean to get the statistics for prostate$age,
describe(age) won’t do it. This can be problematic if we have to combine data frames from
different directories. The find function can be helpful here.

> attach(prostate)

> attach(pbc)

> search()

[1] ".Data.temp15097"

[2] "pbc"

[3] "prostate"

[4] ".Data"

. . . .

> find(age)

[1] "pbc" "prostate"

The masked function is also worth trying. You can have complete control in accessing the desired
versions of objects using the get function, or using for example pbc$age and prostate$age.

4.2.2 Documenting Data Frames

For long–term projects one frequently needs to document how a data frame came to be, which
data were corrected, which data remain suspicious, etc. Besides the obvious method of editing
a text document in your project directory, there are at least two ways to have S manage such
documentation by linking it to the object.

1. You can attach an attribute to the data frame object. The comment function in the Hmisc
library can be used for this. comment attaches or retrieves a comment attribute to the object.
You can also invent new attributes. Here are two examples:

> comment(dframe) ← ’From SAS Dataset /myproject/mysas on machine A’

> comment(dframe) # replays the text string

> attr(dframe,’doc’) ← ’From SAS Dataset /myproject/mysas on machine A’

> attr(dframe,’doc’) # prints doc attribute

See the definition of comment to see how to package the doc attribute more elegantly.

2. You can create a help file for any object you create, so that typing help(objectname) or
?objectname will replay the help file6. The help file can contain any text of your choosing,
and it should be in a _Help directory underneath the project’s _Data directory (.Data/.Help
for UNIX).

6In S-Plus 3.3 or earlier for Windows this only works if the object name is a legal DOS name with no suffix;
otherwise S-Plus will search for a help file with the name equal to the shortened DOS–version file name, and it won’t
find it.



84 CHAPTER 4. OPERATING IN S

4.2.3 Accessing Data in Windows S-Plus

S-Plus Windows has an “Object Explorer” that can access data frames (and other objects) and
their variables in a way similar to how Windows Explorer traverses directories and opens files. Users
can create object explorers that point to one or more data frames in a mixture of _Data directories.
Suppose for example that we want to create an object explorer that pointed to all data frames,
lists, and matrices in directory c:\projects\one\ Data. Here are the required steps. If an object
explorer is already open you may want to skip step 1 and use that explorer as a starting point.

1. Click on File ... New ... Object Explorer. You’ll see a new default object explorer
named Object Explorer 1 pop up.

2. Left click on SearchPath in the left pane of the object explorer to see the directories currently
accessible. Right click on SearchPath and then on Attach Database to add a new area
that’s not listed. Fill the full path name in the empty box, or use Browse. If you don’t
want the area put in search position 1 (i.e., you don’t want to put all new variables there),
select another search position such as 2. Right click in the empty space in the left pain of the
Object Explorer. Click on Insert Folder and name it SearchPath. Right click on the new
SearchPath folder and select Advanced. Under Interface Objects select SearchPath and
click on OK. Right click on the + next to the SearchPath folder and right click on SearchPath
under SearchPath. Select Attach Database and specify the directory to add to the search
list. Choose search position one for this database if this is where you will be writing data.

3. Now you will see the above directory listed with a number, the search position, after its name
in the right pane of Object Explorer1.

4. If you want to specify which kinds of objects in the new area are to be listed by the object ex-
plorer, right click while the the cursor is in the open area in the left pane and select Filtering.
Now you may see a + in front of the left pane’s data.frame entry, and the list of data frames,
vectors, and lists on the right pane. Right click on Data and select Advanced. Shift-left-click
to add databases to the existing filter list, or regular left click to replace the ones already
selected with your new choice. Now Data will show the objects from this new directory.

5. Before saving your new object explorer permanently, you may want to modify its name to
be more descriptive. While the cursor is in the right pane of your explorer, right click and
select Right Pane .... Click on the Explorer tab and type what you want in the Name and
Description fields and click on OK.

6. To save this Object Explorer click on File then Save As .... You can save it in a central
Prefs area or under your project area (by navigating the window which just popped up). For
the latter location, click on the ↑ folder to get to the directory and/or disk drive you desire.
For this example we get to c:\projects\one. You can override the File name box in the
window, to e.g. Project A.sbf. Be sure to include the .sbf at the end of the name.

7. When you exit and re–start S-Plus, you can pop–up your project–specific object explorer by
clicking on File. At this point, your object explorer may be on the list at the bottom of the
menu so that you can just double click on that. If it’s not there, you can click on Open then
search for the directory containing it, e.g., c:\projects\one.
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To use your object explorer, click the + to the left of data.frame (data for object explorer,
which will expand this item to list all the data frames present. You can double–click on any of the
data frames in this list on the left pane to expand it, i.e., to display its variables and some of their
attributes. To display the actual data, double–click on the data frame name in the right pane. This
will open a window containing a data sheet.

S-Plus has a facility for saving and restoring workspaces. This is a good way to organize not
only databases as was discussed above, but also to link them with reports, graphs, and data sheets.
You can set up the workspace so that when it is opened, then active databases not needed by the
workspace are detached. Also, when you open a workspace, opened reports and other files are
automatically closed.

4.3 Miscellaneous Functions

4.3.1 Functions for Sorting

Table 4.1 displays the functions available for sorting. The obvious choice for sorting a vector

Table 4.1: Functions for Sorting

Function Description Comments
sort sort(x) sorts elements of a vector
order order(c(x,y,...)) returns the order permutation
rev rev(x) reverses the elements of an object

is sort. It takes a vector as an argument and returns the vector sorted in ascending order. An
optional argument na.last determines if missing values will be discarded, placed at the begining or
at the end of the sorted vector (Use na.last=NA, F or T respectively). If it is desired to sort the
vector in descending order use rev(sort(x)).

order is more flexible than sort. It returns the order permutation of a vector, that is, its first
element is the index corresponding to the smallest element, the second is the index corresponding
to the second smallest element, etc. Thus x[order(x)] is equivalent to sort(x). The advantage of
order is that it can operate on more than one vector simultaneously. For example order(x,y) will
give an order based on x; ties are resolved according to the values of y. To sort a single numeric vector
in reverse order you can use -sort(-x) or x[order(-x)]. In the following we sort x alphabetically
by state, and within state by descending median.income.

i ← order(state, -median.income)

xs ← x[i]

4.3.2 By Processing

You can process observations in groups according to combinations of stratification variables using
subscripts, as in the following where we compute the mean age stratified by sex. Assuming that
sex is a factor object, we can fetch the list of its possible values using the levels function.
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> means ← single(2) # set aside one position per sex code

> i ← 0

> for(sx in levels(sex)) {
+ i ← i+1

+ s ← sex==sx

+ means[i] ← mean(age[s])

+ }

This method is tedious but flexible. We can add logic, for example, to also compute the grand mean.

> means ← single(3)

> i ← 0

> for(sx in c(’ALL’,levels(sex))) {
+ i ← i+1

+ s ← sex==sx | sx==’ALL’

+ means[i] ← mean(age[s])

+ }

When sx==’ALL’, s is a vector of all Ts, indicating that all observations should be used in calculating
the grand mean.

The above examples are not efficient when typical by processing is to be done. Instead, the
function tapply can be used in many situations. In the pbc file, we could get the mean age by stage
by doing

> tapply(age,stage,mean,na.rm=T)

1 2 3 4 NA

46.84101 49.46583 48.96247 53.76548 57.33333

The syntax is similar to that of apply that we discussed earlier. As we can see, there is no need to
sort the data previously. If we wanted to get means by the combination of the levels of two variables
we could use

> tapply(age,interaction(stage,status,drop=T),mean,na.rm=T)

1.0 2.0 3.0 4.0 1.1 2.1 3.1

46.42739 48.75489 47.65943 51.01578 50.77036 51.59864 51.86719

4.1

55.72956

The drop=T argument indicates to drop combinations with no observations in them. Better still,
you can easily produce multi–dimensional summaries in array form.

> tapply(age,list(stage,status),mean,na.rm=T)

0 1

1 46.42739 50.77036

2 48.75489 51.59864

3 47.65943 51.86719

4 51.01578 55.72956

NA 61.00000 55.50000

The builtin function by is an excellent way to do by–processing on all the variables in a data
frame when the summarization function operates on data frames. Here are some examples.
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> by(age, list(Stage=stage), FUN=describe, descript=label(age))

> # descript passed to describe. list(Stage=stage) allows nice labels.

Stage:1

Age

1 Variables 21 Observations

---------------------------------------------------------------------------

x : Age

n missing unique Mean .05 .10 .25 .50 .75 .90 .95

21 0 21 46.84 34.60 34.99 38.49 46.35 53.00 59.00 61.99

lowest : 28.88 34.60 34.99 36.00 38.40, highest: 55.57 56.57 59.00 61.99 62.52

---------------------------------------------------------------------------

Stage:2

Age

1 Variables 92 Observations

---------------------------------------------------------------------------

x : Age

n missing unique Mean .05 .10 .25 .50 .75 .90 .95

92 0 87 49.47 33.83 36.58 42.46 49.00 56.39 61.96 63.74

lowest : 30.28 30.57 33.15 33.48 33.62, highest: 63.88 66.41 67.57 68.51 75.01

. . . .

> by(pbc[Cs(age,bili)], list(stage,status), FUN=summary) # or FUN=describe

stage:1

status:0

age bili

Min. :28.9 Min. :0.500

1st Qu.:38.4 1st Qu.:0.600

Median :46.0 Median :0.700

Mean :46.4 Mean :0.805

3rd Qu.:54.3 3rd Qu.:1.000

Max. :62.5 Max. :1.400

-------------------------------

stage:2

status:0

age bili

Min. :30.3 Min. : 0.30

1st Qu.:41.8 1st Qu.: 0.60

Median :48.9 Median : 0.70

Mean :48.8 Mean : 1.66

3rd Qu.:56.2 3rd Qu.: 1.40

Max. :75.0 Max. :18.00

-------------------------------

stage:3

status:0

. . . .
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The summary.formula function in Hmisc provides a general way to do by–processing (see Section
6.2). A related function is Hmisc’s summarize function , which is designed to compute descriptive
statistics stratified by one or more non–continuous variables. summarize creates a data frame useful
for processing by other S functions, especially trellis graphics functions, as discussed in Section
11.4.3.

4.3.3 Sending Multiple Variables to Functions Expecting only One

Many of the common S function operate on vectors, e.g., mean, quantile, etc. You can operate
on a series of variables or on all the variables in a data frame by looping over the variable names
or subscripts, or by using the lapply and sapply functions. The lapply function applies a single
function to every element of a list (e.g., every variable in a data frame), and returns a list as the
final result, with one list element per variable. For example, let us create a data frame having two
variables, and apply the quantile function to each variable:

> set.seed(193)

> d ← data.frame(x1=rnorm(1000), x2=runif(1000))

> lapply(d, quantile, probs=c(.25,.5,.75))

$x1:

25% 50% 75%

-0.6290425 0.07898111 0.6710022

$x2:

25% 50% 75%

0.2410647 0.4988862 0.7453622

The sapply function formats the results differently. It will produce a vector if the function is
single–valued. Here it returns a matrix:

> sapply(d, quantile, probs=c(.25,.5,.75))

x1 x2

[1,] -0.62904248 0.2410647

[2,] 0.07898111 0.4988862

[3,] 0.67100218 0.7453622

sapply was used in Section 3.6 to plot the number of missing values for all of the variables in a data
frame.

When you need to perform a repetitive operation for several variables and you need to be able to
access the labels or names of the variables during processing, Hmisc’s llist function (documented
with the label function) can help. llist tries to use the best available labels for each variable in
a list, and it allows you to access these labels using the label function. Here is an example where
a series of variables are plotted against a common variable, and each plot is titled with the current
variable’s label. The sapply (or lapply) methods are preferred if you want to store the result of
the function evaluations into a global result.

sapply(llist(age, height, pmin(weight,200)),

function(x) {
plot(x, blood.pressure)
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title(label(x))

})

# Equivalent to:

for(x in llist(age, height, pmin(weight,200))) {
plot(x, blood.pressure)

title(label(x))

})

The S builtin function aggregate is another good method for performing separate analyses of
multiple variables in a data frame, with simultaneous stratification on by–variables:

> attach(pbc) # so can reference stage without prefix

> aggregate(pbc[Cs(bili,albumin,age)], stage, FUN=mean)

stage bili albumin age

1 1 1.36 3.71 46.8

2 2 2.45 3.61 49.5

3 3 2.83 3.59 49.0

4 4 4.43 3.30 53.8

5 NA 2.75 3.32 57.3

> # Same as aggregate(data.frame(bili,albumin,age), stage, FUN=mean)

> # since we’re assuming pbc is attached

You must give aggregate a stratification variable. If you want to use aggregate to process mul-
tiple variables with no stratification, give it a stratification variable that is constant, e.g., rep(1,
length(age)). When there are multiple stratification variables, enclosing them in the Hmisc llist
function will cause aggregate to use their names in the data frame it forms. For example, se

> aggregate(data.frame(systolic,diastolic), llist(race,sex), mean)

aggregate can only use FUNs that return a single value although it is able to compute this single
value on several response variables. aggregate does not preserve numeric stratification variables
(it converts them to factors) so it is not suitable for aggregating some datasets for plotting with
xyplot. See p. 238 for a comparison of methods for aggregating data for plotting.

4.3.4 Functions for Data Manipulation and Management

These functions are listed in Table 4.2. seq is a generalization of the “:” operator. It allows us
to specify a starting point, an ending point and the distance between them, or alternatively, the
length of the resulting vector. We could also specify seq(along=x) which will produce the sequence
1:length(x), even if length(x)=0 (i.e. x is a NULL or numeric(0) vector). duplicated returns a
logical vector with T if the index corresponds to a duplicate value, and F if not. unique can be used
for example to find the five smallest values of a vector: sort(unique(x))[1:5]. (See the output of
describe).

The function match looks up the elements of x in table for each element of x; when it finds a
match, it returns the position in table of the match. This can be useful for instance, to join objects,
holding the places of non–matching values with missing values.
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Table 4.2: Functions for Data Manipulation and Management

Function Description Comments

seq seq(a,b,by=z) creates a sequence from a to b

with an increment of z
in between them

duplicated duplicated(x) checks for duplicate values
unique unique(x) returns a vector like x

without repeated values
match match(x,table) returns the position in table

of the elements of x
table table(x,y,...)

abbreviate abbreviate(x,...) abbreviate text
pmatch pmatch(x,table) partial matching
expand.grid expand.grid(...) easy way to

construct dataframes
cut2 cut2(x,...) an improved version of cut (Hmisc)
merge merge(x, y, by, by.x, by.y, ...) merge two data frames
find.matches find.matches(x,y,...) find closest matches

to observations (Hmisc)
llist llist(x,y,...) labeled list of several

variables (Hmisc)
sedit advanced character string

manipulation (Hmisc)
casefold casefold(strings) change case of vector of

or casefold(strings,upper=T) character strings
substring substring(strings,start,end) subset char. strings
combine.levels combine.levels(x) combine infrequent levels (Hmisc)
score.binary recoding (Hmisc)
recode recoding (Hmisc)
merge.levels merge levels of factor
reShape reShape(...) re–shape vectors or matrices (Hmisc)
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> x ← 1:10

> y ← seq(5,15,by=2)

> match(x,y)

[1] NA NA NA NA 1 NA 2 NA 3 NA

> z ← cbind(x,y=y[match(x,y)])

> z

x y

[1,] 1 NA

[2,] 2 NA

[3,] 3 NA

[4,] 4 NA

[5,] 5 5

[6,] 6 NA

[7,] 7 7

[8,] 8 NA

[9,] 9 9

[10,] 10 NA

If x and y were dataframes and the matching had been done in their row.names attribute, the result
would have been a merged dataframe with NAs for the variables in y where the observation did not
match an observation in x. See [3, page 58] for a more detailed example. The merge function is a
more general solution to this problem.

abbreviate is especially useful for shortening variable names, row.names, or variable labels, for
making output fit on a regular page size. Here are some examples.

names(df) ← abbreviate(names(df)) # abbreviate all data frame names

row.names(df) ← abbreviate(row.names(df)) # abbreviate row names

label(x) ← abbreviate(label(x)) # abbreviate single label

prostate2 ← prostate

for(i in 1:length(prostate2))

label(prostate2[[i]]) ← abbreviate(label(prostate2[[i]]))

The function expand.grid is very useful to produce dataframes with a combination of all levels
of specified variables.

> z ← expand.grid(age=median(age),rx=levels(rx),bm=c(0,1))

> z

age rx bm

1 73 placebo 0

2 73 0.2 mg estrogen 0

3 73 1.0 mg estrogen 0

4 73 5.0 mg estrogen 0

5 73 placebo 1

6 73 0.2 mg estrogen 1

7 73 1.0 mg estrogen 1

8 73 5.0 mg estrogen 1

The cut2 function in Hmisc can be used to categorize variables. Unlike cut, the default S
function, cut2 returns a factor that is much more useful for analytic purposes. cut2 also has more
options and creates better labels for levels of the resulting factor variable.



92 CHAPTER 4. OPERATING IN S

> table(cut2(prostate$age,g=5))

[48,68) [68,72) [72,74) [74,77) [77,89]

96 92 89 123 101

The main argument to cut2 is a numeric vector we wish to categorize; it then classifies its argument
into g intervals with approximately the same number of observations in them. Instead of g, we could
supply the desired cuts via the cuts= argument or the minimum number of observations in each
group using the m= argument.

The casefold function was exemplified in Section 3.4.
The substring function is used for pulling apart pieces of character strings. For example,

substring(’abc’,1,2) is ’ab’ and substring(’abc’,2) is ’bc’. substring can be useful for
restructuring complex data after input. For example, suppose that dates and times had been stored
together in a single character value in a vector x:

> x

[1] "98/09/01 00:10" "98/09/01 14:17"

To get the date portion, we substring the first 8 characters of each string and convert it to internal
date storage (chron object):

> d ← chron(substring(x,1,8), format=’y/m/d’)

> d

[1] 98/09/01 98/09/01

A time variable can be constructed from columns 10-14 of each of these strings. As these times did
not include seconds, we paste 0 seconds on to the end of each time using the paste function.

> tm ← chron(times=paste(substring(x, 10, 14),’:00’,sep=’’))

> tm

[1] 0.006944444 0.595138889

Times are stored in hours from midnight. 0.00694 = 10 minutes past midnight, 0.5951 = 14:17:00.
Now the dates and times can be recombined into a single date/time chron object:

> y ← chron(d, tm)

> y

[1] 98/09/01 98/09/01

> print.default(y)

[1] 14123.01 14123.60

Dates are stored by default as the number of days from 1Jan1960. If the S chron library is attached,
there are more features for printing dates and times.

> library(chron)

> tm

[1] 00:10:00 14:17:00

> y

[1] (98/09/01 00:10:00) (98/09/01 14:17:00)

Hmisc’s combine.levels function is useful for restructuring the levels of a categorical variable,
by combining levels have a small proportion of the total frequency. This can be useful for modeling
when you want to prevent the construction of a multitude of dummy variables.

See Section 4.4 for examples where the score.binary and recode functions are used. See
Sections 6.1 and 4.3.9 for examples of the reShape function.
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4.3.5 Merging Data Frames

The merge function is a general function to do one–one, many–one, or many–many joining of two
data frames using any number of matching variables. The help file for merge has some excellent
examples. Let us consider a common setup where we have a data frame base containing baseline
data (one record per subject) and a data frame follow containing multiple records per subject.
Both data frames contain a subject identifier variable id. You can use the merge function to do a
one–to–many matching merge of the two data frames as in the following example.

> base ← data.frame(id=c(’a’,’b’,’c’), age=c(10,20,30))

> follow ← data.frame(id=c(’a’,’a’,’b’,’b’,’b’,’d’),

month=c(1, 2, 1, 2, 3, 2),

cholesterol=c(225,226, 320,319,318, 270))

> base

id age

1 a 10

2 b 20

3 c 30

> follow

id month cholesterol

1 a 1 225

2 a 2 226

3 b 1 320

4 b 2 319

5 b 3 318

6 d 2 270

> combined ← merge(base, follow, by=’id’, all.x=T)

> # Specify all=T or all.x=T, all.y=T to keep records w/no baseline data

> combined

id age month cholesterol

1 a 10 1 225

2 a 10 2 226

3 b 20 1 320

4 b 20 2 319

5 b 20 3 318

6 c 30 NA NA

One advantage of this storage format is that it works well with graphics commands in which month
is on the x–axis. For example, we can use trellis to plot cholesterol profiles for all subjects
with treatment groups in separate panels (if the treatment variable had been stored in the base
data frame):

xyplot(cholesterol ∼ month | treatment, groups=id,

panel=panel.superpose, data=combined)



94 CHAPTER 4. OPERATING IN S

4.3.6 Merging Baseline Data with One–Number Summaries of Follow–up
Data

Instead of duplicating baseline data to “spread” it with follow–up data, we often want to summarize
the follow–up data into a single number for each subject, and merge this number with the baseline
data. In the following example we summarize serial cholesterol measurements using two statistics:
the maximum and the mean. We could easily summarize variables besides cholesterol and add them
to the chol.summaries data frame below.

chol.mean ← tapply(follow$cholesterol, follow$id, mean, na.rm=T)

chol.worst ← tapply(follow$cholesterol, follow$id, max, na.rm=T)

chol.summaries ← data.frame(chol.mean,chol.worst,id=names(chol.mean))

> chol.summaries

chol.mean chol.worst id

a 225.5 226 a

b 319.0 320 b

d 270.0 270 d

> combined ← merge(base, chol.summaries, by=’id’, all.x=T)

> combined

id age chol.mean chol.worst

1 a 10 225.5 226

2 b 20 319.0 320

3 c 30 NA NA

4.3.7 Constructing More Complex Summaries of Follow-up Data

Often serial data need summarizations that involve multiple variables simultaneously. In the follow-
ing example, we have a single date variable and two follow-up measurements (cholest and sys.bp)
and we want to save the date and the value of the last non-missing measurements of cholest and
sys.bp. The example uses the Hmisc mApply function is a matrix version of tapply.

d ← data.frame(id=c(’a’,’a’,’a’,’b’,’b’,’b’,’b’),

mdate=chron(c(’04/02/2001’,’04/04/2001’,’05/17/2002’,

’07/06/2002’,’07/07/2002’,’08/03/2002’,’08/13/2002’)),

cholest =c(210,NA,205, 248,252,251,NA),

sys.bp =c(141,136,NA, 152,NA, 149,151))

# For R use strptime(c(’04/02/2001’,’’’), format=’%m/%d/%Y’)

d

id mdate cholest sys.bp

1 a 04/02/01 210 141

2 a 04/04/01 NA 136

3 a 05/17/02 205 NA

4 b 07/06/02 248 152

5 b 07/07/02 252 NA

6 b 08/03/02 251 149

7 b 08/13/02 NA 151
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attach(d)

x ← cbind(mdate, cholest, sys.bp)

g ← function(w) {
mdate ← w[,’mdate’]

cholest ← w[,’cholest’]

sys.bp ← w[,’sys.bp’]

dcholest ← max(mdate[!is.na(cholest)],na.rm=T)

cholest ← mean(cholest[mdate==dcholest],na.rm=T)

dsys.bp ← max(mdate[!is.na(sys.bp)],na.rm=T)

sys.bp ← mean(sys.bp[mdate==dsys.bp],na.rm=T)

c(dcholest=dcholest,cholest=cholest,dsys.bp=dsys.bp,sys.bp=sys.bp)

}

w ← mApply(x, id, g)

w

dcholest cholest dsys.bp sys.bp

a 15477 205 15069 136

b 15555 251 15565 151

w ← data.frame(w, id=dimnames(w)[[1]])

w$dcholest ← as.chron(w$dcholest)

# For R: strptime(w$dcholest,format=’%Y-%m-%d’)

# For S-Plus 6: use dates(w$dcholest)

w$dsys.bp ← as.chron(w$dsys.bp)

w

dcholest cholest dsys.bp sys.bp id

a 05/17/02 205 04/04/01 136 a

b 08/03/02 251 08/13/02 151 b

The data frame w can be merged (by id) with baseline data as before.
Alternatively, the builtin by function may be used to give useful printed output. However by

does not store the result in a useful format.

g ← function(w) {
mdate ← w$mdate

cholest ← w$cholest

sys.bp ← w$sys.bp

dcholest ← max(mdate[!is.na(cholest)],na.rm=T)

cholest ← mean(cholest[mdate==dcholest],na.rm=T)

dsys.bp ← max(mdate[!is.na(sys.bp)],na.rm=T)

sys.bp ← mean(sys.bp[mdate==dsys.bp],na.rm=T)

data.frame(dcholest=dcholest,cholest=cholest,dsys.bp=dsys.bp,sys.bp=sys.bp)

}
by(d, d$id, g)

d$id:a

dcholest cholest dsys.bp sys.bp

1 05/17/02 205 04/04/01 136
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------------------------------------------------------------

d$id:b

dcholest cholest dsys.bp sys.bp

1 08/03/02 251 08/13/02 151

4.3.8 Subsetting a Data Frame by Examining Repeated Measurements

When a data frame consists of data from multiple subjects with repeated records per subject, often
the most efficient way to find a single qualifying record per subject and subsetting on qualifying
observations is to compute absolute record numbers to retain. Here is an example in R. The record in
data frame d that has the earliest date is the one selected. Note that when doing repeated calculations
on a variable such as a Date variable, calculation time is greatly reduced by first converting the
variable to an ordinary numeric vector.

d ← data.frame(id=c(’a’,’a’,’a’,’b’,’b’,’b’,’b’),

mdate=as.Date(c(’04/02/2001’,’04/04/2001’,’05/17/2002’,

’07/06/2002’,’07/07/2002’,’08/03/2002’,’08/13/2002’),

format=’%m/%d/%Y’),

cholest =c(210,NA,205, 248,252,251,NA),

sys.bp =c(141,136,NA, 152,NA, 149,151))

d

id mdate cholest sys.bp

1 a 2001-04-02 210 141

2 a 2001-04-04 NA 136

3 a 2002-05-17 205 NA

4 b 2002-07-06 248 152

5 b 2002-07-07 252 NA

6 b 2002-08-03 251 149

7 b 2002-08-13 NA 151

numdate ← as.numeric(d$mdate) # for speed

k ← with(d, tapply(1:length(numdate), id,

function(j) i <- order(numdate[j]); j[i[1]] ))

k

a b

1 4

d[k,]

id mdate cholest sys.bp

1 a 2001-04-02 210 141

4 b 2002-07-06 248 152
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4.3.9 Converting Between Matrices and Vectors: Re–shaping Serial Data

Frequently there is a need to convert between matrices and vectors for reformatting how serial
measurements are stored. Suppose that a matrix x has one row per subject and one column for each
time of data collection, with subject IDs and time points documented in x’s dimnames attribute.
To string out this matrix while creating new vectors containing the IDs and times, you can use the
following commands.

> y ← as.vector(x) # strung-out vector

> ids ← dimnames(x)[[1]][row(x)]

> times ← as.numeric(dimnames(x)[[2]][col(x)])

This process is automated with the Hmisc reShape function:

> w ← reShape(x)

This creates a list w with elements rowvar, colvar, and x. rowvar contains the row names of the
input matrix (converted to numeric if they are all numeric) corresponding to the current row being
represented (variable ids above). colvar contains the corresponding column designations (variable
times above), converted to numeric form if possible.

To construct a matrix from an irregular vector of measurements where the subject IDs and time
points are defined by ids and times vectors, the following will work.

> y ← 1:12

> ids ← c(’a’,’b’,’a’,’a’,’b’,’b’,’c’,’c’,’c’,’c’,’d’,’d’)

> times ← c( 1, 1, 3, 5, 4, 5, 1, 3, 4, 5, 3, 5)

> idf ← as.factor(ids)

> timesf ← as.factor(times)

> x ← matrix(NA,nrow=length(levels(idf)),

+ ncol=length(levels(timesf)),

+ dimnames=list(levels(idf),levels(timesf)))

> x[cbind(idf,timesf)] ← y

> x

1 3 4 5

a 1 3 NA 4

b 2 NA 5 6

c 7 8 9 10

d NA 11 NA 12

This is done automatically with the reShape function again. Here reShape reverses course to
reconstruct a matrix because the first argument is now a vector, and the id and colvar arguments
are given.

> x ← reShape(y, id=ids, colvar=times)

To create multiple matrices (e.g., one for systolic blood pressure and one for diastolic) and store
the re–shaped results in a new data frame, where each matrix column becomes a separate variable,
one could do the following:

> Sysbp ← Diasbp ←
+ matrix(NA,nrow=length(levels(idf)),ncol=length(levels(timesf)),
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+ dimnames=list(levels(idf),levels(timesf)))

> dimnames(Sysbp)[[2]] ← paste(’sbp’,dimnames(Sysbp)[[2]],sep=’.’)

> dimnames(Diasbp)[[2]] ← paste(’dbp’,dimnames(Diasbp)[[2]],sep=’.’)

> age ← c(15, 13, 9, 18)

> # age comes from a non-time-oriented dataframe

> Sysbp[cbind(idf,timesf)] ← sysbp # sysbp is strung-out vector

> Diasbp[cbind(idf,timesf)] ← diasbp

> newdata ← data.frame(age, Sysbp, Diasbp,

+ row.names=levels(idf))

The reShape function will create a list containing the multiple matrices:

> sys.dias.bp ← reShape(sysbp, diasbp, id=idf, colvar=timesf)

> newdata ← data.frame(age, Sysbp=sys.dias.bp[[1]],

+ Diasbp=sys.dias.bp[[2]])

Here is a similar example using data the base and follow data frames created above. In this
example we merge the re–structured variables with baseline data, forming a new data frame.

> idf ← as.factor(follow$id)

> monthf ← as.factor(follow$month)

> serial.chol ← matrix(NA, nrow=length(levels(idf)),

+ ncol=length(levels(monthf)),

+ dimnames=list(levels(idf),

+ paste(’chol’,levels(monthf),sep=’.’)))

> serial.chol[cbind(idf,monthf)] ← follow$cholesterol

> serial.chol

chol.1 chol.2 chol.3

a 225 226 NA

b 320 319 318

d NA 270 NA

> # Or serial.chol ← reShape(follow$cholesterol,

> # id=follow$id, colvar=follow$month)

> follow.t ← data.frame(serial.chol, id=levels(idf))

> combined ← merge(base, follow.t, by=’id’, all.x=T)

> combined

id age chol.1 chol.2 chol.3

1 a 10 225 226 NA

2 b 20 320 319 318

3 c 30 NA NA NA

When the first argument to reShape is a vector and the id is a data frame (even with only one
variable), reShape will produce a data frame, and the unique groups are identified by combinations
of the values of all variables in id. If a data frame constant is specified, the variables in this
data frame are assumed to be constant within combinations of id variables (if not, an arbitrary
observation in constant will be selected for each group). A row of constant corresponding to the
target id combination is then carried along when creating the data frame result. In the following
example, we create a data frame, reshaping a long dataset in which groups are formed not just by
subject id but by combinations of subject id and visit number. We also carry forward a variable
that is supposed to be constant within subject-visit number combinations. In this example, it is not
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always constant, so an arbitrary visit number will be selected. The R with function is used in place
of attach.

> w ← data.frame(id=c(’a’,’a’,’a’,’a’,’b’,’b’,’b’,’d’,’d’,’d’),

+ visit=c( 1, 1, 2, 2, 1, 1, 2, 2, 2, 2),

+ k=c(’A’,’A’,’B’,’B’,’C’,’C’,’D’,’E’,’F’,’G’),

+ var=c(’x’,’y’,’x’,’y’,’x’,’y’,’y’,’x’,’y’,’z’),

+ val=1:10)

> with(w,

+ reShape(val, id=data.frame(id,visit),

+ constant=data.frame(k), colvar=var))

id visit k x y z

1 a 1 A 1 2 NA

3 a 2 B 3 4 NA

5 b 1 C 5 6 NA

7 b 2 D NA 7 NA

8 d 2 E 8 9 10

reShape is also handy for converting predictions for regression models into a table. The expand.grid
is frequently used to get predicted values for systematically varying predictors. In the following ex-
ample there are 3 predictors, of which we allow 2 to vary for getting predicted values. We use
reShape to convert the predictions into a matrix, with rows corresponding to the predictor having
the most values, and columns corresponding to the other predictor.

> d ← expand.grid(x2=0:1, x1=1:100, x3=median(x3))

> pred ← predict(fit, d)

> reShape(pred, id=d$x1, colvar=d$x2) # makes 100 x 2 matrix

reShape has a different action when arguments base and reps are specified. It will then reshape
a variety of repeated and non-repeated measurements. Serial measurements must have the integers
1, 2, . . . reps at the end of their names. Non-repeated (e.g., baseline) variables are duplicated reps
times, and repeated variables are transposed, as shown in the following example.

> set.seed(33)

> n ← 4

> w ← data.frame(age=rnorm(n, 40, 10),

+ sex=sample(c(’female’,’male’), n, T),

+ sbp1=rnorm(n, 120, 15),

+ sbp2=rnorm(n, 120, 15),

+ sbp3=rnorm(n, 120, 15),

+ dbp1=rnorm(n, 80, 15),

+ dbp2=rnorm(n, 80, 15),

+ dbp3=rnorm(n, 80, 15), row.names=letters[1:n])

> options(digits=3)

> w

age sex sbp1 sbp2 sbp3 dbp1 dbp2 dbp3

a 35.8 female 126 138 90.2 73.6 60.8 64.4

b 42.5 female 121 133 127.8 86.9 73.8 71.1

c 43.2 male 106 117 138.9 68.6 68.9 83.3

d 50.2 female 127 128 126.8 72.1 66.1 69.7
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> u ← reShape(w, base=c(’sbp’,’dbp’), reps=3)

> u

seqno age sex sbp dbp

a 1 35.8 female 125.8 73.6

a 2 35.8 female 138.3 60.8

a 3 35.8 female 90.2 64.4

b 1 42.5 female 121.4 86.9

b 2 42.5 female 133.0 73.8

b 3 42.5 female 127.8 71.1

c 1 43.2 male 106.1 68.6

c 2 43.2 male 117.4 68.9

c 3 43.2 male 138.9 83.3

d 1 50.2 female 126.9 72.1

d 2 50.2 female 128.3 66.1

d 3 50.2 female 126.8 69.7

If is sometimes the case that multiple variables are represented in “long” form with the name
of the variable being stored in a column, and the value of any of the variables stored as a numeric
variable value. If in addition to this, a variable is measured on multiple dates within subjects, the
situation is a bit more complicated. In the following example, different laboratory measurements
are denoted by the values of a character variable lab, and the value of the variable noted in lab is
contained in the numeric variable value. The id and date variables can be concatenated together
to provide a single unique record identifier, then reshaping can be done on the lab,value pairs.

> id ← c(’a’,’a’,’a’,’b’,’b’,’b’)

> dt ← c(rep(’03/12/1992’,3),rep(’04/17/1993’,2),’05/21/1993’)

> date ← if(.R.) strptime(dt, format=’%m/%d/%Y’) else chron(dt)

> # .R. is defined by Hmisc; TRUE if running R

> lab ← c(’CBC’,’HA1C’,’ALT’,’CBC’,’HA1C’,’HA1C’)

> value ← 1:6

> data.frame(id, date, lab, value) # show all data (R output follows)

id date lab value

1 a 1992-03-12 CBC 1

2 a 1992-03-12 HA1C 2

3 a 1992-03-12 ALT 3

4 b 1993-04-17 CBC 4

5 b 1993-04-17 HA1C 5

6 b 1993-05-21 HA1C 6

> w ← paste(id,date,sep=’;’)

> d ← reShape(value, id=w, colvar=lab)

> if(!.R.) d ← as.data.frame(d)

> z ← if(.R.) unPaste(row.names(d),’;’) else unpaste(row.names(d),’;’)

> d ← data.frame(d, id=z[[1]],

+ date=if(.R.) strptime(z[[2]], format=’%Y-%m-%d’) else

+ as.chron(as.numeric(z[[2]])))
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> d

ALT CBC HA1C id date

a;1992-03-12 3 1 2 a 1992-03-12

b;1993-04-17 NA 4 5 b 1993-04-17

b;1993-05-21 NA NA 6 b 1993-05-21

If using S-Plus 6 and the date variable is a “dates” variable, use dates(z[[2]]) above.

4.3.10 Computing Changes in Serial Observations

One often wants to compute the change in certain variables from one observation to the next. When
the observations are aligned into discrete time slots such as month or follow–up visit, it is easiest
to reshape serial data into columns and compute differences between columns. In general though,
data may not be collected in discrete time slots, and we may want to compute differences between
successive observations no matter what time lapses exist. When one of the variables we want to
“difference” is the date of the measurements, we can compute time lapses (differences in dates) to
compare against the differences in the measurements.

A general approach involves sorting a data frame by subject id and then date within id, and
subtracting from each variable of interest the same variable shifted earlier one observation. This
will cause the first observation for each subject to be compared with the last observation for the
previous subject, but we will have to delete the first observation from each subject anyway, as there
is no baseline to subtract from that observation. In the following example we use serial data for
three subjects.

> d ← data.frame(id=c(’a’,’a’,’a’,’b’,’c’,’c’),

+ visit.date=chron(c(’02/03/1997’,’01/17/1997’,

+ ’03/01/1997’,’05/01/1998’,

+ ’06/01/1998’,’05/03/1998’)),

+ height=c(45.2,45,45.8, 52, 56.1, 56),

+ hormone=c(1.3,1.3,1.8, 2.1, 1.9, 1.8))

> # Sort data frame by id, then date

> i ← order(d$id, d$visit.date)

> i

[1] 2 1 3 4 6 5

> d ← d[i,]

> d

id visit.date height hormone

2 a 01/17/97 45.0 1.3

1 a 02/03/97 45.2 1.3

3 a 03/01/97 45.8 1.8

4 b 05/01/98 52.0 2.1

6 c 05/03/98 56.0 1.8

5 c 06/01/98 56.1 1.9

Now we subtract from the current date and height the values from the previous observation. We
can shift vectors one observation earlier by putting an NA in front of the vector and ignoring the
last element of the vector. This can be done with the following function, which also does preserves
attributes of the input variable. This function is one of the undocumented functions in Hmisc.
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Lag ← function(x, shift=1) {
if(is.factor(x)) {
isf ← T

atr ← attributes(x)

atr$class ← if(length(atr$class)==1) NULL else

atr$class[atr$class!=’factor’]

atr$levels ← NULL

x ← as.character(x)

} else isf ← F

n ← length(x)

x ← x[1:(n-shift)]

if(!isf) atr ← attributes(x)

if(length(atr$label)) atr$label ←
paste(atr$label,’lagged’,shift,’observations’)

x ← c(rep(if(is.character(x))’’ else NA,shift), unclass(x))

attributes(x) ← atr

x

}

In what follows the hormone level we want to associate with each interval is the value at the start
of the interval.

> # Put data frame in search position 1 to make permanent changes

> attach(d, pos=1, use.names=F)

> time.lapse ← visit.date - Lag(visit.date)

> height.change ← height - Lag(height)

> hormone.at.interval.start ← Lag(hormone)

> visit.date ← height ← hormone ← NULL # Remove old variables

> detach(1, ’d2’)

> d2

id time.lapse height.change hormone.at.interval.start

2 a NA NA NA

1 a 17 0.2 1.3

3 a 26 0.6 1.3

4 b 426 6.2 1.8

6 c 2 4.0 2.1

5 c 29 0.1 1.8

Now to delete the first record for each subject we must flag these records.

> first.id ← d2$id != Lag(d2$id)

> first.id

[1] T F F T T F

> d2 ← d2[!first.id,]

> d2

id time.lapse height.change hormone.at.interval.start

1 a 17 0.2 1.3

3 a 26 0.6 1.3

5 c 29 0.1 1.8
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4.4 Recoding Variables and Creating Derived Variables

As discussed in Section 9.4, there are many types of derived variables for which the logical place
to state the derivation formula is in a regression model formula. For example, creating dummy
variables and storing age^2 as a separate variable means that you are not using the real power
of the S modeling language. Still, there are plenty of occasions for creating or recoding variables.
Here is a series of examples showing common ways of creating new variables. See the help file for
merge.levels for details about how to change the levels of a factor variable.

# compute min(wbc,100000) for each patient

wbc.curtailed ← pmin(wbc, 100000)

# Still may be better to do this inside a model formula

# Compute a function of height and weight that is different

# for 2 sexes

size ← ifelse(sex==’female’,.2*weight^.66/height^.33,

.25*weight^.6/height^.3)

# Six ways to combine treatments B and C into one group

# First four assume that treat is a factor object

levels(treat)[levels(treat) %in% c(’B’,’C’)] ← ’BC’

levels(treat) ← c(’A’,’BC’,’BC’)

levels(treat) ← list(c(’B’,’C’))

# list method causes merge.levels to combine B and C into ’B, C’

levels(treat) ← list(BC=c(’B’,’C’)) # name it BC instead of B, C

# To make multiple merges, do e.g. list(c(’B’,’C’),c(’D’,’E’))

treat2 ← ifelse(treat==’A’,treat,’BC’)

treat2 ← ifelse(treat %in% c(’B’,’C’), ’BC’, treat)

# Group several levels of a categorical variable.

# Leave old variable alone.

# Group levels a b c d into group A, e f g into B, h i into C

y2 ← y

levels(y2) ← Cs(A,A,A,A,B,B,B,C,C) # or:

levels(y2) ← list(A=Cs(a,b,c,d), B=Cs(e,f,g), C=Cs(h,i)) # or:

levels(y2) ← list(Cs(a,b,c,d), Cs(e,f,g), Cs(h,i)) # auto naming

# Categorize a continuous variable (why?)

agecat ← (age>=30)+(age>=40)+(age>=50)+(age>=60)

# age=41 yields agecat=2. Missing age yields missing agecat

# Could also use agecat ← cut2(age,c(30,40,50,60))

# Create a 3-category variable coded none, either of two

# conditions is true, or both are true

# First assume that both x1 and x2 are logical or 0-1 variables

z ← x1 + x2

# Instead, create temporary logical variables from expressions

z ← (x1==’present’)+(x2==’present’)
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z ← (x1 > 30) + (x2 > 1000)

# Results in x1 <= 30 & x2 <= 1000 : 0

# x1 > 30 or x2 > 1000 : 1

# x1 > 30 & x2 > 1000 : 2

# Could create a self-documenting variable by:

z2 ← c(’neither’,’either’,’both’)[z+1]

# Create a 3-category variable in which the presence of a true for

# the second variable overrides the value of the first variable

z ← (x1==’present’ & x2==’absent’) + 2*(x2==’present’)

# Results in x2==’present’& x1==’present’ : 2

# x2==’absent’ & x1==’present’ : 1

# x2==’absent’ & x1==’absent’ : 0

z ← ifelse(x2==’present’, ’x2 present’,

ifelse(x1==’present’, ’x1 but not x2’, ’neither’))

# Results in x2==’present’ : ’x2 present’

# x2==’absent’ & x1==’present’ : ’x1 but not x2’

# x2==’absent’ & x1==’absent’ : ’neither’

# Create a new categorical variable on the basis of sex and

# whether age>=50. First two ways will produce the same

# coding, all 3 ways produce a good result

g ← ifelse(sex==’male’,

ifelse(age>=50,’M >= 50’,’M < 50’),

ifelse(age>=50,’F >= 50’,’F < 50’))

g ← paste(ifelse(sex==’male’,’M’,’F’),

ifelse(age>=50,’>= 50’,’<50’))

g ← interaction(sex, age>=50)

Recodes to character values can sometimes be done easily by first recoding into integers and
then looking up correspondences between the integers and the intended character strings, as shown
below.

> x ← c(’cat’,’dog’,’giraffe’)

> x ← c(’domestic’,’wild’)[1*(x %in% c(’cat’,’dog’)) +

+ 2*(x==’giraffe’)]

> x

[1] "domestic" "domestic" "wild"

The second line above applies a sequences of ones and twos as subscripts of the 2 element vector
c(’domestic’,’wild’). The result is a vector of character strings of the same length as the vector
x, as duplicate ones and twos will result in multiple uses of the character constants. Manipulating
levels of a factor variable is easier, implicitly using the merge.levels built-in function.

> x ← factor(x)

> levels(x) ← list(domestic=c(’cat’,’dog’),wild=’giraffe’)

Recodes from single character string values to numeric or other character values can also be
accomplished using a named vector and the subscript operator:
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> newcodes ← c(cat=’feline’,dog=’canine’,’guinea pig’=’gpig’)

> animals ← c(’cat’,’cat’,’guinea pig’,’dog’)

> animals ← newcodes[animals]

> animals

cat cat guinea pig dog

"feline" "feline" "gpig" "canine"

In the final two lines of output, the animals vector is seen to have a names attribute showing he
original values. Note that the name ’guinea pig’ had to be enclosed in quotes since it is not a
legal S name. We could have done many–to–one recodes by having multiple names for the same
character looked–up value. But again, manipulating factor levels is more elegant:

> animals ← factor(c(’cat’,’cat’,’guinea pig’,’dog’))

> levels(animals) ← list(feline=’cat’,canine=’dog’,

+ gpig=’guinea pig’)

Often it is the case that a large number of categories needs to be recoded into broad groupings.
For example, one might wish to categorize medical diagnoses into organ systems or other groupings.
It is much easier to do this by constructing a data frame of all individual categories, creating a new
character variable to contain the broad category names (initialized to blanks), and to edit the latter
(using a data sheet in Windows S-Plus). In the following example we sort categories by descending
frequency of occurrence, initialize categories not used in at least 3 observations to ’other’, create a
data frame suitable for editing, and then show how to do a table look-up from this new data frame
containing category definitions to use them in our main data frame.

> tab ← table(diagnosis)

> tab ← tab[order(-tab)]

> DX ← data.frame(diagnosis=names(tab))

> DX$dxgroup ← ifelse(tab < 3, ’other’, ’’)

# This adds dxgroup to the DX data frame without

# converting it to factor; we can edit levels arbitrarily

# Edit DX data frame, then merge new dxgroup definitions

> dxgroup.def ← DX$dxgroup

> names(dxgroup.def) ← as.character(DX$diagnosis)

# Be sure to store dxgroup.def permanently as separate object

> dxgroup ← dxgroup.def[as.character(diagnosis)] # fast lookup

# Enclose right hand side in factor() if desired,

# to save storage space

The final variable dxgroup is the same length as diagnosis.
Many of the functions in Hmisc and Design use the ’label’ attributes of variables. If you are

creating printed or graphical output using one of those functions, be sure to define labels to variables
you create using Hmisc’s label function. You may also want to use Hmisc’s units function to define
units of measurement. At present, this is only used for survival time objects and for the describe
function.

map ← (2*diastolic+systolic)/3

label(map) ← ’Mean Arterial Blood Pressure’

units(map) ← ’mm Hg’
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4.4.1 The score.binary Function

When you wish to create a new categorical, ordinal, or numeric variable from a series of binary or
logical values, the score.binary function in Hmisc may be useful. score.binary summarizes the
binary conditions using a hierarchical rule in which the last true value of the series applies, an additive
sum is computed, or other user–specified summaries are computed. By default, score.binary uses
the first of these three methods is used, i.e., logical true/false variables are examined from left to
right, and each observation is classified into the category corresponding to the rightmost true value.
The x1,x2 recode example above did this using builtin S language features. Here are the examples
from score.binary’s help file.

# Hierarchical scale, highest of 1:age>70 2:previous.disease

# Here score.binary will return a numeric variable with values 0,1,2

x ← score.binary(age>70, previous.disease, retfactor=F)

# Same as above but return factor variable with levels "none" "age>70"

# "previous.disease":

x ← score.binary(age>70, previous.disease)

# Additive scale with weights 1:age>70 2:previous.disease

x ← score.binary(age>70, previous.disease, fun=sum)

# Additive scale, equal weights

x ← score.binary(age>70, previous.disease, fun=sum, points=c(1,1))

# Same as saying points=1

# Union of variables, to create a new binary variable

x ← score.binary(age>70, previous.disease, fun=any)

4.4.2 The recode Function

An undocumented function in Hmisc, recode, may save some time in recoding variable values.
recode can handle numeric quantities. When dealing with character or factor vectors it is better to
manipulate levels as shown in Section 4.4. Here are some recode examples.

> x ← c(’cat’,’dog’,’rat’)

> recode(Catdog=x==’cat’|x==’dog’)

[1] Catdog Catdog none

> recode(Catdog=x==’cat’|x==’dog’,Rat=x==’rat’)

[1] Catdog Catdog Rat

> recode(Catdog=x %in% c(’cat’,’dog’), rat=x==’rat’)

[1] Catdog Catdog rat

> # Also use x ← factor(x); levels(x) ← list(Catdog=c(’cat’,’dog’),...)

> x ← 1:3

> recode(’22’=x==1 | x==3,’2’=x==2)

[1] 22 2 22

Note that recode returned a numeric variable in the last example even though the argument names
given to recode were ’22’ and ’2’. recode checked to see that all of the target values were numeric
and that being the case it transformed the result to numeric. Target codes were specified on the left
hand side of the equal sign, and when the target codes are legal S names they need not be enclosed
in quotes.
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recode can also be called a different way as shown below.

> x ← c(1,2,3,3)

> recode(x,1:3,3:1)

[1] 3 2 1 1

> recode(x,1:3,c(’a’,’b’,’c’))

[1] "a" "b" "c" "c"

> recode(x,1:3,c(’cat’,’dog’,’rat’))

[1] "cat" "dog" "rat" "rat"

recode has some optional arguments. One of them is none, which can be used to set the value to
return if the original value is not matched by one of the values to recode from.

The match function is also handy for recoding.

> x_c(’a’,’b’,’c’,’c’)

> match(x,c(’a’,’b’,’c’))

[1] 1 2 3 3

> c(’a’,’b’,’c’)[c(1,2,3,3)]

[1] "a" "b" "c" "c"

In the following example, we use a small function rec to recode a vector.

> rec ← function(x, from, to) {
+ i ← match(x, from)

+ to[i]

+ }
> x

> rec(x,c(’a’,’b’,’c’),c(’A’,’B’,’C’))

[1] "A" "B" "C" "C"

> rec(x,c(’a’,’b’),c(’A’,’B’))

[1] "A" "B" "" ""

> rec(x,c(’a’,’b’,’c’),c(’ab’,’ab’,’c’))

[1] "ab" "ab" "c" "c"

4.4.3 Should Derived Variables be Stored Permanently?

If upon leaving S-Plus you want to be able to re–start S-Plus and pick up right where you left off,
it may be best to store derived variables permanently as separate vectors in Data or in the input
data frame:

store()

x.derived ← some formula of x

store(x.derived)

# Or:

x.derived ← some formula of x

my.data.frame$x.derived ← x.derived

# works when store() not in effect

# Or: attach(dframe,pos=1,use.names=F)

# x.derived ← ...;detach(1,’dframe’)



108 CHAPTER 4. OPERATING IN S

However, derived variables do take up disk space and they will not automatically be re–derived
should you correct one of the original variables used to compute the derived ones. Neither will
they be re–derived if you change the derivation formulas. It is thus often better to copy and paste
the derivation formulas into the command window from an editor window or to otherwise save the
derivation formula for later use. A fancy approach would be to store the derivation formulas as an
attribute to the input data frame as shown in the following example.

derived ← expression(x2 ← x^2; y2 ← y^2)

eval(derived) # evaluate derived variables now

attr(my.data.frame,’derived’) ← derived

eval(attr(my.data.frame,’derived’))

# useful for re-evaluating them later

derive ← function(obj) { # define a function to do this

eval(attr(obj, "derived"), local = sys.parent(1))

invisible()

}

derive(my.data.frame) # same as eval(attr(my...))

4.5 Review of Data Frame Creation, Annotation, and Anal-
ysis

It is often useful to create, modify, and process datasets in the following order:

1. import external data

2. make global changes to a data frame (e.g., changing variable names)

3. change attributes or values of variables within a data frame

4. do analyses involving the whole data frame (without attaching it)

5. do analyses of individual variables (after attaching the data frame)

The following program is an example. Here we are processing Rosner’s FEV data. First, we do
steps that create or manipulate the data frame in its entirety. These are done with _Data in search
position one (the S-Plus default at the start of the session). The cleanup.import function changes
numeric variables that are always whole numbers to be stored as integers, the remaining numerics to
single precision, strange values from Excel to NAs, and character variables that always contain legal
numeric values to numeric variables. cleanup.import typically halves the size of the data frame.

# The data were imported into data frame FEV to distinguish

# this name from the variable fev, using File ... Import

# Source data: Rosner fev.asc (documented in fev.txt)

FEV ← cleanup.import(FEV)

names(FEV)[6] ← ’smoke’

# or names(FEV)[names(FEV)==’smoking’] ← ’smoke’

# or names(FEV) ← edit(names(FEV)) or edit in Object Explorer
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The renaming of smoking to smoke can also be done using upData. Next we make changes to
individual variables within the data frame. When changing more than one or two variables it is
most convenient to use upData so that we can omit the data frame and $ prefix before all the
variable names being changed.

FEV2 ← upData(FEV,

rename=c(smoking=’smoke’), # omit if renamed above

levels=list(sex =list(female=0,male=1),

smoke=list(’non-current smoker’=0,

’current smoker’=1)),

units=list(age=’years’, fev=’L’, height=’inches’),

labels=list(fev=’Forced Expiratory Volume’))

# Check the data frame

page(describe(FEV2), multi=T)

# page makes results go to a new window

# multi=T allows that window to persist while control

# is returned to other windows

# The new data frame is OK. Store it on top of the old FEV and

# then use the graphical user interface to delete FEV2 (click on it

# and hit the Delete key, or type rm(FEV))

FEV ← FEV2

Next, analyses are done that refer to all or almost all variables in the data frame. This is best done
without attaching the data frame.

summary(FEV) # basic summary function

plot(FEV)

datadensity(FEV)

hist.data.frame(FEV)

by(FEV, FEV$smoke, summary) # use basic summary with stratification

Now, to do detailed analyses involving individual variables, attach the data frame in search position
2.

attach(FEV)

options(width=80)

summary(height ∼ age + sex,

fun=function(y)c(smean.sd(y),

smedian.hilow(y,conf.int=.5)))

# This computes mean height, S.D., median, outer quartiles

# Run generic summary function on height and fev, stratified by sex

by(data.frame(height,fev), sex, summary)

# Cross-classify into 4 sex x smoke groups

by(FEV, list(sex,smoke), summary)

# Plot 5 quantiles

s ← summary(fev ∼ age + sex + height,
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fun=function(y)quantile(y,c(.1,.25,.5,.75,.9)))

s

plot(s, which=1:5, pch=c(1,2,15,2,1), # pch=c(’=’,’[’,’o’,’]’,’=’),

main=’A Discovery’, xlab=’FEV’)

# Use the nonparametric bootstrap to compute a 0.95 confidence

# interval for the population mean fev

smean.cl.boot(fev)

# Use the Statistics ... Compare Samples ... One Sample keys to get

# a normal-theory-based C.I. Then do it more manually. The following

# method assumes that there are no NAs in fev

sd ← sqrt(var(fev))

xbar ← mean(fev)

xbar

sd

n ← length(fev)

qt(.975,n-1) # prints 0.975 critical value of t dist. with n-1 d.f.

xbar + c(-1,1)*sd/sqrt(n)*qt(.975,n-1) # prints confidence limits

# Fit a linear model

fit ← lm(fev ∼ other variables ...)

See Section 3.4 for more details about creating and modifying data frames.

4.6 Dealing with Many Data Frames Simultaneously

Especially when using the sasxport.get function in R to read an entire SAS data library containing
dozens of SAS datasets, it is frequently convenient to store the resulting multiple data frames in
an S list object. The power of the S language can be used not only to process all datasets in the
list in like fashion but to cross-reference variables over datasets and to find inconsistencies in data
elements. Here are some examples.

> a ← data.frame(x1=1:3, x2=c(’a’,’b’,’c’), x3=2:4)

> a ← upData(a, labels=c(x1=’Label for x1’,x3=’Label for x3’),

+ units=c(x1=’mmHg’, x3=’minutes’))

> b ← data.frame(x1=3:5, x4=5:7)

> b ← upData(b, labels=c(x1=’Label for x1’), units=c(x1=’cm’))

> d ← data.frame(x5=1:3, x6=2:4)

> w ← llist(a,b,d) # llist in Hmisc remembers argument names

> contents(w)

Obs Var Var.NA

a 3 3 0
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b 3 2 0

d 3 2 0

> for(u in names(w)) print(describe(w[[u]], descript=u)

a

3 Variables 3 Observations

---------------------------------------------------------------------------

x1 : Label for x1 [mmHg]

n missing unique Mean

3 0 3 2

1 (1, 33%), 2 (1, 33%), 3 (1, 33%)

---------------------------------------------------------------------------

x2

n missing unique

3 0 3

a (1, 33%), b (1, 33%), c (1, 33%)

---------------------------------------------------------------------------

x3 : Label for x3 [minutes]

n missing unique Mean

3 0 3 3

2 (1, 33%), 3 (1, 33%), 4 (1, 33%)

---------------------------------------------------------------------------

b

2 Variables 3 Observations

. . .

> n ← unlist(lapply(w, names))

> datadict ←
+ data.frame(dataset=rep(names(w), sapply(w,length)),

+ variable=n,

+ label=unlist(lapply(w, function(x) sapply(x, label))),

+ units=unlist(lapply(w, function(x) sapply(x, units))),

+ row.names=NULL)

> datadict

dataset variable label units

1 a x1 Label for x1 mmHg

2 a x2

3 a x3 Label for x3 minutes

4 b x1 Label for x1 cm

5 b x4

6 d x5

7 d x6
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> # print in order of variable names

> i ← order(datadict$variable)

> datadict[i,]

dataset variable label units

1 a x1 Label for x1 mmHg

4 b x1 Label for x1 cm

2 a x2

3 a x3 Label for x3 minutes

5 b x4

6 d x5

7 d x6

> # check for inconsistencies in labels or units (when non-blank)

> chka ← function(atr) {
> w ← tapply(datadict[[atr]], datadict$variable,

+ function(x) length(unique(x[x != ""])))

+ if(any(w > 1))

+ cat(’\nVariables with inconsistent ’, atr, ’ across datasets:\n’,
+ paste(names(w[w > 1]),collapse=’ ’),’\n’, sep=’’)

+ invisible()

+ }

> chka(’label’)

> chka(’units’)

Variables with inconsistent units across datasets:

x1

4.7 Missing Value Imputation using Hmisc

When developing multivariable regression models, the default action of many S functions (and every
other system) is to delete an entire row of data when any of the variables are missing. In many
cases it is a shame to exclude observations missing on X1 while studying the relationship between
X2 and Y , as this loss of data reduces power and increases variances. Also, deletion of observations
containing missing data causes a bias when the data are not missing at random. It is usually better
to estimate missing values than to discard valuable data.

When a predictor variable is uncorrelated with all of the other predictors, one can obtain nearly
unbiased estimates of regression coefficients (at least in ordinary multiple regression) by replacing
missing values with constants. The impute function in Hmisc makes this easy to do. By default,
impute will replace missing values with the median non–missing value for continuous variables,
and with the most frequent category for categorical (factor) or logical variables. One can specify
other statistical functions for use with continuous variables instead of the default fun=median (e.g.,
fun=mean), or constants or randomly sampled values to insert for numeric or categorical variables.
There are methods for printing, subsetting, summarizing, and describing variables having imputed
values. There is also a function, is.imputed, that allows easy detection of imputed values. Here
are some examples from the impute help file:
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> age ← c(1,2,NA,4)

> age.i ← impute(age)

# Could have used impute(age,2.5), impute(age,mean), impute(age,"random")

> age.i # Note that print.impute places * after imputed values

1 2 3 4

1 2 2* 4

> summary(age.i)

1 values imputed to 2

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1.75 2 2.25 2.5 4

> describe(age.i)

age.i

n missing imputed unique Mean

4 0 1 3 2.25

1 (1, 25%), 2 (2, 50%), 4 (1, 25%)

> is.imputed(age.i)

[1] F F T F

If one developed a model after imputing NAs, it’s easy to re–fit the model to see if imputation caused
any of the estimated regression shapes to change:

> f.noimpute ← update(f, subset=!is.imputed(age))

When variables containing NAs are correlated with other variables, it is more accurate to impute
these values by predicting them from the other variables. If relationships between variables are
monotonic, a tree model may be a convenient approach. In general, customized regression equations
may be needed. Hmisc’s aregImpute function finds transformations that optimize how each variable
is predicted from each other variable using additive semiparametric models (using ace or avas
functions ). In some cases, one variable can be predicted from another only after a non–monotonic
transformation is made on each one. For example, heart rate does not correlate well with blood
pressure, but the absolute difference between heart rate and a normal value for heart rate does
correlate with the absolute difference between blood pressure and a normal value for blood pressure.
aregImpute can find such transformations and base imputations on them. It does imputations,
even allowing for missing values in the variables currently being used to predict NAs in the specific
variable.

Once aregImpute develops all of the customized imputation models automatically, a special form
of the impute function (impute.transcan) can apply the imputations:

> xt ← aregImpute(∼ age + blood.pressure + hrate + race)

> blood.pressure ← impute(xt, blood.pressure, imputation=1)

> hrate ← impute(xt, hrate, imputation=1)

> impute(xt) # causes all variables to be imputed, storing

> # imputed variables under their original names

But note that the use of fit.mult.impute (see below) is a better approach. Continuous and
categorical variables are imputed by aregImpute using predictive mean matching.
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It is well known that ignoring the fact that imputations were done will bias standard error
estimates downward. Estimated standard errors can be corrected using multiple imputation, but it
is also easy to use the bootstrap. The bootstrap can also adjust for other sources of variation such
as stepwise variable selection or estimating transformations of the response variabel. Bootstrapping
is not usually practical when using aregImpute because aregImpute often runs too slowly to be
called inside a bootstrap loop. Here is an example when imputations are done using a constant. See
Section 4.8 for another bootstrap example.

> store() # don’t keep any objects from this session

> # Generate data with no missing values

> n ← 200

> set.seed(231)

> x1 ← rnorm(n)

> x2 ← sample(0:1, n, replace=T)

> y ← x1 + 2*x2 + rnorm(n)/3

# Make 40 of the x1 values missing at random

> x1[sample(1:length(x1), 40)] ← NA

> describe(x1)

x1

n missing unique Mean .05 .10 .25 .50

160 40 160 0.02925 -1.82198 -1.40211 -0.62995 0.05152

.75 .90 .95

0.83800 1.27483 1.65581

> # Impute missing x1s using the median of non-missing x1s

> x1i ← impute(x1)

> # Fit linear regression model using Design library’s ols function

> f ← ols(y ∼ x1i + x2, x=T, y=T)

> # Print standard errors that were computed using the standard formula

> sqrt(diag(f$var))

[1] 0.05802961 0.04385920 0.08295235

> # Compute bootstrap estimates of standard errors not corrected for imputation

> B ← 300

> sqrt(diag(bootcov(f, B=300, pr=T)$var))

[1] 0.05441155 0.02582960 0.08077475

> # Note that these standard errors are unconditional estimates whereas

> # Standard formulas use variables conditional on covariable values

> # Now correct for imputation. The following calculations are the same

> # used by bootcov except that imputation is done inside the bootstrap loop

> betas ← matrix(NA, nrow=B, ncol=3)

> for(i in 1:B) {
+ cat(i,’’)

+ j ← sample(1:n, n, rep=T) # bootstrap sample

+ x1b ← x1[j]

+ x1bi ← impute(x1b)
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+ x2b ← x2[j]

+ yb ← y[j]

+ cof ← lm.fit.qr(cbind(1,x1bi,x2b), yb)$coefficients

+ # lm.fit.qr is used internally by ols and lm. Use it here for

+ # raw speed. Even faster- use undocumented Hmisc function:

+ # cof ← lm.fit.qr.bare(cbind(x1bi,x2b), yb)$coefficients

+ betas[i,] ← cof

+ }

> sqrt(diag(var(betas)))

[1] 0.06436752 0.02908877 0.08260003

We see that when correcting for imputation the standard error of the intercept and of the regression
coefficient for x1 increased the most.

Caution: In most situations, especially ordinary multiple regression, imputing “best guess” ex-
pected values for missing values results in biases. Deriving imputation models ignoring the response
variable will bias final regression coefficients downward in absolute value. So it is usually better to
develop imputations using the response variable to predict the independent variables, and to impute
using randow values (random draws) for the predictors, i.e., to add random residuals into imputed
values. You can easily obtain random draws using impute(x, ’random’), but these do not allow
for relationships among predictors or between x and the response.

The aregImpute function generates multiple imputations without making distributional assump-
tions. After running aregImpute you can run the Hmisc fit.mult.impute function to fit the chosen
model separately for each artifically completed dataset corresponding to each imputation. After
fit.mult.impute fits all of the models, it averages the sets of regression coefficients and computes
variance and covariance estimates that are adjusted for imputation using a standard formula. Here
is an example:

> # Optimally transform all 4 variables and make 10 sets of random

> # imputations on the distribution of each variable conditional on

> # all the others

> xtrans ← aregImpute(∼ y + x1 + x2 + x3, n.impute=10)

> # Fit 10 models for 10 completed datasets

> f ← fit.mult.impute(y ∼ x1*x2 + x3, lm, xtrans)

> Varcov(f) # prints imputation-corrected covariance matrix

Here fit.mult.impute fitted the 10 models using the built–in lm multiple regression function. A
drawback to using lm here is that when you do summary(f) to get coefficients, standard errors,
P–values, etc., only the coefficients are correct. Using the Design ols function in place of lm gets
around this problem, and also allows for flexible ways to relax linearity assumptions. Here is an
example:

> f ← fit.mult.impute(y ∼ rcs(x1)*x2 + x3, ols, xtrans)

> f # prints corrected coefficients, standard errors, Z-statistics, P

4.8 Using S for Simulations and Bootstrapping

The S language and the ease of referencing the result of statistical functions makes S an ideal
language for doing traditional Monte Carlo simulation as well as bootstrapping. When the dataset
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forming the basis of the simulation is large or when the number of iterations is very large, S will run
slower than other systems. However the savings in programming time usually more than makes up
for the slower execution time.

For a first example let us use Monte Carlo simulation to estimate the population variance of
the sample median for a sample of size n = 50 from a log–normal distribution. In the following
code note the importance of setting aside reps locations in which to store the medians. If instead
you set meds to NULL and continually concatenated sample medians to meds (e.g., meds ← c(meds,
median(x)), the memory usage of the program would be very inefficient.

> store()

> n ← 50

> reps ← 400

> meds ← single(reps) # set aside 400 of them

> set.seed(171) # allows us to reproduce results

> for(i in 1:reps) {
+ x ← exp(rnorm(n))

+ meds[i] ← median(x)

+ }
> var(meds)

[1] 0.02887161

This took 1.8 seconds on a Pentium 166. Another approach would be to generate all the data up
front, and to apply a matrix operation to compute the needed statistics:

> set.seed(171)

> x ← matrix(exp(rnorm(n*reps)), nrow=reps, ncol=n, byrow=T)

> # byrow=T forces x to be built in same order as first example,

> # so we get identical results

> meds ← apply(x, 1, median)

> var(meds)

[1] 0.02887161

This also took 1.8 seconds.
Now consider how to compute a simple bootstrap estimate (see also Section 4.7). Suppose the

data consists of the heights in feet of a sample of 20 adults and we want to derive a 90% confidence
interval for the population median height without making distributional assumptions. We take 500
samples with replacement, each of size 20, from the 20 heights, and compute the sample median.
We then get the sample 0.05 and 0.95 quantiles of these 500 medians to form the desired confidence
interval. The built–in sample function makes bootstrapping easy.

> h ← c(5.5, 5.7, 5.2, 5.0, 6.2, 5.9, 6.4, 6.1, 5.5, 5.8,

+ 6.0, 6.4, 5.0, 4.9, 5.7, 5.8, 5.3, 6.2, 6.1, 5.6)

> median(h)

[1] 5.75

> B ← 500

> meds ← single(B)

> set.seed(113) # if want to reproduce this later

> for(i in 1:B) {
+ s ← sample(1:20, 20, replace=T)

+ meds[i] ← median(h[s]) # h[s] samples h using subscripts s
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+ }
> table(meds)

5.1 5.25 5.3 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.7 5.75 5.8 5.8 5.85

1 1 2 3 1 25 18 31 40 8 88 71 99 3 36

5.9 5.95 5.95 6 6.05 6.1 6.15

27 5 17 12 7 4 1

> quantile(meds, c(.05, .95))

5% 95%

5.5 5.95

This program ran in 3.9 seconds. The program can be shortened considerably because of built–in
bootstrap functions:

> b ← bootstrap(h, median, B=B)

> limits.emp(b)

This ran in 5.0 seconds.
The bootstrap function is quite flexible. In the following example we use it to provide confidence

limits for a type of estimate for which computing limits would be quite difficult by other means.
We compute 0.95 confidence on the ranks of departments in a hospital, where what is being ranked
is the mean satisfaction level with the departments, based on responses to a 5–point satisfaction
scale. This is a common problem in “scorecarding” or “provider profiling” of departments, hospitals,
or other entities. Just ranking the mean satisfaction scores across departments does not take into
account the fact that the mean scores are estimates themselves. By using the bootstrap to derive
confidence limits for ranks, we will lessen the chance that ranks will be misinterpreted. In what
follows we stratify the overall analysis by the sex of the questionnaire’s respondant.

First we do a more traditional analysis where individual mean satisfaction scores and t–based con-
fidence limits are computed by department and by sex. The Hmisc summarize, smean.cl.normal,
and Dotplot functions are useful. See Section 11.4.2 for more about Dotplot, which nicely displays
results for dozens of departments along with “error bars”, and see Section 11.4.3 for more examples
of using summarize with trellis graphics functions. Here we downplay point estimates by using
small tick marks (plus sign, pch=3) to mark them, and emphasize 0.99 confidence limits drawn with
horizontal lines. The S reorder.factor function nicely orders the departments by the mean of the
male and female satisfaction scores within each department. This makes the graph easier to read.

> w ← summarize(Rating, llist(Department, Sex),

+ smean.cl.normal, conf.int=0.99)

> attach(w,1)

> Department ← reorder.factor(Department, Rating, mean)

> Dotplot(Department ∼ Cbind(Rating, Lower, Upper) | Sex,

+ main=’Means and 0.99 C.L.’, pch=3, xlim=c(1,5),

+ xlab=’Rating’)

Next we analyze the data separately by sex to compute the ranks of the mean scores and 0.95
confidence limits for these ranks. We could use the bootstrap function easily by creating a data
frame to contain department codes and satisfaction ratings, but it is faster to have bootstrap
operate on a matrix. As the matrix (here, d) needs to be all numeric, we temporarily convert the
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Department factor variable into integer codes. Factor levels are later re–associated with these codes
for nice plotting. We use the group argument to bootstrap so that resampling is done separately
within each department, to ensure that when these individual resamples are combined into one overall
resample, each department’s sample size equals the original sample size. After the bootstraps are
done, results for both bootstraps are combined into a single data frame D.

> detach(1) # detach w, go back to raw data

# Define a function to compute stratified means and then rank them

# We can use this function for both overall ranks and ranks within

# bootstrap resamples. After all bootstrap resamples are done, we can

# use limits.emp to compute sample quantiles of these ranks,

# stratified by department

> rankdept ← function(d) {
+ w ← tapply(d[,2], d[,1], mean, na.rm=T)

+ r ← rank(w)

+ names(r) ← names(w)

+ r

+ }

> D ← NULL

> for(sx in levels(Sex)) {
+ s ← Sex==sx # analyze each sex separately

+ d ← cbind(as.integer(Department)[s], Rating[s])

+ ranks ← rankdept(d)

+ ranksb ← bootstrap(d, rankdept(d), B=500, group=Department[s])

+ lim ← limits.emp(ranksb)

+ w ← data.frame(Sex=rep(sx,length(ranks)),

+ Department=

+ levels(Department)[as.integer(names(ranks))],

+ Rank=ranks,

+ Lower=lim[,1], # 0.025 quantile of 500 estimates

+ Upper=lim[,4]) # 0.975 quantile

+ D ← rbind(D, w)

+ }
> # The ’as.integer(names(ranks))’ trick uses the fact that we told

> # the rankdept function to retain the department codes as the names

> # attribute of the rank vector. Names are always stored as

> # character strings so we had to convert them to numeric

> # Arrange levels so that Dotplot will order categories by

> # average over female, male

> D$Department ← reorder.factor(D$Department, D$Rank, mean)

> Dotplot(Department ∼ Cbind(Rank, Lower, Upper) | Sex,

+ data=D, pch=3, xlab=’Rank’,

+ main=’Ranks and 0.95 Confidence Limits for Mean Overall Satisfaction’)

The analyst will usually find confidence limits for ranks to be quite wide, as they should be. Trying
to rank small differences can be quite difficult.
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Another place where bootstrapping ranks is useful is the situation where an investigator wishes
to conclude that one predictor variable is better than another in terms of the Wald partial χ2 minus
the degrees of freedom (to level the playing field) contributed by the variables. The online help
for the Design library’s anova function has the following example, which uses the plot method
for an anova.Design object without actually plotting the χ2s at each re-sample. We rank the
negative of the adjusted χ2s so that a rank of 1 is assigned to the highest. It is important to tell
plot.anova.Design not to sort the results, or every bootstrap replication would have ranks of 1,2,3
for the statistics.

> b ← bootstrap(mydata,

+ rank(-plot(anova(

+ lrm(y ∼ rcs(x1,4)+pol(x2,2)+sex,mydata)), sort=’none’, pl=F)),

+ B=50) # should really do B=500 but will take a while

> Rank ← b$observed

> lim ← limits.emp(b)[,c(1,4)] # get 0.025 and 0.975 quantiles

# Use the Hmisc Dotplot function to display ranks and their confidence

# intervals. Sort the categories by descending adj. chi-square, for ranks

> original.chisq ← plot(anova(lrm(y ∼ rcs(x1,4)+pol(x2,2)+sex,data=mydata)),

+ sort=’none’, pl=F)

> predictor ← as.factor(names(original.chisq))

> predictor ← reorder.factor(predictor, -original.chisq)

> Dotplot(predictor ∼ Cbind(Rank, lim), pch=3, xlab=’Rank’,

+ main=’Ranks and 0.95 Confidence Limits for Chi-square - d.f.’)
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See the Hmisc bootkm function as another example of bootstrapping. For obtaining basic non-
parametric confidence intervals for a population mean using the bootstrap percentile method as was
used above, use the blazing fast smean.cl.boot function.

It is easy to call Fortran or C programs from within S. So if you are doing extensive simulations
that run too slowly, you may want to isolate the slow code (particularly when subscripting must be
done in a loop) and program it in Fortran or C.

For power simulations it is often very easy to program repeated regression model fitting. It is
very important that you call the lowest possible level of fitting routine so that at each iteration
S does not need to interpret model formulas, check for missing data, form design matrices, etc.
Here is an example where we estimate the power for testing the effects of one predictor on a binary
outcome, adjusted for another predictor. The population correlation between the two predictors is
0.75. The population regression coefficients are -1.4, 1, and 0.7, for the intercept and two predictors,
respectively. This program simulates power unconditional on x1 and x2. To simulate conditional
power, generate these variables once before the loop.

store()

n ← 50

nsim ← 1000

rho ← .75

beta1 ← 1

beta2 ← .7

intercept ← -1.4

# Show inter-quartile-range odds ratios in effect

cat(’IQR OR for adjustor:’,format(exp(beta1*1.34898)),’\n’)
cat(’IQR OR for predictor:’,format(exp(beta2*1.34898)),’\n’)

r ← prop ← chisq ← single(nsim)

for(i in 1:nsim) {
cat(i,’’)

x1 ← rnorm(n) # unconditional power on x1,x2

x2 ← rnorm(n) + (rho/sqrt(1 - rho*rho)) * x1

L ← intercept+beta1*x1+beta2*x2

y ← ifelse(runif(n)<=plogis(L),1,0) # or better:

y ← rbinom(n, size = 1, prob = plogis(L))

r[i] ← cor(x1,x2)

prop[i] ← mean(y)

x ← cbind(x1, x2)

f ← lrm.fit(x,y) # lrm.fit in Design, called by lrm

chisq[i] ← (f$coef[3])^2/f$var[3,3]

}

prn(mean(r),’Mean correlation between x1 and x2’) # prn in Hmisc

prn(mean(prop),’Mean proportion Y=1’)

prn(mean(chisq>3.84),’Power’)

For some problems you may have sample predictor values in a previous study. If the sample size
used in the simulation is less than that from the previous study, you can form the x1,x2 vectors
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by sampling without replacement from the study’s values. Otherwise, you might consider sampling
with replacement. Either of these approaches will allow you to use actual rather than hypothetical
normal distributions. There is still the problem of what population regression coefficient values to
use in the simulations. Here is an example.

# Let df be a data frame containing a sample of predictor values

# Sample from these

i ← sample(1:nrow(df), n)

x1 ← df$x1[i]

x2 ← df$x2[i]

# At this point start simulation loop to get power conditional on

# x1,x2

See Section 5.3 for an example where the Hmisc spower function is used to simulate the power of
a survival time comparison. See Section 7.2.1 for an example where multivariate normal repeated
measurement data are simulated.
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Chapter 5

Probability and Statistical
Functions

5.1 Basic Functions for Statistical Summaries

There are many functions to produce statistical summaries. We already used describe and table.
Table 5.1 gives a concise list of some other basic functions. All the functions below pmax are in the
Hmisc library.

A few details about these functions: cor computes the ordinary Pearson product–moment linear
correlation coefficient. cor,mean,var,median, min, max, and quantile do not accept NAs without
extra effort. The cor.test function will automatically exclude NAs. All but var and cor have
an optional parameter na.rm which can be set to T to cause NAs to be deleted before doing any
calculations. For var and cor you will have to delete the NAs from the input variables yourself. mean
and median do not operate separately in columns of matrices. Use a combination of the function
and apply for this purpose. min and max have the same limitation as mean, but pmin and pmax can
be used to obtain the min or max of several vectors simultaneously.

rcorr efficiently computes Pearson and Spearman rank correlation matrices and P–values, doing
pairwise deletion of NAs. hoeffd uses pairwise deletion of NAs in computing Hoeffding’s general
measure of dependence between any two variables.

The functions bystats and bystats2 in Hmisc can be used to obtain statistics on a variable by
the levels of several classification variables (i.e., by–processing). These have been superceded to
some extent by Hmisc’s summary.formula and summarize functions, but bystats can still be useful
for stratification by more than two variables. See Section 6.2 for examples of summary.formula.

123
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Table 5.1: Functions for Statistical Summaries

Function Description Comments

cor cor(x,y) correlations between x and y

cor.test cor.test(x,y,method) Pearson, Spearman, Kendall corr. and tests
var var(x,y) variances and covariances
cumsum cumsum(x) cumulative sums
mean mean(x) mean of a vector
median median median of a vector
quantile quantile(x,probs=...) quantiles
min min(...) overall minimum value of all arguments
max max(...) overall maximum value of all arguments
pmin pmin(...) minimum for each row over several vectors
pmax pmax(...) maximum for each row over several vectors
describe describe(..) describe data frame or any

type of var.
bystats bystats(y,...,fun=...) stratified statistics
summary.formula summary(y ∼ ...) flexible stratified statistics
summarize summarize(x,byvar,FUN) multi–way stratified statistics
cumcategory cumcategory(y) make dummies to summarize ordinal y
binconf binconf(successes,events,alpha) exact and Wilson C.L. for probability
smean.cl.normal smean.cl.normal(y) compute normal (t) C.L.
smean.sd smean.sd(y) mean and std. dev.
smean.sdl smean.sdl(y) mean ± constant × s.d.
smean.cl.boot smean.cl.boot(y) nonparametric boot. C.L. for mean
smedian.hilow smedian.hilow(y) median and 2 symmetric tailed quantiles
hoeffd hoeffd(x,y) Hoeffding D statistic
rcorr rcorr(...) linear or rank correlation matrix
rcorr.cens rcorr.cens(...) Somers Dxy rank correlation

for censored data
rcorrp.cens rcorrp.cens(...) modification of

rcorrp.cens for paired predictors
bootkm bootkm(S,q=,times=) Bootstrap Kaplan-Meier

estimates
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> bystats(age,stage,status,fun=quantile)

quantile of age by stage, status

N Missing 0% 25% 50% 75% 100%

3 alive 96 0 49 67.75 72.0 74.00 83

4 alive 51 1 50 68.00 72.0 75.00 84

3 dead - prostatic ca 35 0 55 66.50 72.0 74.50 78

4 dead - prostatic ca 95 0 49 64.00 73.0 76.00 82

3 dead - heart or vascular 66 0 54 71.00 73.0 76.00 88

4 dead - heart or vascular 30 0 68 71.00 73.0 75.00 87

3 dead - cerebrovascular 21 0 62 72.00 75.0 76.00 80

4 dead - cerebrovascular 10 0 48 72.25 74.0 76.00 78

3 dead - pulmonary embolus 10 0 68 70.50 76.0 79.00 83

4 dead - pulmonary embolus 4 0 62 68.75 74.0 77.25 78

3 dead - other ca 20 0 51 72.00 74.5 76.00 80

4 dead - other ca 5 0 66 72.00 73.0 73.00 76

3 dead - respiratory disease 12 0 59 72.00 75.0 81.00 89

4 dead - respiratory disease 4 0 70 73.75 76.0 77.75 80

3 dead - other specific non-ca 19 0 62 68.50 76.0 78.00 81

4 dead - other specific non-ca 9 0 61 71.00 72.0 73.00 83

3 dead - unspecified non-ca 3 0 73 73.50 74.0 76.00 78

4 dead - unspecified non-ca 4 0 71 71.75 75.5 79.25 80

3 dead - unknown cause 7 0 52 64.50 71.0 73.00 76

ALL 501 1 48 70.00 73.0 76.00 89

The default value for fun is mean.
Several statistical summary functions are useful with summary.formula, summarize, tapply,

apply, and by themselves. These functions (cumcategory through smedian.hilow in the table)
provide statistical summaries for printing and plotting (including “error bars”; see Section 11.4.3).
Here are some examples based on a sample of size 500 from a uniform(0,1) distribution:

> set.seed(2) # so can replicate example

> x ← runif(500)

> smean.cl.normal(x)

Mean Lower Upper

0.501 0.475 0.527

> smean.cl.boot(x)

Mean Lower Upper

0.501 0.476 0.526

> smean.sd(x)

Mean SD

0.501 0.292

> smean.sdl(x)

> # mean +- 2 s.d. (smean.sdl(x,1) to get mean +- s.d.)

Mean Lower Upper

0.501 -0.0831 1.08

> smedian.hilow(x)

> # median and .025, .975 quantiles (conf.int=.5 for quartiles)

Median Lower Upper
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0.522 0.0201 0.971

The rcorr.cens, rcorrp.cens, and bootkm functions in Hmisc are used with right–censored
failure–time data. The first two compute rank correlation measures for censored response data, and
bootkm bootstraps Kaplan–Meier survival probability or quantile estimates. The help files for these
functions give more information.

5.2 Functions for Probability Distributions

For each distribution in Table 5.2, four functions are available: one for densities, one for cumulative
distribution functions, one for quantiles and one to obtain random samples from that distribution.
Add the prefixes d, p, q or r to the Name column to get the name of the desired function. Functions
in Hmisc related to probability distributions include ecdf (which plots the step–function empirical
cumulative distribution function of a vector or of all the continuous variables in a data frame) and
bpplot (box–percentile plots). See Section 11.3 for more about these as well as information about
the Hmisc scat1d and histSpike functions for drawing rug plots, histograms, and density estimates.
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Table 5.2: Probability Distribution Functions

Distribution Name Parameters
Beta beta shape1

shape2
Binomial binom size

prob
Cauchy cauchy location

scale
χ2 chisq df
Exponential exp rate
F f df1

df2
Gamma gamma shape
Geometric geom shape
Lognormal lnorm meanlog

sdlog
Logistic logis location

scale
Negative Binomial nbinom size

prob
Normal (Gaussian) norm mean

sd
Poisson pois lambda
Student’s t t df
Uniform unif min

max
Weibull weibull shape
Empirical cdf ecdf
Box–percentile plot bpplot list of vectors
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Here are some examples.

# Compute the probability of getting 3 or fewer heads out of 10

# tosses of a fair coin

> pbinom(3, 10, .5)

[1] 0.171875

# Use the Hmisc function binconf to compute an exact 0.99 confidence

# interval for the unknown probability of an event given 6 events

# were observed out of 10 trials. The Wilson score test-based

# interval has been shown to offer more accurate coverage than the

# exact beta-distribution-based method. It’s often the case that

# so-called ’exact’ methods are conservative (Fisher’s exact test for

# comparing two proportions can be quite conservative)

> binconf(6, 10, .01)

Lower Upper

Exact 0.191 0.923

Wilson 0.248 0.872

# Do an F-test to test H0: two variances are equal, given

# a sample standard deviation of 35.6 from n=100 and an

# s.d. of 17.3 from n=74. See Rosner 4th Edition Ex. 8.15 P. 268

> vratio ← (35.6/17.3)^2

> vratio

[1] 4.234555

> 2*(1 - pf(vratio, 99, 73)) # 2-tailed P-value

[1] 8.612535e-010

# Compute a 0.95 confidence interval for the population variance ratio

> ratios ← qf(c(.025,.975), 99, 73)

> ratios

[1] 0.654760 1.549079

> vratio/ratios

[1] 6.467339 2.733596

Had we been using the raw data for the last example, the calculations could have been done using
the S builtin function var.test if we provided it the raw data. We can thankfully work backwards
to generate raw data having the needed mean and standard deviation, just so we can use var.test.
The following function will generate a vector of length n having sample mean and standard deviation
exactly equal to given constants. After the appropriate vectors are computed we can use var.test.

> gen.mean.sd ← function(n, xbar = 0, sd = 1) {
+ x ← 1:n

+ xbar + sd * (x - mean(x))/sqrt(var(x))

+ }
> y1 ← gen.mean.sd(100, sd=35.6)
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> mean(y1)

[1] 3.552714e-016

> sqrt(var(y1))

[1] 35.6

> y2 ← gen.mean.sd(74, sd=17.3)

> var.test(y1,y2)

F test for variance equality

data: y1 and y2

F = 4.2346, num df = 99, denom df = 73, p-value = 0

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

2.733596 6.467339

sample estimates:

variance of x variance of y

1267.36 299.29

5.3 Hmisc Functions for Power and Sample Size Calculations

Table 5.3 lists functions in Hmisc related to statistical power.

Table 5.3: Hmisc Functions for Power/Sample Size

Function Purpose
ballocation Find optimum allocation ratio for

treatments for binary responses
bpower Power of two–sample binomial test

(approximate; for comparing two proportions)
bpower.sim Power of two-sample binomial test

using simulation
bsamsize Sample size for two–sample binomial test
ciapower Power of interaction test for exponential

survival (and for Cox model)
cpower Power of Cox/log–rank two–sample Test
gbayes Gaussian Bayesian posterior and predictive

distributions (and simple conditional power dist.)
popower Power for two–sample test for ordinal responses
posamsize Sample size for two–sample ordinal responses
samplesize.bin Sample size for 2-sample binomial using

sin−1√p transformation (by Rick Chappell)
spower Power of Cox/log–rank two–sample test for

complex situations via simulation

The ballocation, bpower.sim and bsamsize functions are documented under the heading of
the bpower function. posamsize is listed under popower.
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In the following example, both the bpower and bpower.sim functions are used to estimate power
for the two–sample binomial test (comparison of two proportions). bpower.sim can simulate power
of the χ2

1 test very quickly because S has a builtin binomial random number generator. By default,
10000 simulations are done (this takes about 5 seconds). 0.95 confidence limits for the estimated
power based on the simulations are reported.

> args(bpower)

function(p1, p2, odds.ratio, percent.reduction, n, n1, n2, alpha = 0.05)

> args(bpower.sim)

function(p1, p2, odds.ratio, percent.reduction, n, n1, n2, alpha = 0.05,

nsim = 10000)

> bpower(.2, odds.ratio=2, n=200)

Power

0.5690973

> bpower.sim(.2, odds.ratio=2, n=200)

Power Lower Upper

0.5581 0.5483664 0.5678336

> bpower.sim(.2, odds.ratio=2, n=200, nsim=25000)

Power Lower Upper

0.56256 0.5564106 0.5687094

> args(bsamsize)

function(p1, p2, fraction = 0.5, alpha = 0.05, power = 0.8)

> bsamsize(.2, plogis(qlogis(.2)+log(2)), power=.5690973)

n1 n2

100.0041 100.0041

Note that bsamsize does not allow specification of an odds ratio. We used the logistic and inverse
logistic transform to get the second proportion by applying an odds of 2 to the first proportion (.2).

Next we compute power for a proportional odds two–sample test for comparing two ordinal
responses. The first calculation is for an ordinal response with only two levels. Power for this
situation should be close to the 0.56 just computed, but in fact it is different, as popower uses
a normal approximation for the log odds ratio instead of subtracting the two proportions. This
approximation is not as good as the method used by bpower when there are two categories. For
each application of popower we assume that the marginal frequencies of responses are equal across
response categories. You can see that when more ordered categories are used, the power increases
(especially when the cell frequencies are equal).

> args(popower)

function(p, odds.ratio, n, n1, n2, alpha = 0.05)

> popower(c(.5,.5), 2, 200)

Power: 0.684

Efficiency of design compared with continuous response: 0.75

> popower(c(1,1,1)/3, 2, 200)

Power: 0.756

Efficiency of design compared with continuous response: 0.889

> popower(c(1,1,1,1)/4, 2, 200)

Power: 0.778
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Efficiency of design compared with continuous response: 0.938

> popower(c(1,1,1,1,1)/5, 2, 200)

Power: 0.788

Efficiency of design compared with continuous response: 0.96

In the next example, taken from the bpower help file, we plot power vs. the total sample size n for
various odds ratios, using 0.1 as the probability of the event in the control group. A separate curve
is plotted for each odds ratio, and the odds ratio is drawn just below the curve at n = 350.

n ← seq(10, 1000, by=10)

OR ← seq(.2,.9,by=.1)

plot(0, 0, xlim=range(n), ylim=c(0,1), xlab="n", ylab="Power", type="n")

for(or in OR) {
lines(n, bpower(.1, odds.ratio=or, n=n))

text(350, bpower(.1, odds.ratio=or, n=350)-.02, format(or))

}

Now re–do the plot, letting Hmisc’s labcurve function do the work of drawing the curves, deter-
mining overall axis limits, and labeling curves at points of maximum separation.

pow ← lapply(OR, function(or,n)list(x=n,y=bpower(p1=.1,odds.ratio=or,n=n)),

n=n)

names(pow) ← format(OR)

labcurve(pow, pl=T, xlab=’n’, ylab=’Power’)

The cpower function for estimating power for the Cox/log–rank two–sample test has many
options that allow a time–to–event study to have several complexities. Here is an excerpt from the
help file.

DESCRIPTION

Assumes exponential distributions for both treatment groups. Uses the
George-Desu method along with formulas of Schoenfeld that allow
estimation of the expected number of events in the two groups. To
allow for drop-ins (noncompliance to control therapy, crossover to
intervention) and noncompliance of the intervention, the method of
Lachin and Foulkes is used.

USAGE

cpower(tref, n, mc, r, accrual, tmin, noncomp.c=0, noncomp.i=0,
alpha=0.05, nc, ni, pr=T)

REQUIRED ARGUMENTS

tref time at which mortalities estimated
n total sample size (both groups combined). If allocation is unequal

so that there are not n/2 observations in each group, you may
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specify the sample sizes in nc and ni.
mc tref-year mortality, control
r % reduction in mc by intervention
accrual duration of accrual period
tmin minimum follow-up time

OPTIONAL ARGUMENTS

noncomp.c % non-compliant in control group (drop-ins)
noncomp.i % non-compliant in intervention group (non-adherers)
alpha type I error probability. A 2-tailed test is assumed.
nc number of subjects in control group
ni number of subjects in intervention group.

nc and ni are specified exclusive of n.
pr set to F to suppress printing of details

The help file for cpower has an example in which 4 plots are drawn on one page, one plot for each
combination of noncompliance percentage. Within a plot, the 5–year mortality % in the control
group is on the x–axis, and separate curves are drawn for several % reductions in mortality with the
intervention. The accrual period is 1.5y, with all patients followed at least 5y and some 6.5y.

The spower function is much slower than cpower as it relies on simulation, but it allows for
very complex clinical trial setups. cpower works with Quantiles2 and other functions documented
under the spower heading. The following paragraph is taken from spower’s help file:

Given functions to generate random variables for survival times and censoring times, spower
simulates the power of a user–given 2–sample test for censored data. By default, the logrank (Cox
2–sample) test is used, and a logrank function for comparing 2 groups is provided. For composing
S functions to generate random survival times under complex conditions, the Quantile2 function
allows the user to specify the intervention:control hazard ratio as a function of time, the probability
of a control subject actually receiving the intervention (dropin) as a function of time, and the
probability that an intervention subject receives only the control agent as a function of time (non–
compliance, dropout). Quantile2 returns a function that generates either control or intervention
uncensored survival times subject to non–constant treatment effect, dropin, and dropout. There is
a plot method for plotting the results of Quantile2, which will aid in understanding the effects
of the two types of non–compliance and non–constant treatment effects. Quantile2 assumes that
the hazard function for either treatment group is a mixture of the control and intervention hazard
functions, with mixing proportions defined by the dropin and dropout probabilities. It computes
hazards and survival distributions by numerical differentiation and integration using a grid of (by
default) 7500 equally–spaced time points.

Besides providing the Quantile2 function, the spower package also contains three functions
which compose S functions that compute survival probabilities for Weibull, log–normal, and Gom-
pertz distributions. These functions (Weibull2,Lognorm2, and Gompertz2) work by solving for the
two parameters of each of these distributions which make them fit two user–specified times and sur-
vival probabilities. The 3 types of functions so created are useful as the first argument to Quantile2.

The following example demonstrates the flexibility of spower and related functions. We simulate
a 2–arm (350 subjects/arm) 5–year follow–up study for which the control group’s survival distribu-
tion is Weibull with 1–year survival of .95 and 3–year survival of .7. All subjects are followed at
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least one year, and patients enter the study with linearly increasing probability starting with zero.
Assume (1) there is no chance of dropin for the first 6 months, then the probability increases linearly
up to .15 at 5 years; (2) there is a linearly increasing chance of dropout up to .3 at 5 years; and (3)
the treatment has no effect for the first 9 months, then it has a constant effect (hazard ratio of .75).

> # First find the right Weibull distribution for compliant control patients

> # Weibull2 is bundled with spower

> sc ← Weibull2(c(1,3), c(.95,.7))

> sc

function(times, alpha = 0.0512932943875506, gamma = 1.76519490623438

)

exp( - alpha * (times^gamma))

> # Inverse cumulative distribution for case where all subjects are followed

> # at least a years and then between a and b years the density rises

> # as (time - a) ^ d is a + (b-a) * u ^ (1/(d+1))

> rcens ← function(n) 1 + (5-1) * (runif(n) ^ .5)

> # To check this, type hist(rcens(10000), nclass=50)

> # Put it all together

> f ← Quantile2(sc,

+ hratio=function(x)ifelse(x <= .75, 1, .75),

+ dropin=function(x)ifelse(x <= .5, 0, .15*(x-.5)/(5-.5)),

+ dropout=function(x).3*x/5)

> par(mfrow=c(2,2)) # 2x2 matrix of plots

> plot(f, ’all’, label.curves=list(keys=’lines’))

> #omitting label.curves= will cause labcurve to label curves directly

The function f created by Quantile2 has as its main arguments n, the number of random variates
to draw, and what, telling the function whether to draw samples from the uncensored survival times
for control or intervention. The plot(f,...) statement produced Figure 5.1.

Now we ask spower to simulate the needed results, basing the survival distribution comparison
on the log–rank test.

> rcontrol ← function(n) f(n, ’control’)

> rinterv ← function(n) f(n, ’intervention’)

> set.seed(211)

> spower(rcontrol, rinterv, rcens, nc=350, ni=350, test=logrank, nsim=300)

[1] 0.4033333

See Section 4.8 for an example in which power for a logistic model is estimated via simulation.
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Figure 5.1: Characteristics of control and intervention groups with a lag in the treatment effect and with
non–compliance in two directions
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5.4 Statistical Tests

In general, we do not prefer to use specialized functions for many of the common statistical tests
for three reasons. (1) Many tests are special cases of regression models. (2) The notation used
in regression models unifies many of the concepts involved in statistical inference. (3) Regression
models can provide estimates of effects, not just tests of (sometimes inappropriate) null hypotheses.
Regarding point (2), the two–sample t–test is a special case of the linear regression model with a
single binary predictor variable. The two–sample Wilcoxon test is a special case of the proportional
odds ordinal logistic model again with a single binary predictor. The two–sample Wilcoxon test is
also a special case of the Spearman rank correlation test. The k–sample generalizations of these tests
(analysis of variance and Kruskal–Wallis test) may be obtained by using the two above mentioned
regression models with k− 1 dummy variables. The χ2 test for a k× 2 contingency table is a special
case of a binary logistic model with k − 1 dummy predictors, and the likelihood ratio χ2 test from
this model yields P–values that are more accurate than the traditional χ2 test. The log–rank test
is a special case of the Cox model.

The entire list of statistical tests builtin to S-Plus may be obtained under Microsoft Windows
by clicking under Index and entering Statistical Inference. You can also get the list by typing
the command help(’Statistical Inference’). Table 5.4 lists these functions.

Table 5.4: S Functions for Statistical Tests

Description Function
χ2 Goodness–of–fit chisq.gof
Exact binomial 1–sample binom.test
F test for variances var.test
Fisher’s exact test for p× q table fisher.test
Friedman rank sum friedman.test
Graph two cumulative distributions cdf.compare
Kolmogorov–Smirnov goodness–of–fit ks.gof
Kruskal–Wallis rank sum kruskal.test
Mantel–Haenszel χ2 mantelhaen.test
McNemar χ2 mcnemar.test
Pearson χ2 chisq.test
Proportion tests prop.test
Student t t.test
Correlation cor.test
Wilcoxon 1– and 2–sample wilcox.test

It is not clear why Fisher’s exact test is implemented in S, as this test is known to lose power
when compared with unconditional χ2 tests1

1Note that the “rule” that ordinary χ2 tests should not be used when an expected cell frequency is < 5 is not
correct. Pearson χ2 works well in situations more extreme than that, and the likelihood ratio χ2 may work even
better.
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5.4.1 Nonparametric Tests

The Spearman correlation test (and hence the two–sample Wilcoxon test) may be obtained using
the Hmisc spearman.test function:

> set.seed(17) # so can reproduce results

> sex ← factor(sample(c(’female’,’male’),100,T))

> blood.pressure ← rnorm(100, 100, 8)+3*(sex==’male’)

> options(digits=3)

> spearman.test(sex, blood.pressure)

Rsquare F df1 df2 pvalue n

0.0713 7.52 1 98 0.00725 100

You can also obtain the Spearman test from the Hmisc rcorr function [better still, S has a builtin
function cor.test that does Spearman and Pearson linear correlation tests]. Note that 0.272 = 0.071
and the two methods give identical two–tailed P–values.

> rcorr(sex, blood.pressure, ’spearman’)

x y

x 1.00 0.27

y 0.27 1.00

n= 100

P

x y

x 0.0073

y 0.0073

The Hmisc somers2 function provides a more easily interpreted correlation measure for the case
where one variable is binary. Here Somers’ Dxy rank correlation between x=blood pressure and
y=sex is computed, along with the probability of concordance between the two variables denoted by
C.

> somers2(blood.pressure,sex=’male’)

C Dxy n Missing

0.654 0.308 100 0

The Hmisc rcorr.cens can also compute this correlation as a special case where censoring is absent.

> rcorr.cens(blood.pressure,sex)

C Index Dxy S.D. n missing uncensored Relevant Pairs Concordant Uncertain

0.654 0.308 0.109 100 0 100 4992 3266 0

This can be used to get a statistical test using a normal approximation.. Here we compute the
two–tailed P–value.

> (1-pnorm(.308/.109))*2

[1] 0.00471

>
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spearman.test can also test for non–monotonic relationships between two continuous variables,
by allowing the user to specify an order of the polynomial of the ranks used in the correlation test.
For example, to get a two d.f. test of association between age and blood pressure, allowing for one
“turn” in the non–monotonic function, one could use spearman.test(age, blood.pressure, 2).

The spearman2 function in Hmisc is the most general of the Spearman–type functions. It uses
the F approximation to do a Spearman and second–order generalized Spearman test (as done by
spearman.test, if the predictor variable is continuous), the Wilcoxon–Mann–Whitney two–sample
test, and the Kruskal–Wallis test (for factor predictors having more than 2 levels). spearman2 can
test a series of predictors against a common response variable, with pairwise deletion of missing
data. Here is an example in which the numerator degrees of freedom are 1, 1, and 4, respectively,
for age (continuous), sex (binary), and race (5 levels).

> spearman2(blood.pressure ~ age + sex + race)

The S builtin function wilcox.test has more features for one2– and two–sample Wilcoxon tests.
It’s use is somewhat awkward for the two–sample case:

> wilcox.test(blood.pressure[sex==’female’], blood.pressure[sex==’male’])

data: blood.pressure[sex == "female"] and blood.pressure[sex == "male"]

rank-sum normal statistic with correction Z = -2.65, p-value = 0.008

alternative hypothesis: true mu is not equal to 0

For a one–sample test, omit the second argument to wilcox.test.
Next obtain the two–sample Wilcoxon test as a special case of the proportional odds model. This

approach will give very accurate P–values (as well as an effect measure — the odds ratio) although
it takes computer time and RAM to fit 99 intercepts for the 100 observations that contain no tied
response values3

> library(Design, T)

> lrm(blood.pressure ∼ sex)

Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier

100 5e-013 7.27 1 0.007 0.578 0.156 0.308 0.156 0.07 0.01

Coef S.E. Wald Z P

y>=83.1881961293538 4.214947 1.0140 4.16 0.0000

y>=85.4474231763989 3.511529 0.7269 4.83 0.0000

y>=86.1909623865412 3.092591 0.6018 5.14 0.0000

. . . . .

y>=116.829586001076 -4.065680 0.6321 -6.43 0.0000

y>=118.266935916644 -4.485844 0.7529 -5.96 0.0000

y>=119.44799460213 -5.193478 1.0332 -5.03 0.0000

sex=male 0.951687 0.3569 2.67 0.0077

The Wald test P–value is 0.008 and the somewhat more accurate likelihood ratio test yields P=0.007,
in good agreement with what we obtained from the simpler tests. The Dxy rank correlation printed
above does not agree with the earlier ones because we have reversed the roles of x and y.

2Wilcoxon signed–rank test
3Note that there are no statistical problems in fitting 100 parameters for 100 observations here, as the intercepts

are constrained to be in order.
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Various other nonparametric testing functions are listed in table 5.4. These include tests for
goodness–of–fit, frequencies, proportions, blocked data, and tests for distributional shapes.

5.4.2 Parametric Tests

The t test may be obtained using the builtin t.test function.

> t.test(blood.pressure[sex==’female’], blood.pressure[sex==’male’])

Standard Two-Sample t-Test

data: blood.pressure[sex == "female"] and blood.pressure[sex == "male"]

t = -2.6769, df = 98, p-value = 0.0087

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-6.82129 -1.01326

sample estimates:

mean of x mean of y

98.656 102.573

Consider Example 8.20 on P. 275 of Rosner (4th Edition) in which the hospital dataset is used.
Here we test for zero mean difference (why the mean?) in duration of hospitalization, for patients
receiving an antibiotic compared with those who didn’t.

> attach(hospital)

> t.test(duration[antibiotic==’yes’],duration[antibiotic==’no’])

Standard Two-Sample t-Test

data: duration[antibiotic == "yes"] and duration[antibiotic == "no"]

t = 1.6816, df = 23, p-value = 0.1062

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.9497745 9.2037428

sample estimates:

mean of x mean of y

11.57143 7.444444

Note that the confidence interval does not agree with Rosner’s calculations, as Rosner inappropriately
used 6 d.f. for the t distribution instead of 23 d.f. In S-Plus 4.x these results may be obtained using
the menus: Statistics .. Compare Samples .. Two Samples .. t-test; use antibiotic as a
grouping variable.

Now consider a one–sample t–test using the data on the effects of oral contraceptive (OC) on
systolic blood pressure found in Rosner Table 8.1 on P. 253. Here is a listing of the data file named
table81.asc:

sbp.noOC sbp.OC
115 128
112 115
107 106
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119 128
115 122
138 145
126 132
105 109
104 102
115 117

Note that variable names are in the first record. Here fields are separated by a tab. In S-Plus 4.x
we may import this data file using File ... Import Data ... From File ... and then browsing to
find the file. Then click OK, using all defaults. Under any version of S we may import the data using
the command

> table81 ← read.table(’/directoryname/table81.asc’,header=T)

The one–sample t–test and associated confidence interval for the difference in means may be obtained
as follows:

> t.test(sbp.OC,sbp.noOC,paired=T)

Paired t-Test

data: sbp.OC and sbp.noOC

t = 3.3247, df = 9, p-value = 0.0089

alternative hypothesis: true mean of differences is not equal to 0

95 percent confidence interval:

1.533987 8.066013

sample estimates:

mean of x - y

4.8

Under S-Plus 4.x you can use Statistics ... Compare Samples ... Two Samples ... t Test. Check
the box marked Paired t. Had you already computed a new variable containing the difference in
the two columns, you could use Statistics ... Compare Samples ... One Sample ... t Test.

Other parametric testing functions are shown in Table 5.4. These include tests for equality of
variances and tests for zero correlations (why zero?).
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Chapter 6

Making Tables

6.1 S-Plus–supplied Functions

Section 4.3.2 showed how to use functions such as tapply to make simple tables. The S print.char.matrix
function may be used to format many tables into attractively boxed cells. The crosstabs function
produces frequency tables and computes Pearson χ2 statistics, printing results using print.char.matrix.
Here is an example from the online help, using the S-Plus–supplied solder dataset.

> crosstabs(∼ Solder+Opening, data=solder, subset = skips>10)

Call:

141
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crosstabs( ∼ Solder + Opening, data = solder, subset = skips > 10)

158 cases in table

+----------+

|N |

|N/RowTotal|

|N/ColTotal|

|N/Total |

+----------+

Solder |Opening

|S |M |L |RowTotl|

-------+-------+-------+-------+-------+

Thin |99 |15 | 9 |123 |

|0.805 |0.122 |0.073 |0.78 |

|0.805 |0.577 |1.000 | |

|0.627 |0.095 |0.057 | |

-------+-------+-------+-------+-------+

Thick |24 |11 | 0 |35 |

|0.686 |0.314 |0.000 |0.22 |

|0.195 |0.423 |0.000 | |

|0.152 |0.070 |0.000 | |

-------+-------+-------+-------+-------+

ColTotl|123 |26 |9 |158 |

|0.778 |0.165 |0.057 | |

-------+-------+-------+-------+-------+

Test for independence of all factors

Chi^2 = 9.18309 d.f.= 2 (p=0.01013719)

Yates’ correction not used

Some expected values are less than 5, don’t trust stated p-value

Note that the first argument to crosstabs is an S formula. Normally a formula has a dependent
or response variable followed by a tilde followed by one or more independent or predictor variables,
separated by “+”. A contingency table as such does not have a response variable as it treats row
and column variables symmetrically. Therefore a formula given to crosstabs specifies only a series
of “independent” variables. Functions which operate on formulas provide a number of advantages:

1. Formulas allow the user to specify any number of variables to analyze.

2. Functions which use formulas also allow for an argument called data that specifies a data
frame or list that contains the analysis variables. You need not attach the data frame to get
access to these variables.

3. Functions which use formulas also allow the user to specify a subset argument, to easily specify
that an analysis is to be run on a subset of the observations. The value specified to subset is
a logical vector or a vector of integer subscripts.

The object created by crosstabs contains much useful information including marginal summaries
that can be plotted. Let’s re–run the last table, saving the result and then printing part of it.

> g ← crosstabs( ∼ Solder + Opening, data = solder, subset = skips > 10)

> rowpct ← 100*attr(g,’marginals’)$"N/RowTotal"
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> # $’N/ColTotal’ to get col. percents

> # $’N/Total’ to get overall percent

> options(digits=3)

> rowpct

S M L

Thin 80.5 12.2 7.32

Thick 68.6 31.4 0.00

The rowpct matrix contains the row percentages, as can be seen by comparing with the full table
above. To plot these row percents using trellis graphics (see Section 11.4) we first need to reshape
the rowpct matrix into a a vector as was done in Section 4.3.9:

> y ← as.vector(rowpct) # strung-out vector

> Solder ← dimnames(rowpct)[[1]][row(rowpct)]

> Opening ← dimnames(rowpct)[[2]][col(rowpct)]

> data.frame(Solder, Opening, y)

Solder Opening y

1 Thin S 80.49

2 Thick S 68.57

3 Thin M 12.20

4 Thick M 31.43

5 Thin L 7.32

6 Thick L 0.00

> dotplot(Solder ∼ y | Opening)

> dotplot(Solder ∼ y, groups=Opening, panel=panel.superpose)

> barchart(Opening ∼ y | Solder)

The second dot plot is probably more effective, as the sum of values indicated by all the points on
each line is 100%. The Hmisc reShape function provides a shortcut:

> w ← reShape(rowpct)

> w

$Solder:

[1] "Thin" "Thick" "Thin" "Thick" "Thin" "Thick"

$Opening:

[1] "S" "S" "M" "M" "L" "L"

$rowpct:

[1] 80.487805 68.571429 12.195122 31.428571 7.317073

[6] 0.000000

> dotplot(Solder ∼ rowpct, groups=Opening,

+ panel=panel.superpose, data=w)

> # Note w has variable named rowpct (name of argument to reShape)

> # Other variables got their names originally from crosstabs formula

Note that you can also compute row or column proportions or percents using the table, apply,
and sweep functions.
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6.2 The Hmisc summary.formula Function

The summary.formula function (called using the summary command on a formula object) constructs
a large variety of tables of descriptive statistics. The tables can automatically be typeset using
LATEX. The default format for typesetting tables this way is the “Biometrika/New England Journal
of Medicine” format, i.e., it makes minimal use of vertical lines.

Some of the tables can automatically be converted into dot charts by one of summary.formula’s
plot methods.

Part of what makes summary.formula work is that the user can specify her own function (fun)
to compute descriptive statistics1 and this function may be multivariate. For example, it may
operate on two response variables, producing two or more summary statistics, or it may compute
a single summary statistic on the two responses. If the two responses are a survival time and
an event/censoring indicator, you can summarize the survival times using Kaplan–Meier or other
estimators. If the two responses are the predicted probability of a disease and whether or not the
disease is actually present, the summary measure could be a “receiving operator characteristic curve
area.” You can also specify that fun is to return several statistics from each response variable (e.g.,
mean and median).

In addition to its flexibility, summary.formula has two general advantages over builtin S func-
tions. First, it removes NAs before passing vectors to standard S statistical functions (mean, median,
etc.) so that you do not need to worry about using an na.rm=T argument. Second, statistical
summaries made by summary.formula automatically include marginal summaries. For example,
if you stratify data on a variable you will also see unstratified estimates, and if you cross–classify
on two or more variable you will also see estimates stratified on all subsets of the variables. Thus
cross–classifying on race and sex and computing the median cholesterol will (unless you specify
an argument to suppress them) also compute medians stratified separately by race and by sex as
well as the grand median cholesterol.

There are three major ways of using summary.formula, as defined by the method parameter.
method=’response’ (the default) causes the function to summarize one or more response variables
separately by levels of any number of right–hand–side variables. method=’cross’ results in a multi-
way breakdown. Categorical right–hand variables are broken down into all of their levels. Continuous
variables are grouped, by default, into quartiles, to summarize the responses. The ’cross’ method
causes summary.formula to output a data frame containing summary statistics, which is the format
in which trellis expects to find raw data. This makes it easy to plot summary statistics using
trellis although the summarize function works better for this. method=’reverse’ reverses the
meaning of the left–hand and right–hand–side variables. For example, summary(treatment ∼ age
+ blood.pressure, method=’reverse’) will print k columns, where k is the number of levels in
treatment. For each column, descriptive statistics will be computed for age and blood.pressure.
For continuous variables, the descriptive statistics default to the three quartiles. For categorical
ones, frequencies and percentages are computed.

As discussed in Section 3.2.3, nice labels and category levels should have been created early
in the process. summary.formula will take full advantage of this.

Here are some of the examples from the online help.

> options(digits=3)

1Note the inconsistency here: functions such as tapply, aggregate, and by which are built–in to S capitalize the
argument into the name FUN.
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> # Generate some data

> set.seed(173) # so can replicate results

> sex ← factor(sample(c("m","f"), 500, rep=T))

> age ← rnorm(500, 50, 5)

> treatment ← factor(sample(c("Drug","Placebo"), 500, rep=T))

> # Frequency table sex*treatment

> summary(sex ∼ treatment, fun=table)

sex N=500

---------+-------+---+---+---+

| |N |f |m |

---------+-------+---+---+---+

treatment|Drug |246|123|123|

|Placebo|254|129|125|

---------+-------+---+---+---+

Overall | |500|252|248|

---------+-------+---+---+---+

> # Compute mean age, separately by sex and treatment

> summary(age ∼ sex + treatment)

age N=500

---------+-------+---+----+

| |N |age |

---------+-------+---+----+

sex |f |252|49.8|

|m |248|49.9|

---------+-------+---+----+

treatment|Drug |246|49.7|

|Placebo|254|50.0|

---------+-------+---+----+

Overall | |500|49.9|

---------+-------+---+----+
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> summary(age ∼ sex + treatment, method="cross")

Mean of age by sex, treatment

+---+

|N |

|age|

+---+

sex|treatment

|Drug|Plac|ALL |

---+----+----+----+

f |123 |129 |252 |

|49.4|50.3|49.8|

---+----+----+----+

m |123 |125 |248 |

|50.1|49.7|49.9|

---+----+----+----+

ALL|246 |254 |500 |

|49.7|50.0|49.9|

---+----+----+----+

> summary(treatment ∼ age + sex, method="reverse")

Descriptive Statistics by treatment

-------+--------------+--------------+

|Drug |Placebo |

|(N=246) |(N=254) |

-------+--------------+--------------+

age |46.5/49.8/52.5|46.4/50.1/53.4|

-------+--------------+--------------+

sex : m| 50% (123) | 49% (125) |

-------+--------------+--------------+

> # a/b/c represents the lower quartile, median, upper quartile

> # Compute predicted probability from a logistic regression model

> # For different stratifications compute receiver operating

> # characteristic curve areas (C-indexes)

> predicted ← plogis(.4*(sex=="m")+.15*(age-50))

> positive.diagnosis ← ifelse(runif(500)<=predicted, 1, 0)

> roc ← function(z) {
+ x ← z[,1];

+ y ← z[,2];

+ n ← length(x);

+ if(n<2)return(c(ROC=NA));

+ n1 ← sum(y==1);

+ c(ROC= (mean(rank(x)[y==1])-(n1+1)/2)/(n-n1) );
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+ }
> y ← cbind(predicted, positive.diagnosis)

> options(digits=2)

> summary(y ∼ age + sex, fun=roc)

y N=500

-------+-----------+---+----+

| |N |ROC |

-------+-----------+---+----+

age |[32.3,46.4)|125|0.62|

|[46.4,50.0)|125|0.59|

|[50.0,52.9)|125|0.61|

|[52.9,68.6]|125|0.70|

-------+-----------+---+----+

sex |f |252|0.71|

|m |248|0.70|

-------+-----------+---+----+

Overall| |500|0.72|

-------+-----------+---+----+

> options(digits=3)

> summary(y ∼ age + sex, fun=roc, method="cross")
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roc by age, sex

+---+

|N |

|ROC|

+---+

age |sex

|f |m |ALL |

-----------+-----+-----+-----+

[32.3,46.4)| 61 | 64 |125 |

|0.632|0.527|0.620|

-----------+-----+-----+-----+

[46.4,50.0)| 67 | 58 |125 |

|0.602|0.671|0.595|

-----------+-----+-----+-----+

[50.0,52.9)| 59 | 66 |125 |

|0.517|0.445|0.613|

-----------+-----+-----+-----+

[52.9,68.6]| 65 | 60 |125 |

|0.734|0.558|0.703|

-----------+-----+-----+-----+

ALL |252 |248 |500 |

|0.711|0.702|0.718|

-----------+-----+-----+-----+

# Plot estimated mean life length (assuming an exponential distribution)

# separately by levels of 4 other variables. Repeat the analysis

# by levels of a column stratification variable, drug. Automatically break

# continuous variables into tertiles (g=3).

# We are using the default, method=’response’

life.expect ← function(y) c(Years=sum(y[,1])/sum(y[,2]))

attach(pbc) # pbc is in UVa biostat web page

S ← Surv(fu.days/365.25, status)

options(digits=3)

summary(S ∼ age + albumin + ascites + edema + stratify(drug),

fun=life.expect, g=3)

Here’s an example using the prostate data frame.

> detach(2) # detach pbc

> attach(prostate)

> bone ← factor(bm,labels=c("no mets","bone mets"))

> summary(ap ∼ sz + bone,

+ fun=function(y) c(Mean=mean(y),quantile(y,c(.25,.5,.75))),

+ method=’cross’)

c(Mean = mean(y), quantile(y, c(0.25, 0.5, 0.75))) by sz, bone

+----+
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|N |

|Mean|

|25% |

|50% |

|75% |

+----+

sz |bone

|no met|bone m|ALL |

-------+------+------+------+

[ 0, 5)|105 | 5 |110 |

| 1.0 | 17.7 | 1.8 |

|0.40 |2.10 |0.40 |

| 0.6 | 3.7 | 0.6 |

| 1.00| 38.50| 1.10|

-------+------+------+------+

[ 5,11)|119 | 17 |136 |

| 2.2 | 19.1 | 4.4 |

|0.40 |1.20 |0.40 |

| 0.6 | 1.7 | 0.6 |

| 0.85| 9.30| 1.12|

-------+------+------+------+

[11,21)|103 | 19 |122 |

| 6.5 |139.8 | 27.3 |

|0.45 |5.30 |0.50 |

| 0.6 |28.9 | 0.8 |

| 1.45|134.14| 3.17|

-------+------+------+------+

[21,69]| 88 | 41 |129 |

| 6.3 | 34.8 | 15.4 |

|0.60 |4.60 |0.70 |

| 1.0 |20.0 | 2.8 |

| 5.67| 35.70| 11.80|

-------+------+------+------+

NA | 5 | 0 | 5 |

| 2.7 | | 2.7 |

|0.50 | |0.50 |

| 0.7 | | 0.7 |

| 1.70| | 1.70|

-------+------+------+------+

ALL |420 | 82 |502 |

| 3.8 | 54.8 | 12.2 |

|0.50 |2.02 |0.50 |

| 0.7 |10.2 | 0.7 |

| 1.30| 37.42| 2.97|

-------+------+------+------+
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Table 6.1: Descriptive Statistics by Treatment

N D-penicillamine (N = 154) placebo (N = 158)

Serum Bilirubin (mg/dl) 418 0.725 1.300 3.600 0.800 1.400 3.200

Albumin (gm/dl) 418 3.34 3.54 3.78 3.21 3.56 3.83

Histologic Stage, Ludwig Criteria : 1 412 3% 4
154 8% 12

158
2 21% 32

154 22% 35
158

3 42% 64
154 35% 56

158
4 35% 54

154 35% 55
158

Prothrombin Time (sec.) 416 10.0 10.6 11.4 10.0 10.6 11.0

Sex : female 418 90% 139
154 87% 137

158
Age 418 41.4 48.1 55.8 43.0 51.9 58.9

Spiders 312 29% 45
154 28% 45

158

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values.

Note that it is possible to get wider column labels using some of summary.formula’s options.
Also, where you send the output of the function to the Hmisc library’s latex function, you get
nicely typesetted tables. Here is an example using the latex function (actually latex.default) in
conjunction with LATEX. A print method in the Hmisc library for latex objects can be used in this
setting for easy on-screen previewing of the typeset table.

> attach(pbc)

> s ← summary(drug ∼ bili + albumin + stage + protime + sex + age + spiders,

+ method=’reverse’)

> options(digits=3)

> latex(s, npct=’both’, npct.size=’normalsize’, here=T)

# npct=’both’ : print both numerators and denominators

# Use normalsize font for numerator and denominator of percents

The LATEX output is in Table 6.1. The table legend at the bottom was produced by the latex function
(actually latex.summary.formula.reverse). If you run the command plot(s), a dot chart will be
produced showing the proportions of various categories stratified by drug, and a separate dot chart
is drawn for continuous variables. The latter chart shows by default the 3 quartiles of each variable,
stratified by drug.

To obtain a comprehensive guide to summary.formula that includes many examples, graphical
output, and LATEX commands for putting an entire clinical report together, download the docu-
ment entitled “Statistical Tables and Plots using S and LATEX” from biostat.mc.vanderbilt.edu/
StatReport/summary.pdf. This document also contains graphical representations of may of the
example tables. See biostat.mc.vanderbilt.edu/StatReport for useful related material.

6.2.1 Implementing Other Interfaces

The LATEX output can be pasted into a word processed (e.g., Microsoft Word) document in graph-
ics mode if you use PCTEX, with some loss of resolution. A more general solution would be to
write S interface functions (e.g., word) that are analogous to the latex family of functions. Such

http://biostat.mc.vanderbilt.edu/StatReport/summary.pdf
biostat.mc.vanderbilt.edu/StatReport/summary.pdf
biostat.mc.vanderbilt.edu/StatReport/summary.pdf
http://biostat.mc.vanderbilt.edu/StatReport
biostat.mc.vanderbilt.edu/StatReport
http://biostat.mc.vanderbilt.edu/StatReport
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functions would do the needed character string manipulation to write tables and other S output
in Word format. It may be easier to implement an S to HTML interface, and Microsoft Word
97 can import HTML files and convert them to Word format. S-Plus 4.5 and later for Win-
dows has a function html.table for producing simple HTML tables from S matrices. One other
possibility is to convert the LATEX code produced by S using a general convertor such as Hevea
(see http://www.arch.ohio-state.edu/crp/faculty/pviton/support/hevea.html or http://
biostat.mc.vanderbilt.edu/EmacsLaTeXTools). One problem with this approach is that HTML
has some table making features that are not respected by Microsoft Word.

6.3 Graphical Depiction of Two–Way Contingency Tables

The Hmisc symbol.freq function can be used to represent contingency tables graphically. Fre-
quency counts are represented as the heights of “thermometers” by default; you can also specify
symbol=’circle’ to the function. There is an option to include marginal frequencies, which are
plotted on a halved scale so as to not overwhelm the plot. Other useful options in this function
include orig.scale (set to T when the first two arguments are numeric variables; this uses their
original values for x and y coordinates), subset (the usual subsetting argument as used in regression
fits), and srtx (a rotation angle for x–axis labels). If you do not ask for marginal frequencies to be
plotted using marginals=T, symbol.freq will ask you to click the mouse where a reference symbol
is to be drawn to assist in reading the scale of the frequencies. As an example consider

win.graph() # or postscript(), etc.

attach(titanic)

age.tertile ← cut2(age, g=3)

symbol.freq(age.tertile, pclass, marginals=T, srtx=45)

The output is shown in Figure 6.1. See Section 6.1 for ways to display row or column proportions
from contingency tables.

Another way to display frequency data is to use the built-in image function to plot the column
values vs. the row values, with boxes whose density of shading is a function of the frequency of that
cell. To display a two-dimensional histogram for two continuous variables in this way you can run
the raw values through the hist2d function.

http://www.arch.ohio-state.edu/crp/faculty/pviton/support/hevea.html
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
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Figure 6.1: A two–way contingency table



Chapter 7

Hmisc Generalized Least Squares
Modeling Functions

7.1 Automatically Transforming Predictor and Response Vari-
ables

Fitting multiple regression models by the method of least squares is one of the most commonly used
methods in statistics. There are a number of challenges to the use of least squares, even when it is
only used for estimation and not inference, for example:

1. How should continuous predictors be transformed so as to get a good fit?

2. Is it better to transform the response variable? How does one find a good transformation that
simplifies the right hand side of the equation?

3. What if Y needs to be transformed non–monotonicially (e.g., |Y − 100| or (Y − 120)2) before
it will have any correlation with X?

When one is trying to draw inference about population effects using confidence limits or hypothesis
tests, the most common approach is to assume that the residuals have a normal distribution. This is
equivalent to assuming that the conditional distribution of the response Y given the set of predictors
X is normal with mean depending on X and variance that is (hopefully) a constant independent of
X. The need for a distributional assumption to enable us to draw inferences creates a number of
other challenges, including:

1. If for the untransformed original scale of the response Y the distribution of the residuals is
not normal with constant spread, ordinary methods will not yield correct inferences (e.g.,
confidence intervals will not have the desired coverage probability and the intervals will need
to be asymmetric).

153
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2. Quite often there is a transformation of Y that will yield well–behaving residuals. How do you
find this transformation? Can you find transformation for the Xs at the same time?

3. All classical statistical inferential methods assume that the full model was pre–specified, i.e.,
the model was not modified after examining the data. How does one correct confidence limits,
for example, for data–based model selection?

On the last point, Faraway [15] demonstrated that the more stops done by the analyst, such as
looking for transformations, outliers, overly influential observations, and stepwise variable selection,
the more the variance of estimates increases. This assumes of course that one properly estimates
the variances (e.g., using a simulation technique such as the bootstrap); apparent variances will
typically decrease as the model is refined. Faraway showed that the greatest source of inflation
of actual variances is letting the data dictate the transformation of Y . He concluded that since
we currently have no statistical theory for deriving proper variance estimates, it is preferable to
automate the analysis and to use the bootstrap to estimate variances and construct confidence
limits, taking into account all sources of variability induced by the modeling strategy.

S has a powerful function, gam, for fitting generalized additive regression models. gam automat-
ically estimates the transformation each right hand side variable should receive so as to optimize
prediction of Y , and a number of distributions are allowed for Y . When one hopes to assume nor-
mality and the left hand side of the model also needs transformation, either to improve R2 or to
achieve constant variance of the residuals (which increases the chances of satisfying the normality
assumption), S has two powerful nonparametric regression functions: ace and avas. Both functions
allow categorical predictors, allow predictor transformations to be non–monotonic, and allow the
analyst to restrict the transformations to be monotonic. ace stands for “alternating conditional
expectation” [16], an algorithm directed solely at finding transformations for all variables simulta-
neously so as to optimize R2. ace will allow Y to be non–monotonically transformed, and it is
based on the “super smoother” (see the supsmu function). avas stands for “additivity and variance
stabilization” [17]. avas tries to maximize R2 while forcing the transformation for Y to result in
nearly constant variance of residuals. avas restricts the transformation of Y to be monotonic.

ace and avas are quite powerful, but they can result in overfitting, and they provide no statistical
inferential measures. In addition, they do not use the S modeling language, so they are slightly
more difficult to use. The Hmisc areg.boot (“additive regression using the bootstrap”) solves these
problems. The bootstrap is used to estimate the optimism (bias) in the apparent R2, and this
optimism is subtracted from the apparent R2 to get a more trustworthy estimate. The online help
file has the details.

Note: areg.boot has been extended to allow one to estimate any quantity of interest, such as
the mean response, on the original scale, using Duan’s smearing estimator. The output below is from
the previous version of areg.boot which did not include this facility. See Chapter 15 of Harrell’s
book Regression Modeling Strategies for an updated example.

As an example consider an excellent dataset provided by Dr. John Schorling, Department of
Medicine, University of Virginia School of Medicine. The data consist of 19 variables on 403 subjects
from 1046 subjects who were interviewed in a study to understand the prevalence of obesity and
diabetes in central Virginia for African Americans. According to Dr. John Hong, Diabetes Mellitus
Type II (adult onset diabetes) is associated most strongly with obesity. The waist/hip ratio may
be a predictor of diabetes and heart disease. DM II is also associated with hypertension - they may
both be part of ”Syndrome X”. The 403 subjects were the ones who were actually screened for
diabetes. Glycosolated hemoglobin > 7.0 is usually taken as a positive diagnosis of diabetes.

http://biostat.mc.vanderbilt.edu/rms
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At first glance some analysts might think that the best way to develop a model for diagnosing
diabetes might be to fit a binary logistic model with glycosolated hemoglobin > 7 as the response
variable. This is very wasteful of information, as it does not distinguish a hemoglobin value of
2 from a 6.9, or a 7.1 from a 10. The waste of information will result larger standard errors
of β̂, wider confidence bands, larger P–values, and lower power to detect risk factors. A better
approach is to predict the continuous hemoglobin value using a continuous response model such as
ordinary multiple regression or using ordinal logistic regression. Then this model can be converted
to predict the probability that hemoglobin exceeds any cutoff of interest. For an ordinal logistic
model having one intercept per possible value of hemoglobin in the dataset (except for the lowest
value), all probabilities are easy to compute. For ordinary regression this probability depends on
the distribution of the residuals from the model.

Let us proceed with a least squares approach. An initial series of trial transformations for the
response indicated that the reciprocal of glycosolated hemoglobin resulted in a model having residuals
of nearly constant spread when plotted against predicted values. In addition, the residuals appeared
well approximated by a normal distribution. On the other hand, a model developed on the original
scale did not have constant spread of the residuals. It will be interesting to see if the nonparametric
variance stabilizing function determined by avas will resemble the reciprocal of hemoglobin.

Let’s consider the following predictors: age, systolic blood pressure, total cholesterol, body frame
(small, medium, large), weight, and hip circumference. 12 subjects have missing body frame, and
we should be able to impute this variable from other body size measurements. Let’s do this using
recursive partitioning with Atkinson and Therneau’s rpart function. See the UVa Web page for a
link to obtain the rpart library. The advantage of rpart over the builtin tree function is that rpart
can handle missing predictor variables using “surrogate splits.” In other words, when a predictor
needed for classifying an observation is missing, other predictors that are not missing can be used
as stand–ins. rpart will predict the probability that the polytomous response frame equals each of
its three levels.

> library(rpart)

> r ← rpart(frame ∼ gender + height + weight + waist + hip)

> plot(r); text(r) # shows first split on waist, then height,weight

> probs ← predict(r, diabetes)

> # Within each row of probs order from largest to smallest

> # Find column # of largest

> most.probable.category ← (t(apply(-probs, 1, order)))[,1]

> frame.pred ← levels(frame)[most.probable.category]

> table(frame, frame.pred)

large medium small

small 2 45 57

medium 10 158 16

large 35 67 1

> frame ← impute(frame, frame.pred[is.na(frame)])

> describe(frame)

frame : Body Frame

n missing imputed unique

403 0 12 3
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small (106, 26%), medium (193, 48%), large (104, 26%)

> table(frame[is.imputed(frame)])

small medium large

2 9 1

Other predictors are only missing on a handful of cases. Impute them with constants to avoid
excluding any observations from the fit.

> bp.1s ← impute(bp.1s)

> chol ← impute(chol)

> weight ← impute(weight)

> hip ← impute(hip)

Now fit the avas model. Do only 30 bootstrap repetitions so we can clearly see how the bootstrap
re–estimates of transformations vary on the next plot. Use subject matter knowledge to restrict the
transformations of age, weight, and hip to be monotonic. Had we wanted to restrict transformations
to be linear, we would have specified the identity function, e.g., I(weight).

> f ← areg.boot(glyhb ∼ monotone(age) + bp.1s + chol + frame +

+ monotone(weight) + monotone(hip), B=30)

> options(digits=3)

> f

avas Additive Regression Model

areg.boot(x = glyhb ∼ monotone(age) + bp.1s + chol + frame +

monotone(weight) + monotone(hip), B = 30)

Categorical variables: frame
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estimates.
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Frequencies of Missing Values Due to Each Variable

glyhb monotone(age) bp.1s chol frame monotone(weight) monotone(hip)

13 0 0 0 0 0 0

n= 390 p= 6

Apparent R2 on transformed Y scale: 0.265

Bootstrap validated R2 : 0.207

Coefficients of standardized transformations:

Intercept age bp.1s chol frame weight hip

-4.34e-009 1.06 1.51 0.953 0.708 1.26 0.653

Note that the coefficients above do not mean very much as the scale of the transformations is
arbitrary. We see that the model was overfit a moderate amount (optimism in R2 is 0.265 - 0.207).

Next we plot the transformations (bold lines in the center), pointwise 0.95 confidence bands
(shown with bold lines), and bootstrap estimates (smaller lines).

> plot(f, col.boot=.75) # use grayscale instead of color for bootstraps

The plot is shown in Figure 7.1. Apparently, age and chol are the important predictor.
Let’s see how effective the transformation of glyhb was in stabilizing variance and making the

residuals normally distributed.

> par(mfrow=c(2,2))

> plot(fitted(f), resid(f))

> plot(predict(f), resid(f))

> qqnorm(resid(f)); abline(a=0, b=1) # draws line of identity

We see from Figure 7.2 that the residuals have reasonably uniform spread and are distributed almost
normally. A multiple regression run on untransformed variables did not fare nearly as well.

Now check whether the response transformation is close to the reciprocal of glyhb. First derive
an S representation of the fitted transformations. For nonparametric function estimates these are
really table lookups. Function creates a list of functions, named according to the variables in the
model.

> funs ← Function(f)

> plot(1/glyhb, funs$glyhb(glyhb))

Results are in Figure 7.3. An almost linear relationship is evidence that the reciprocal is a good
transformation1.

Now let’s get approximate tests of effects of each predictor. summary does this by setting all other
predictors to reference values (e.g., medians), and comparing predicted untransformed responses for
a given level of the predictor with predictions for the lowest setting of X. We will use the three
quartiles for continuous variables, but specify age settings manually.

1Beware that it may not help to know this, because if we re–do the analysis using an ordinary linear model on
1/glyhb, standard errors would not take model selection into account[15].
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Figure 7.2: Distribution of residuals from the avas fit. The top left panel x–axis has Ŷ on the original Y
scale. The top right panel uses the transformed Ŷ for the x–axis.
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Figure 7.3: Agreement between the avas transformation for glyhb and the reciprocal of glyhb.
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> summary(f, values=list(age=c(20,30,40,50,60,70,80)))

Values to which predictors are set when estimating

effects of other predictors:

glyhb age bp.1s chol frame weight hip

4.84 50 136 204 2 173 42

Estimates of differences of effects on Y (from first X value),

and bootstrap standard errors of these differences.

Settings for X are shown as row headings.

Predictor: age

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

20 0.000 NA NA NA NA NA

30 0.064 0.0434 -0.0210 0.149 1.48 1.40e-001

40 0.184 0.0770 0.0326 0.335 2.38 1.72e-002

50 0.527 0.1084 0.3149 0.740 4.87 1.14e-006

60 0.868 0.1551 0.5645 1.172 5.60 2.14e-008

70 1.122 0.2311 0.6691 1.575 4.86 1.20e-006

80 1.428 0.4591 0.5278 2.327 3.11 1.87e-003

Predictor: bp.1s

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

122 0.0000 NA NA NA NA NA

136 0.0863 0.0715 -0.0540 0.227 1.21 0.2279

148 0.2275 0.1303 -0.0278 0.483 1.75 0.0807

Predictor: chol

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

179 0.0000 NA NA NA NA NA

204 0.0715 0.0606 -0.0473 0.190 1.18 0.2381

229 0.1912 0.1111 -0.0265 0.409 1.72 0.0852

Predictor: frame

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

small 0.0000 NA NA NA NA NA

medium 0.0514 0.119 -0.182 0.285 0.433 0.665

large 0.1141 0.176 -0.231 0.459 0.648 0.517

Predictor: weight

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

150 0.0000 NA NA NA NA NA

173 0.0219 0.109 -0.192 0.236 0.201 0.841

200 0.1576 0.245 -0.322 0.637 0.644 0.520
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Predictor: hip

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

39 0.0000 NA NA NA NA NA

42 0.0097 0.102 -0.189 0.209 0.0955 0.924

46 0.0299 0.200 -0.362 0.422 0.1496 0.881

Warning messages:

For 5 bootstrap samples a predicted value for one of the settings for age

could not be computed. These bootstrap samples ignored.

Consider using less extreme predictor settings.

in: summary.areg.boot(f, values = list(age = c(20, 30, 40, 50, 60, 70, 80)))

For example, when age increases from 20 to 70 we predict an increast in glyhb by 1.122 with
standard error 0.2311, when all other predictors are help to constants listed above. Setting them
to other constants will yield different estimates of the age effect, as the transformation of glyhb is
nonlinear. We see that only for age do some of the confidence intervals for effects exclude zero.

Let’s depict the fitted model by plotting predicted values, with age varying on the x–axis, and
3 curves corresponding to three values of chol. Set all other predictors to representative values.

> newdat ← expand.grid(age=20:80, chol=quantile(chol,c(.25,.5,.75)),

+ bp.1s=136, frame=’medium’, weight=173, hip=42)

> yhat ← predict(f, newdat, type=’fitted’)

> xYplot(yhat ∼ age, groups=chol, data=newdat,

+ type=’l’, col=1,

+ ylab=’Glycosolated Hemoglobin’, label.curve=list(method=’on top’))

The result is Figure 7.4. Note that none of the predictions is above 7.0. Let’s see how many
predictions in the entire dataset are above 7.0.

> yhat.all ← predict(f, type=’fitted’)

> # length of yhat.all is 390 because 13 obs were dropped due to NAs

> sum(yhat.all > 7)

[1] 15

So the model is not very useful for finding clinical levels of diabetes. Let’s make sure that a dedicated
binary model would not do any better.

> library(Design,T)

> h ← lrm(glyhb > 7 ∼ rcs(age,4) + rcs(bp.1s,3) + rcs(chol,3) +

+ frame + rcs(weight,4) + rcs(hip,3))

> h
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Figure 7.4: Predicted median glyhb as a function of age and chol.

Logistic Regression Model

lrm(formula = glyhb > 7 ∼ rcs(age, 4) + rcs(bp.1s, 3) +

rcs(chol, 3) + frame + rcs(weight, 4) + rcs(hip, 3))

Frequencies of Responses

FALSE TRUE

330 60

Frequencies of Missing Values Due to Each Variable

glyhb > 7 age bp.1s chol frame weight hip

13 0 0 0 0 0 0

Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier

390 1e-007 71.3 14 0 0.819 0.637 0.639 0.166 0.29 0.105

Coef S.E. Wald Z P

Intercept -16.804027 6.40143 -2.63 0.0087

age 0.023219 0.08806 0.26 0.7920

age’ 0.266699 0.25501 1.05 0.2956

age’’ -0.852166 0.63708 -1.34 0.1810

bp.1s 0.028259 0.02476 1.14 0.2537

bp.1s’ -0.025207 0.02404 -1.05 0.2944

chol 0.004649 0.01004 0.46 0.6432

chol’ 0.003535 0.01046 0.34 0.7354

frame=medium -0.246480 0.48146 -0.51 0.6087

frame=large -0.266503 0.53384 -0.50 0.6176
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weight 0.042962 0.03073 1.40 0.1621

weight’ -0.088281 0.09463 -0.93 0.3509

weight’’ 0.264845 0.29109 0.91 0.3629

hip 0.033904 0.12479 0.27 0.7859

hip’ -0.053349 0.13979 -0.38 0.7027

> anova(h)

Wald Statistics Response: glyhb > 7

Factor Chi-Square d.f. P

age 23.85 3 0.0000

Nonlinear 6.82 2 0.0331

bp.1s 1.32 2 0.5178

Nonlinear 1.10 1 0.2944

chol 5.45 2 0.0657

Nonlinear 0.11 1 0.7354

frame 0.29 2 0.8630

weight 5.41 3 0.1443

Nonlinear 0.87 2 0.6457

hip 0.19 2 0.9111

Nonlinear 0.15 1 0.7027

TOTAL NONLINEAR 10.48 7 0.1630

TOTAL 45.65 14 0.0000

So far the results seem to be the same as using a continuous response. How many predicted proba-
bilities of diabetes are in the “rule–in” range?

> p ← predict(h, type=’fitted’)

> sum(p > .9, na.rm=T)

[1] 0

Only one patient had a predicted probability > 0.8. So the risk factors are just not very strong,
although age does explain some pre–clinical variation in glyhb.

7.2 Robust Serial Data Models: Time– and Dose–Response
Profiles

Serial data (repeated measurements) are commonly encountered in biostatistical analysis. Spe-
cialized methods exist for fitted repeated measurements but it is advantageous to fit time– and
dose–response data using a flexible parametric approach while allowing calculation of simultaneous
(and pointwise) confidence limits for the true trends. The approach taken by Hmisc’s rm.boot
function is to use a “working independence” model allowing for intercepts to vary by subjects, and
then to account for intra–subject correlations when deriving confidence bands. Regression splines
restricted to be linear beyond the outer join points (knots) are used to fit the overall trend. Here
all the serial data are analyzed in a common model with dummy variables used to absorb subject
effects. Regression estimates which do not take the correlation structure into account are often
quite efficient. Then a cluster bootstrap (sampling with replacement from subjects rather than data
points) [18] is used to compute confidence bands in a nearly nonparametric fashion.
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The text below, taken from the help file for rm.boot, describes the details. In what follows,
“time” can be replaced with other variables such as the dose of a drug given multiple times to the
same subjects.

For a dataset containing a time variable, a scalar response variable, and an optional subject
identification variable, rm.boot obtains least squares estimates of the coefficients of a restricted
cubic spline function or a linear regression in time after adjusting for subject effects through the
use of subject dummy variables. Then the fit is bootstrapped B times, either by treating time
and subject id as fixed (i.e., conditioning the analysis on them) or as random variables. For the
former, the residuals from the original model fit are used as the basis of the bootstrap distribution.
For the latter, samples are taken jointly from the time, subject id, and response vectors to obtain
unconditional distributions.

If a subject id variable is given, the bootstrap sampling will be based on samples with replacement
from subjects rather than from individual data points. In other words, either none or all of a given
subject’s data will appear in a bootstrap sample. This cluster sampling takes into account any
correlation structure that might exist within subjects, so that confidence limits are nonparametrically
corrected for within-subject correlation. Assuming that ordinary least squares estimates, which
ignore the correlation structure, are consistent (which is almost always true) and efficient (which
would not be true for certain correlation structures or for datasets in which the number of observation
times vary greatly from subject to subject), the resulting analysis will be a robust, efficient repeated
measures analysis for the one-sample problem.

Predicted values of the fitted models are evaluated by default at a grid of 100 equally spaced
time points ranging from the minimum to maximum observed time points. Predictions are for the
average subject effect. Pointwise confidence intervals are optionally computed separately for each
of the points on the time grid. However, simultaneous confidence regions that control the level of
confidence for the entire regression curve lying within a band are often more appropriate, as they
allow the analyst to draw conclusions about nuances in the mean time response profile that were
not stated apriori. The method of Tibshirani and Knight [19] is used to easily obtain simultaneous
confidence sets for the set of coefficients of the spline or linear regression function as well as the
average intercept parameter (over subjects). Here one computes the objective criterion (here both
the -2 log likelihood evaluated at the bootstrap estimate of beta but with respect to the original
design matrix and response vector, and the sum of squared errors in predicting the original response
vector) for the original fit as well as for all of the bootstrap fits. The confidence set of the regression
coefficients is the set of all coefficients that are associated with objective function values that are
less than or equal to say the 0.95 quantile of the vector of B + 1 objective function values. For the
coefficients satisfying this condition, predicted curves are computed at the time grid, and minima and
maxima of these curves are computed separately at each time point to derive the final simultaneous
confidence band.

By default, the log likelihoods that are computed for obtaining the simultaneous confidence band
assume independence within subject. This will cause problems unless such log likelihoods have very
high rank correlation with the log likelihood allowing for dependence. To allow for correlation or to
estimate the correlation function, see the cor.pattern and rho arguments to rm.boot.

As most repeated measurement studies consider the times as design points, the fixed covariable
case is the default. Bootstrapping the residuals from the initial fit assumes that the model is correctly
specified. Even if the covariables are fixed, doing an unconditional bootstrap is still appropriate, and
for moderate to large sample sizes unconditional confidence intervals are only slightly wider than
conditional ones if subject effects (intercepts) are small. For bootstrap.type="x random" in the
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presence of significant subject effects, the analysis is approximate as the subjects used in any one
bootstrap fit will not be the entire list of subjects. The average (over subjects used in the bootstrap
sample) intercept is used from that bootstrap sample as a predictor of average subject effects in the
overall sample.

rm.boot can handle two–sample problems in which trends are fitted separately within each of
two groups and then the differences in the trends (and bootstrap confidence bands for these) are
computed to measure the group effect.

7.2.1 Example

The following example demonstrates how correlated response data may be simulated and then an-
alyzed using rm.boot. We simulate data for 20 subjects each with 11 response measurements. The
population response function is piecewise linear (flat in the left and right tails) and large true subject
effects are present.

store()

# Don’t keep any of the objects created (store is in Hmisc)

# Function to generate n p-variate normal variates with

# mean vector u and covariance matrix S

# Slight modification of function written by Bill Venables

mvrnorm ← function(n, p = 1, u = rep(0, p), S = diag(p)) {
Z ← matrix(rnorm(n * p), p, n)

t(u + t(chol(S)) %*% Z)

}

# Simulate serial data

n ← 20 # Number of subjects

sub ← .5*(1:n) # Subject effects

# Specify functional form for time trend and compute

# non-stochastic component

times ← seq(0, 1, by=.1)

g ← function(times) 5*pmax(abs(times-.5),.3)

ey ← g(times)

# Generate multivariate normal errors for 20 subjects at 11 times

# Assume equal correlations of rho=.7, independent subjects

nt ← length(times)

rho ← .7

set.seed(19)

errors ← mvrnorm(n, p=nt, S=diag(rep(1-rho,nt))+rho)

# Note: first random number seed used gave rise to

# mean(errors)=0.24!
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Figure 7.5: Nonparametric estimates of time trends for individual subjects

# Add E[Y], error components, and subject effects

y ← matrix(rep(ey,n), ncol=nt, byrow=T) + errors +

matrix(rep(sub,nt), ncol=nt)

# String out data into long vectors for times, responses,

# and subject ID

y ← as.vector(t(y))

times ← rep(times, n)

id ← sort(rep(1:n, nt))

# Do 400 bootstrap repetitions, sampling from residuals (grouped by

# subjects) rather than from the design matrix and responses for

# subjects

f ← rm.boot(times, y, id, plot.individual=T, B=400,

smoother=lowess, bootstrap.type=’x fixed’, nk=6)

To compute a dependent–structure log–likelihood in addition to one assuming independence, add
e.g. the argument cor.pattern=’estimate’ or rho=.5.

plot.individual=T, smoother=lowess causes nonparametric estimates of trends for individual
subjects to be plotted on a single plot. The output from this object is shown in Figure 7.5.

Next we plot a random sample of 75 of the 400 bootstrap fits of the time trends. These fits use
as intercepts the average intercept over subjects.

plot(f, individual.boot=T, ncurves=75, ylim=c(6,8.5))

The plot is in Figure 7.6.
Finally the main plot of interest is shown in Figure 7.7. Both simultaneous and pointwise

confidence regions are shown.
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Figure 7.6: 75 of the 400 bootstrap estimates of the average time trend over subjects.

plot(f, pointwise.band=T, col.pointwise=1, ylim=c(6,8.5))

# Plot population response curve at average subject effect

ts ← seq(0, 1, length=100)

lines(ts, g(ts)+mean(sub), lwd=3)

rm.boot assumes that any missing measurements are missing completely at random. The De-
sign rm.impute function can analyze non–randomly missing serial data using multiple imputation,
assuming that the probability that a measurement is missing is a function only of baseline variables
and of previous measurements.
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Figure 7.7: Simultaneous (dotted outer curves) and pointwise (solid curves) 0.95 confidence regions for the
average time trend. The plot also has the overall fitted time trend as the solid curve in the middle, and
the true piecewise linear population time trend for the true average subject effect. The confidence intervals
assume that a restricted cubic spline function with 6 knots contains the population profile as a special case,
which is not exactly true.



Chapter 8

Builtin S Functions for Multiple
Linear Regression

lm is the builtin function for fitting multiple linear regression models, and it works with several
other functions to summarize results, make hypothesis tests, get predicted values, and display model
diagnostics. Suppose that the response variable is named y and the predictors are x1, x2, x3. The
following examples show how to use the basic functions. Note that the fit object below (f) is a list
containing several components such as coefficients and fitted.values.

# Use the following command to cause dummy variables to be created

# the conventional way from categorical predictors

options(contrasts=c(’contr.treatment’,’contr.poly’))

# Fitting functions in the Design library make this the default

f ← lm(y ∼ x1 + x2 + x3, data=dframe, na.action=na.omit)

# Attach dframe if you don’t use data=, omit both if using

# standalone variables

# Omit na.action= if there are no NAs in the variables in the model

# na.omit causes any observations containing NAs to be deleted

# before fitting

f # or print(f): prints coefficients and sigma hat

summary(f) # prints crude residual diagnostics, coefficients,

# s.e., t statistics, P-values, sigma hat, overall F and P,

# R^2, correlations of coefficients

plot(f) # Draws 6 graphs

# Plots residuals vs. fitted values (with 3 most extreme

# points identified),

# sqrt(abs(residuals)) vs. yhat (for identifying outliers)
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# y vs. yhat

# normal quantile plot of residuals (to check for normality)

# a residual-fit spread plot (r-f plot) to compare the spread of the

# fitted values with the spread of residuals (which should be less)

# Cook’s distance plot to look for overly influential observations

plot(f, smooths=T, rugplot=T)

# adds trend lines and x data density ticks

coef(f) # or coefficients(f) or f$coefficients: get coef.

fitted(f) # or fitted.values(f) or predict(f) or

# f$fitted.values: computes yhat

resid(f) # or residuals(f) or f$residuals: computes residuals

plot(x2, resid(f)) # plot residuals vs. x2 alone

predict(f, se.fit=T)

# original hats and se for E(y|x)

predict(f, data.frame(x1=1,x2=2,x3=17))

# yhat for user-given x’s

predict(f, expand.grid(x1=1,x2=2:3,x3=1:10))

# yhat for 20 combinations of x’s

# Use e.g. sex=factor(’female’,levels=...) to specify settings of

# categorical predictors

drop1(f) # compute SSR due to each variable by

# dropping one at a time

aov(f) # sums of squares and d.f.

anova(f) # anova table with sums of squares computed by

# sequentially adding predictors (in order in formula),

# F, P-values

f2 ← lm(y ∼ x3) # sub-model

anova(f2, f) # partial F test for x1+x2 combined | x3 plus

# sequentially added sums of squares

# To get partial F tests for all variables, you must leave out each

# at a time

# Without controlling x2 and x3, plot yhat vs. observed x1 with

# pointwise 0.99 CI

pred ← predict(f, se.fit=T)

ci ← pointwise(pred, coverage=0.99)

plot(x1, fitted(f))

points(x1, ci$upper, pch=2)

points(x1, ci$lower, pch=2)

# Better:

# Let x1 vary over a grid of 100 equally spaced points and set

# x2 and x3 to their means. Get predicted values and s.e., then
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# pass predictions through pointwise() to get pointwise CI to plot

x1s ← seq(min(x1),max(x1), length=100)

pred ← predict(f, expand.grid(x1=x1s, x2=mean(x2), x3=mean(x3)),

se.fit=T)

pred$fit # print yhat

pred$se.fit # print estimated se of yhat

ci ← pointwise(pred, coverage=.95)

ci$upper # print upper CL

ci$lower # print lower CL

plot(x1s, pred$fit, type=’l’, ylab=’Yhat’)

lines(x1s, ci$upper, lty=2) # dotted line

lines(x1s, ci$lower, lty=2)

# Add confidence bands for predicting individual y’s

# pred$residual.scale^2 is MSE, and this is for the ’1’

# in the se(E(y|x)) formula

pred$se.fit ← sqrt(pred$se.fit^2 + pred$residual.scale^2)

cii ← pointwise(pred, coverage=.95)

lines(x1s, cii$lower, lty=2)

lines(x1s, cii$upper, lty=2)

# An example where we get predictions by letting two predictors

# vary, and we plot two sets of confidence bands

ages ← seq(3,16,length=100)

combos ← expand.grid(sex=factor(levels(sex),levels(sex)), age=ages)

pred ← predict(fit, combos, se.fit=T)

ci ← pointwise(pred, coverage=.99)

par(mfrow=c(1,2))

for(sx in levels(sex)) {
s ← combos$sex==sx

plot(combos$age[s], ci$fit[s], xlab=’Age’, ylab=’Y hat’,

ylim=range(unlist(ci)), type=’l’)

# range(unlist(ci)) takes range over all of fit, upper, lower

title(sx)

lines(combos$age[s], ci$upper[s], lty=2)

lines(combos$age[s], ci$lower[s], lty=2)

}

To obtain partial residual plots you can use the Statistics .. Regression .. Linear menu in
version 4.0 and later.

Warning: When the response or any of the predictor variables contain NAs, na.action=na.omit
will cause lm to delete observations containing NAs, but unfortunately the fitted, resid, and
predict (when no data frame argument is given) functions compute ŷ or residuals only for the
observations actually used in the fit. In other words, the results of these functions will be vectors
that are shorter than the original variables used in the fit, and the observations will no longer align.
A command such as plot(x1, resid(fit)) will fail. One solution to the problem is to attach
only the subset of the data frame that corresponds to observations not containing NAs on variables
used in modeling. This approach does not work well when different sets of variables are to be used
in different models.
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The survival analysis modeling functions builtin to S solve this problem in an elegant way.
Regression fitting functions (such as ols) in the Design library use this same solution. These fitting
functions set up so that resid and related functions add NAs back to predicted values or residuals
so that they are aligned with the original data.

Warning: When the lm model contains a categorical (factor) predictor, you must give predict
a data frame that has exactly the same factor levels for such predictors as appeared in the original
variable given to lm. For example, specifying predict(fit, data.frame(age=10, sex=’male’))
can result in incorrect predictions, as the temporary sex variable contains only one level, and
predict for lm does not know how to construct the dummy variables correctly. Instead, specify for
example

predict(fit, expand.grid(age=c(10,20,30),

sex=factor(’male’,c(’female’,’male’))))

if the original sex variable had levels c(’female’,’male’) in that order. A more automatic ap-
proach is to specify sex=factor(’male’, levels(sex)) in the previous command. To obtain pre-
dictions for all values of a categorical predictor, use for example sex=factor(c(’male’,’female’),levels(sex))
or sex=factor(levels(sex),levels(sex)) as in one of the examples above.

All fitting functions in the Design library solve this problem by looking up the original levels
for all predictors. No other S functions handle this automatically.

When using lm instead of Design’s ols function, you may want to put the contrasts option in
your .First function, e.g.:

.First ← function() {
library(Hmisc,T)

options(contrasts=c(’contr.treatment’,’contr.poly’))

}

8.1 Sequential and Partial Sums of Squares and F–tests

Sequential sums of squares (called Type I SS in SAS) are increments in SSR’s as predictors are
added to a model1. Sequential SS can be quite arbitrary, because the SS for all predictors depend
on the order that predictors were listed in the model formula. Sequential F–statistics are defined
as sequential mean squares divided by the MSE from the full model. These statistics test the
hypothesis that the current predictor is associated with the response after adjusted for the list of
predictors that preceeded it. In other words, a sequential F–test tests whether the current predictor
adds predictive information to those listed before it. Only the last predictor’s sequential SS is
adjusted for all of the other predictors. The total of all the sequential SS equals the SSR for the
entire model.

In S, sequential F–tests are obtained by the command anova(fitobject).
Partial sums of squares (called Type II, III, or IV SS in SAS2) are increments in SSR’s when

each predictor is added to all of the other predictors. Partial F–statistics are partial mean squares
divided by the MSE. A partial test tests whether the current predictor is associated with the
response after adjustment for all other predictors. In other words, the partial test assesses whether

1Note that increments in SSR are decrements in SSE. SSE is called RSS (residual sums of squares) in Rosner.
2These three types are identical when there are no interactions involving the predictors being tested
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the predictor adds information to all of the other predictors. The sequential SS for the last predictor
in a model equals its partial SS. The total of all partial SS does not mean anything.

Recall that the regression coefficients are also called partial regression coefficients, and that all
of the t–statistics that are printed with the model fit (by e.g., summary(fit)) are test statistics for
testing partial effects. When a predictor has only one degree of freedom associated with it (i.e., it
is represented by one regression coefficient), its partial F–statistic is the square of the t–statistic
(obtained by dividing the coefficient estimate by its estimated standard error).

Partial F–tests for multiple degree of freedom predictors are obtained in S by fitting a sub–model
in which the predictor of interest is deleted, and then issuing a command such as anova(fit.submodel,fit.full).
The difference in SSR’s for the full and reduced models the partial SS for the omitted predictor.
The partial test thus assesses how much predictive information is lost by deleting that predictor.

Consider the following table of sequential and partial SS for a model containing predictors age,
sex, and exposure (in that order):

Predictor Sequential SS Partial SS
Age 1000 755
Sex 300 100

Exposure 5 5
Total 1305

As exposure is listed last, its sequential SS equals its partial SS. If the order of variables were to
be reversed, we might see the following table:

Predictor Sequential SS Partial SS
Exposure 150 5

Sex 400 100
Age 755 755
Total 1305

Now we see that if age and sex are not adjusted for, exposure explains more of the variation in the
response. In contrast, exposure adds only 5 to SSR once age and sex are held constant. sex adds
100 more to SSR when only exposure is adjusted for, compared to when only age is adjusted for.

The easiest way to get partial F–tests and P–values for predictors that have one parameter
associated with them is to use the partial t–tests that are printed by the S summary command (you
can square t to get F ). The easiest way to partial SS and F–tests in general is to run the anova
function on a model that has the variable of interest as the last variable in the model, e.g.:

anova(lm(y ∼ age + sex + cholesterol))

This will give an unadjusted test for age, a fully adjusted (partial) test for cholesterol, and a
test for sex that is only adjusted for age. S-Plus 4.5 and later has extended the anova function
to compute all partial tests using Type III sums of squares3. To obtain these partial tests, use
the command anova(fit,ssType=3). Type III tests are problematic, however, when interactions
are present in the model — just the situation where Type III F–tests were originally intended to
have advantages. For example, in a multi–center randomized drug trial for which treatment ×
center interactions are included in the model, Type III tests for the “average” drug effect weight

3The anova command for the Design library prints all partial F or χ2 tests automatically.



174 CHAPTER 8. BUILTIN S FUNCTIONS FOR MULTIPLE LINEAR REGRESSION

centers contributing very few patients the same as large centers. The weighted mean (over centers)
treatment effect associated with the Type III test is strange indeed, as it is a simple unweighted
average of center–specific treatment effects and thus has lower precision.

For pre–4.5 versions of S-Plus the shortest command for obtaining a general pooled partial
F–test is

anova(lm(y ∼ subset of variables),

lm(y ∼ full set of variables))

where the subset of variables is the set of variables aside from the ones being tested. For the Design
library, you can just list the variables you want to combine in an anova command.

Sometimes the order of variables can result in meaningful sequential SS for all variables. For
example, one might list patient measurements in the order of the cost of making the measurements.
Then each sequential test assesses how much the current measurement adds to those that are less
expensive.

The last k variables in a model may be tested jointly using the sequential SS output of anova for
lm fits, because sequential SS are additive. Suppose that the last three variables were to be tested
as a group, and that these variables had a total of 5 parameters. Then the partial F–test with 5
and n − p − 1 d.f. is the ratio of the MSR corresponding to these 3 variables to the MSE for the
full model. The correct MSR is the sum of the last three sequential SS’s divided by 5.
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The Design Library of Modeling
Functions

9.1 Statistical Formulas in S

Let us first summarize many of S’s general modeling capabilities. S has a battery of functions which
make up a statistical modeling language [2]. At the heart of the modeling functions is an S formula
of the form

response ∼ terms

The terms represent components of a general linear model. Although variables and functions of
variables make up the terms, the formula refers to additive combinations, e.g. when terms is age +
blood.pressure, it refers to β1 × age +β2 × blood.pressure. Some examples of the terms, which
describe how predictor variables are modeled, are below:

y ∼ age + sex # age + sex main effects

y ∼ age + sex + age:sex # add second-order interaction

y ∼ age*sex # second-order interaction + all main effects

y ∼ (age + sex + pressure)^2

# age+sex+pressure+age:sex+age:pressure...

y ∼ (age + sex + pressure)^2 - sex:pressure

# all main effects and all 2nd order

# interactions except sex:pressure

y ∼ (age + race)*sex # age+race+sex+age:sex+race:sex

y ∼ treatment*(age*race + age*sex) # no interact. with race,sex

sqrt(y) ∼ sex*sqrt(age) + race

# functions, with dummy variables generated if

# race is an S factor (classification) variable

y ∼ sex + poly(age,2) # poly generates orthogonal polynomials
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race.sex ← interaction(race,sex)

y ∼ age + race.sex # for when you want dummy variables for

# all combinations of the factors (why?)

The formula for a regression model is given to a modeling function, e.g.

lrm(y ∼ rcs(x,4))

is read “use a logistic regression model to model y as a function of x, representing x by a restricted
cubic spline with 4 default knots”. rcs and lrm are part of Design.

You can use the S function update to re–fit a model with changes to the model terms or the
data used to fit it:

f ← lrm(y ∼ rcs(x,4) + x2 + x3)

f2 ← update(f, subset=sex=="male")

f3 ← update(f, .∼.-x2) # remove x2 from model

f4 ← update(f, .∼. + rcs(x5,5))# add rcs(x5,5) to model

f5 ← update(f, y2 ∼ .) # same terms, new response var.

The different operators that can be used to express a model are summarized in the following
table As shown above, transformations of variables may be included in the formula which makes

Table 9.1: Operators in Formulae

Expression Meaning
Y~M Y is modeled as M
M1+M2 Include M1 and M2

M1-M2 Include M1 and leave out M2 (-1 deletes intercept term)
M1:M2 The cross-product of M1 and M2

M1*M2 M1+M2+M1:M2
(M1+M2)^m M1 and M2 and all the powers and interaction terms up to order m.
poly(M,n) Orthogonal polynomial of order n
I() Remove the special meaning of operators

it very flexible. rcs in Design is the transformation for a restricted cubic spline. By default it takes
5 knots, but you can give it the number of knots or their position if you desire. lsp(age,75) fits
age as a linear spline with a knot at 75 years of age (i.e., a bilinear relationship). For lsp you need
to give it the position of the knots.

Transformations which involve the use of *, ^, and | which have special meaning in this context,
need to be enclosed within the function I().

9.2 Purposes and Capabilities of Design

Harrell’s Design library supports biostatistical and epidemiologic modeling, testing, estimation, val-
idation, graphics, prediction, and typesetting. The name “Design” comes from the fact that this
library works by storing enhanced model design attributes in the fit. These attributes are ones
needed to generate the design matrix in the first place. Design consists of about 200 functions that
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assist and streamline modeling and also contains new function for binary and ordinal logistic re-
gression models and the Buckley–James censored least squares multiple linear regression model, and
implements penalized maximum likelihood estimation (shrinkage) for logistic and ordinary linear
models. Design works with almost any regression model, but it was especially written to work with
the models mentioned below. To use Design, you should have already installed and attached Hmisc.
To access Design you need to put in the search list the directory where the functions are stored. You
must force Design to be placed in front of other libraries, as Design overrides a few system–provided
functions (model.frame.default and Surv being two of them):

> library(Design,T)

The Design library implements the following statistical methods.

1. Ordinary linear regression models

2. Binary and ordinal logistic models (proportional odds and continuation ratio models)

3. Cox model

4. Parametric survival models in the accelerated failure time class

5. Buckley–James distribution–free regression model for right–censored responses

6. Bootstrap model validation to obtain unbiased estimates of model performance without re-
quiring a separate validation sample

7. Automatic Wald tests of all effects in the model, e.g., tests of nonlinearity of main effects when
the variable does not interact with other variables, tests of nonlinearity of interaction effects,
tests for whether a predictor is important, either as a main effect or as an effect modifier

8. Graphical depictions of model estimates (effect plots, odds/hazard ratio plots, nomograms that
allow model predictions to be obtained manually even when there are nonlinear effects and
interactions in the model)

9. Various smoothed residual plots, including some new residual plots for verifying ordinal logistic
model assumptions

10. Composing S functions to evaluate the linear predictor (Xβ̂), hazard function, survival func-
tion, and quantile functions analytically from the fitted model

11. Typesetting of fitted model using LATEX

12. Robust covariance matrix estimation (Huber or bootstrap)

13. Cubic regression splines with linear tail restrictions

14. Tensor splines (formed by taking cross–product of all spline terms of each variable)

15. Interactions restricted to not be doubly nonlinear

16. Penalized maximum likelihood estimation for ordinary linear regression and logistic regression
models. Different parts of the model may be penalized by different amounts, e.g., you may
want to penalize interaction or nonlinear effects more than main effects or linear effects
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17. Estimation of hazard or odds ratios in presence of nonlinearity and interaction

18. Sensitivity analysis for an unmeasured binary confounder

Many of the functions in Design are organized into groups in the following tables.

Table 9.2: Special fitting functions

Function Purpose Related S Functions

ols Ordinary and penalized least squares linear model lm

lrm Binary and ordinal logistic regression model glm

Has options for penalized maximum likelihood estimation
psm Accelerated failure time parametric survival models survreg

cph Cox proportional hazards regression coxph

bj Buckley–James least squares model for censored data survreg

The following functions have special meaning when using Design.

Table 9.3: Functions for transforming predictor variables in models

Function Purpose Related S Functions

asis No post–transformation (seldom used explicitly)
rcs Restricted cubic splines ns

pol Polynomial using standard notation poly

lsp Linear spline
catg Categorical predictor (seldom) factor

scored Ordinal categorical variables ordered

matrx Keep variables as group for anova and fastbw (seldom) matrix

strat Non-modeled stratification factors (used for cph only) strata
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Table 9.4: Generic Functions and Methods

Function Purpose Related Functions

print Print parameters and statistics of fit
coef Fitted regression coefficients
formula Formula used in the fit
specs Detailed specifications of fit (e.g., knot locations)
robcov Robust covariance matrix estimates
bootcov Bootstrap covariance matrix estimates

and bootstrap distributions of estimates
pentrace Find optimum penalty factors by tracing

effective AIC for a grid of penalties
effective.df Print effective d.f. for each type of variable

in model, for penalized fit or pentrace result
rm.impute Impute repeated measures data with transcan,

non–random dropout fit.mult.impute

summary Summary of effects of predictors
plot.summary Plot continuously shaded confidence bars

for results of summary
anova Wald tests of most meaningful hypotheses
plot.anova Graphical depiction of anova
contrast General contrasts, C.L., tests
plot Plot effects of predictors
gendata Easily generate data with predictor combinations
predict Obtain predicted values or design matrix
fastbw Fast backward step–down variable selection step

residuals (or resid) Residuals, influence statistics from fit
sensuc Sensitivity analysis for unmeasured confounders
which.influence Which observations are overly influential residuals

latex LATEX representation of fitted model display

Dialog Create a menu to enter predictor values Function.Design

and obtain predicted values from fit nomogram.Design

Function S function analytic representation of Xβ̂ Function.transcan

from a fitted regression model Function.areg.boot

Hazard S function analytic representation of a fitted
hazard function (for psm)

Survival S function analytic representation of fitted
survival function (for psm,cph)

Quantile S function analytic representation of fitted
function for quantiles of survival time
(for psm, cph)

Mean S function analytic representation of fitted
function for mean survival time
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Table 9.5: Generic Functions and Methods

Function Purpose Related S Functions

nomogram Draws a nomogram for the fitted model latex, plot

survest Estimate survival probabilities (psm, cph) survfit

survplot Plot survival curves (psm, cph) plot.survfit

validate Validate indexes of model fit using resampling
calibrate Resampling estimation of model’s calibration curve val.prob

vif Variance inflation factors for fitted model
naresid Bring elements corresponding to missing data

back into predictions and residuals
naprint Print summary of missing values

The following list of topics in the online help (for Windows) for Design will also assist in under-
standing the components of this library.

Add to Existing Plot
Bootstrap
Categorical Data
Character Data Operations
Data Manipulation
Grouping Observations
High-Level Plots
Interfaces to Other Languages
Linear Algebra
Logistic Regression Model
Mathematical Operations
Matrices and Arrays
Methods and Generic Functions
Nonparametric Statistics
Overview
Predictive Accuracy
Printing
Regression
Regression and Classification Trees
Robust/Resistant Techniques
Sampling
Smoothing Operations
Statistical Inference
Statistical Models
Survival Analysis
Utilities
Validation of Prediction Models

See [13] for an overview of survival modeling and validation of survival models using Design. See
[14] for a comprehensive case study of ordinal logistic modeling using Design. These papers also
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have lots of references.

9.2.1 Differences Between lm (Builtin) and Design’s ols Function

dummy variables ols uses traditional dummy variable coding.

NA’s ols deletes observations containing NA’s for variables in the model. For lm you have to specify
na.action=na.omit. The resid, fitted, and predict (with type=’fitted’) functions,
when used with objects created by lm, will not hold places for NA’s that were removed during
the fitting process. ols holds places for NA’s so that, for example, residuals can be plotted
against variables in the original dataset (without having to remove observations from the
variables).

β̂ The two functions compute identical coefficient and standard error estimates, assuming that
ordinary dummy variable coding was used with factor variables in lm formulas.

print print’ing an lm object results in an abbreviated summary of the model; ols prints model
summary statistics (including the likelihood ratio χ2) as well as all coefficients, standard errors,
t statistics, and P–values based on the t distribution. ols also prints the adjusted R2 and a
summary of how many NA’s were due to each variable in the model.

summary summary for an lm object prints output similar to what print for an ols object prints.
summary for an ols object prints estimates of effects of variables in the model (e.g., inter–
quartile range differences in Ŷ ).

anova For both lm and ols F–tests are done by default and there is an option to use χ2 tests.
Unless ssType=3 is specified to anova for lm, anova prints sequential tests. anova for ols
always prints partial test statistics. So by default, anova.lm only prints partial F statistic
for the final predictor in the model, and it never tests for linearity for variables that are
expanded using polynomials or splines. General partial tests are obtained for lm using e.g.
anova(fit.reduced,fit.full). anova for ols prints all partial tests and tests of linearity.
When interactions are present, it also prints meaningful “total effect” test statistics (main
effects + interaction effects combined) whereas anova for lm prints meaningless main effect
tests. anova for ols also prints global (over all predictors) tests of linearity and additivity,
and pooled tests involving multiple predictors can be easily specified (e.g., anova(f, sys.bp,
dias.bp)).

plot plot for lm plots regression diagnostics. plot for ols plots effects of predictors. You can
obtain diagnostic plots for an ols fit using plot.lm(fit).

other functions ols fits can be used with all the other methods in Design such as nomogram,
validate, and calibrate.

9.3 Examples of the Use of Design

9.3.1 Examples with Graphical Output

The first series of examples we will consider are based on binary logistic analyses of diagnostic data
from the Duke Cardiovascular Disease Databank. We consider how age, sex, and serum cholesterol
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Figure 9.1: Log odds of significant coronary artery disease modeling age with two dummy variables

level relate to the probability that a patient will be found to have significant coronary artery dis-
ease by cardiac catherization (arteriography). First, to understand interactions involving age we
perform an inefficient analysis in which age is stratified into tertiles. We allow for two two–way
interactions but not for interaction between sex and cholesterol. We assume that the relation-
ship between cholesterol and log odds of disease is smooth, by fitting a restricted cubic spline
function with 4 knots. We plot the fitted model with respect to cholesterol and age.tertile
by placing cholesterol on the x–axis and making separate curves for each age tertile. The sex
variable is set to its reference value. In the notation cholesterol=NA, NA is a keyword which
causes default ranges computed by datadist to be used. We could have given ranges explicitly,
e.g.,cholesterol=seq(100,400,by=5). The graph appears in Figure 9.1.

library(Design, T)

age.tertile ← cut2(age, g=3)

dd ← datadist(age, sex, cholesterol, age.tertile)

options(datadist=’dd’)

fit ← lrm(sigdz ∼ age.tertile * (sex +

rcs(cholesterol, 4)))

plot(fit, cholesterol=NA, age.tertile=NA,

conf.int=F)

Next we obtain Wald tests of all meaningful hypotheses which can be inferred from the design:

anova(fit)

The table below was actually obtained by typing latex(anova(fit)). Next we model age more
properly as a continuous variable (using a restricted cubic spline with 4 default knot locations),
allowing for a general interaction surface (tensor spline) between the two continuous predictors. The
surface is plotted in Figure 9.2 using default ranges, and the portion of the anova table corresponding
to interactions is printed.
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Wald Statistics

Factor χ2 d.f. P
age.tertile (Main+Interactions) 112.62 10 0.0000
All Interactions 22.37 8 0.0043

sex (Main+Interactions) 328.90 3 0.0000
All Interactions 9.61 2 0.0082

cholesterol (Main+Interactions) 94.01 9 0.0000
All Interactions 10.03 6 0.1234
Nonlinear (Main+Interactions) 10.30 6 0.1124

age.tertile * sex 9.61 2 0.0082
age.tertile * cholesterol 10.03 6 0.1232
Nonlinear Interaction : f(A,B) vs. AB 2.40 4 0.6635

TOTAL NONLINEAR 10.30 6 0.1124
TOTAL INTERACTION 22.37 8 0.0043
TOTAL NONLINEAR+INTERACTION 30.12 10 0.0008
TOTAL 404.94 14 0.0000

fit ← lrm(sigdz ∼ rcs(age,4) * (sex +

rcs(cholesterol,4)))

plot(fit, cholesterol=NA, age=NA)

anova(fit)

You may want to override the 3–dimensional display method used by the plot.Design function.
For example, we can produce an “image” plot where for color plots the third dimension is depicted
using colors of the heat spectrum and for black and white plots it is depicted using gray scale. This
is done using

plot(fit, cholesterol=NA, age=NA, method=’image’)

Wald Statistics
Factor χ2 d.f. P

age * cholesterol 12.95 9 0.1649
Nonlinear Interaction : f(A,B) vs. AB 7.27 8 0.5078
f(A,B) vs. Af(B) + Bg(A) 5.41 4 0.2480
Nonlinear Interaction in age vs. Af(B) 6.44 6 0.3753
Nonlinear Interaction in cholesterol vs. Bg(A) 6.27 6 0.3931

The next model restricts the interaction between age and cholesterol to not be doubly non-
linear. The plot is in Figure 9.3.
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Figure 9.2: Restricted cubic spline surface in two variables, each with k = 4 knots

fit2 ← lrm(sigdz ∼ rcs(age,4) * sex +

rcs(cholesterol,4) +

rcs(age,4) %ia% rcs(cholesterol,4))

plot(fit2, cholesterol=NA, age=NA)

anova(fit2)
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Figure 9.3: Restricted cubic spline fit with age × spline(cholesterol) and cholesterol × spline(age)
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Figure 9.4: Spline fit with non-linear effects of cholesterol and age and a simple product interaction

Wald Statistics
Factor χ2 d.f. P

age * cholesterol 10.83 5 0.0548
Nonlinear Interaction : f(A,B) vs. AB 3.12 4 0.5372
Nonlinear Interaction in age vs. Af(B) 1.60 2 0.4496
Nonlinear Interaction in cholesterol vs. Bg(A) 1.64 2 0.4399

Finally, fit a model in which the interaction between age and cholesterol is restricted to be
linear in both variables (simple product form interaction). The graphical output is in Figure 9.4.

fit3 ← lrm(sigdz ∼ rcs(age,4) * sex +

rcs(cholesterol,4) +

age %ia% cholesterol)

plot(fit3, cholesterol=NA, age=NA)

Predictions from this fit can be compared with the first model (Figure 9.1) in which age was
categorized if we ask for predictions to be made at the mean age within each tertile of age. See
Figure 9.5 for the result.
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Figure 9.5: Predictions from linear interaction model with mean age in tertiles indicated

mean.age ← tapply(age, age.tertile, mean) # add ,na.rm=T if NAs exist

plot(fit3, cholesterol=NA, age=mean.age,

sex="male", conf.int=F)

Now summarize the effects of variables from this fit. The default inter–quartile–range odds ratios
are used for continuous variables. Because of the presence of interactions it is important to note the
settings of interacting variables when interpreting these odds ratios. These settings are listed at the
end to the output from the summary (actually summary.Design) function.

summary(fit3)

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
age 46 59 13 0.91 0.18 0.55 1.27
Odds Ratio 46 59 13 2.48 NA 1.73 3.55
cholesterol 196 259 63 0.75 0.14 0.49 1.02
Odds Ratio 196 259 63 2.13 NA 1.63 2.78
sex - female:male 1 2 NA -2.43 0.15 -2.72 -2.14
Odds Ratio 1 2 NA 0.09 NA 0.07 0.12

Adjusted to: age=52 sex=male cholesterol=224

This summary can also be passed to a plot method, whose results are shown in Figure 9.6. A log
odds ratio scale is used.

plot(summary(fit3), log=T)
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Figure 9.6: Summary of model using odds ratios and inter–quartile–range odds ratios
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Next consider a simple binary logistic model fitted to a small sample. Eighty bootstrap samples
are used to compute the optimism in various indexes of model performance, and optimism is sub-
tracted to obtain bias–corrected (overfitting corrected) estimates. This simple dataset is available
on the UVa web page.

f ← lrm(response ∼ age + sex, x=T, y=T)

validate(f, B=80)

Index Original Training Test Optimism Corrected
Sample Sample Sample Index

Dxy 0.70 0.70 0.67 0.03 0.67
R2 0.34 0.35 0.32 0.03 0.31
Intercept 0.00 0.00 0.00 0.00 0.00
Slope 0.00 0.00 0.92 0.08 0.92
Emax 0.00 0.00 0.02 0.02 0.02
D 0.39 0.41 0.36 0.05 0.34
U -0.05 -0.05 0.01 -0.06 0.01
Q 0.44 0.46 0.35 0.11 0.33
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We can also validate a model obtained by step–down variable selection if we remember to include
all candidate predictors in the fit being validated.

validate(f, B=80, bw=T, rule="p",

sls=.1, type="individual")

Index Original Training Test Optimism Corrected
Sample Sample Sample Index

Dxy 0.70 0.69 0.65 0.04 0.66
R2 0.34 0.35 0.31 0.04 0.30
Intercept 0.00 0.00 0.00 0.00 0.00
Slope 1.00 1.00 0.90 0.10 0.90
Emax 0.00 0.00 0.02 0.02 0.02
D 0.39 0.41 0.35 0.06 0.33
U -0.05 -0.05 0.01 -0.06 0.01
Q 0.44 0.46 0.34 0.12 0.32

Factors Retained in Backwards Elimination

age sex
* *
* *
* *

*
* *
. . .
* *
* *

*
* *
* *
*

Frequencies of Numbers of Factors Retained

1 2
10 70

Next turn to Cox survival modeling in a hypothetical dataset. In the following example we do
not assume linearity in age, proportional hazards for sex, or additivity for age and sex. Figure 9.7
shows the model’s estimates of 3–year survival probability after using the log–log transformation.
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Figure 9.7: Cox PH model stratified on sex, with interaction between age spline and sex

f ← cph(Srv ∼ rcs(age,4) * strat(sex), surv=T)

plot(f, age=NA, sex=NA, time=3, loglog=T)

This model can be depicted with a nomogram. First we invoke the Survival function to compose
an S function that computes survival probabilities as needed. Then we create special cases of this
function to compute 3–year survival probabilities for each of the two sex strata. The two functions
are needed because we are not assuming proportional hazards for sex; separate transformations of
time are thus needed to compute survival probabilities. After deriving survival probability prediction
functions, the Quantile function is used to compose a function to compute quantiles of survival times
on demand. Then special cases are computed as before. The nomogram function is used to draw the
nomogram (Figure 9.8), adding axes corresponding to the special functions just created.
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Figure 9.8: Nomogram from fitted Cox model

surv ← Survival(f)

surv.f ← function(lp) surv(3, lp, stratum="sex=Female")

surv.m ← function(lp) surv(3, lp, stratum="sex=Male")

quant ← Quantile(f)

med.f ← function(lp) quant(.5, lp, stratum="sex=Female")

med.m ← function(lp) quant(.5, lp, stratum="sex=Male")

at.surv ← c(.01,.05,seq(.1,.9,by=.1),.95,.98,.99,.999)

at.med ← c(0,.5,1,1.5,seq(2,14,by=2))

nomogram(f, conf.int=F,

fun=list(surv.m,surv.f,med.m,med.f),

funlabel=c("S(3 | Male)","S(3 | Female)",
"Median (Male)","Median (Female)"),

fun.at=list(at.surv,at.surv,at.med,at.med))

In the following example we assume proportional hazards for all variables and add another
continuous variable to the model. This results in a nomogram (Figure 9.9) which actually requires
some manual additions by the user.
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Figure 9.9: Nomogram from fitted Cox model

f ← cph(Srv ∼ rcs(age,4)*sex + rcs(systolic.bp,4), surv=T)

survfun ← Survival(f)

surv3 ← function(lp) survfun(3, lp)

surv5 ← function(lp) survfun(5, lp)

quant ← Quantile(f)

med ← function(lp) quant(.5, lp)

at.surv ← c(seq(.1,.9,by=.1),.95,.99)

at.med ← c(0,.5,1,1.5,seq(2,14,by=2))

nomogram(f, conf.int=F, fun=list(surv3, surv5, med),

funlabel=c("3y Survival Prob.",

"5y Survival Prob.",

"Median Survival Time"),

fun.at=list(at.surv, at.surv, at.med))

Now use the latex function to typeset the fitted model. The particular latex method for cph
fits also prints a table of underlying survival estimates to complete the model specification.

options(digits=3)

latex(f)
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Prob{T ≥ t | sex = i} = Si(t)e
Xβ

, where

Xβ̂ =
−3.93
+9.86×10−2age− 2.91×10−5(age− 30.7)3+
+8.72×10−6(age− 45.4)3+
+6.22×10−5(age− 54.8)3+ − 4.19×10−5(age− 69.6)3+
+{Female}[−3.50×10−2age + 1.90×10−5(age− 30.7)3+
−1.76×10−5(age− 45.4)3+
−2.10×10−5(age− 54.8)3+ + 1.97×10−5(age− 69.6)3+]

and {c} = 1 if subject is in group c, 0 otherwise,
(x)+ = x if x > 0, 0 otherwise.

t SMale(t) SFemale(t)
0 1.000 1.000
1 0.992 0.901
2 0.980 0.815
3 0.973 0.759
4 0.966 0.679
5 0.963 0.612
6 0.955 0.556
7 0.947 0.478
8 0.938 0.437
9 0.932 0.390

10 0.920 0.354
11 0.909 0.322
12 0.909 0.287
13 0.909 0.240
14 0.882 0.240

9.3.2 Binary Logistic Modeling with the Prostate Data Frame

Consider the strange task of predicting the probability of cardiovascular death (vs. alive or death
due to other causes) for men with prostate cancer, allowing time until death or censoring to be a
predictor variable (!).

> library(Design, T) # make Design functions and datasets available

> attach(prostate)

> cvd ← status %in% c("dead - heart or vascular","dead - cerebrovascular")

> # Note: %in% is in Hmisc - makes using the match function easier

> table(cvd)
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FALSE TRUE

375 127

> f ← lrm(cvd ∼ rx+rcs(dtime,5)+age+hx+bp)

> f

Logistic Regression Model

lrm(formula = cvd ∼ rx + rcs(dtime, 5) + age + hx + bp)

Frequencies of Responses

FALSE TRUE

374 127

Frequencies of Missing Values Due to Each Variable

cvd rx dtime age hx bp

0 0 0 1 0 0

Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier

501 2e-05 131.2 10 0 0.811 0.622 0.623 0.236 0.34 0.145

Coef S.E. Wald Z P

Intercept -3.01327 1.41243 -2.13 0.0329

rx=0.2 mg estrogen -0.42659 0.34083 -1.25 0.2107

rx=1.0 mg estrogen -0.16740 0.34176 -0.49 0.6243

rx=5.0 mg estrogen 0.36948 0.32082 1.15 0.2495

dtime -0.02632 0.03855 -0.68 0.4947

dtime’ 0.35472 0.25948 1.37 0.1716

dtime’’ -1.13796 0.74752 -1.52 0.1279

dtime’’’ 0.78195 0.99670 0.78 0.4327

age 0.02417 0.01829 1.32 0.1862

hx 1.25773 0.24352 5.16 0.0000

bp 0.17881 0.09702 1.84 0.0653

The fitted model object f, is a list. Let us take a look at its components.

> names(f)

[1] "freq" "stats" "fail"

[4] "coefficients" "var" "u"

[7] "deviance" "est" "non.slopes"

[10] "linear.predictors" "call" "scale.pred"

[13] "terms" "assign" "na.action"

[16] "fail"

Most of them are technical and needed for other functions to make calculations but a few have an
immediately recognizable meaning like coefficients. One could look at them by doing something
like coeff ← f$coefficients. The preferred method however is to use functions like coef and
predict. formula can also be useful to know what model we fitted without having to print all
coefficients.
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There are many other arguments to lrm. Among them are the data set to be used, subset of
observations to select, what to do with missing values, and whether to keep or not the design matrix
and dependent variable. Look at the help files for this and other modeling functions.

Next we want to do some testing. The anova function applied to an lrm object performs a Wald
test on any variable given, or all variables if no variable is given.

> anova(f)

Wald Statistics Response: cvd

Factor Chi-Square d.f. P

rx 6.14 3 0.1049

dtime 29.03 4 0.0000

Nonlinear 25.08 3 0.0000

age 1.75 1 0.1862

hx 26.67 1 0.0000

bp 3.40 1 0.0653

TOTAL 64.07 10 0.0000

If you really want to do a stepwise variable selection, the function to use is fastbw.

> fastbw(f)

Deleted Chi-Sq d.f. P Residual d.f. P AIC

age 1.75 1 0.1862 1.75 1 0.1862 -0.25

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P

Intercept -1.22902 0.41606 -2.9539 3.138e-03

rx=0.2 mg estrogen -0.45556 0.34013 -1.3394 1.805e-01

rx=1.0 mg estrogen -0.15662 0.34167 -0.4584 6.467e-01

rx=5.0 mg estrogen 0.38155 0.32069 1.1898 2.341e-01

dtime -0.02854 0.03852 -0.7410 4.587e-01

dtime’ 0.35037 0.25946 1.3504 1.769e-01

dtime’’ -1.11290 0.74728 -1.4893 1.364e-01

dtime’’’ 0.73557 0.99608 0.7385 4.602e-01

hx 1.29353 0.24201 5.3449 9.048e-08

bp 0.17860 0.09702 1.8408 6.565e-02

Factors in Final Model

[1] rx dtime hx bp

After you run fastbw you get an estimate of the coefficients after deleting factors. The arguments
to fastbw are

fastbw(fit, rule="aic", type="residual", sls=.05, aics=0, eps=1E-9)

The stopping rule can be "aic" for Akaike’s information criteria or "p" for p-values. type is the
type of statistic on which to base the stopping rule. type can be "residual" for pooled residual



9.3. EXAMPLES OF THE USE OF DESIGN 197

χ2, or "individual" for Wald χ2 statistics of individual variables. sls and aics are cut-off values
to decide when a variable is dropped from the model.

After using fastbw we may decide to refit the model dropping some variable and also on only a
subset of the observations. Instead of retyping the lrm expression we can use the function update.

> f1 ← update(f,.∼.-age,subset=dtime>20)

The arguments to update are the fitted object, the formula suitably modified, and perhaps other
arguments. In the formula, we use a "." to represent the expressions that were present before and
add or substract terms.

9.3.3 Troubleshooting Problems with factor Predictors

Here is an example of a problem you may encounter when using a modeling function.

> attach(resuse.dframe)

> m ← ols(log(billing) ∼ dzgroup)

Error in lm.fit.qr(x, y, qr = ..1): computed fit is singular, rank 8

Dumped

>

> table(dzgroup)

0:HELP only pts 1:ARF/MOSF 2:COPD 3:CHF 4:Cirrhosis 5:Coma 6:Colon Cancer

0 1513 458 726 296 247 269

7:Lung Cancer 8:MOSF w/Malig

459 333

The problem here is that the factor dzgroup has HELP as a possible level, but there are no patients
in that category. This happens when you have a factor or category variable and there are no
observations for a particular level of the variable. If importing data from SAS and there is an
unused SAS PROC FORMAT VALUE label, sas.get will create a level for the factor anyway and
since there will be no observations the resulting design matrix will be singular because one of the
dummy variables is always one. The easiest way out of this problem is to run the factor variable
through the method for subscripting factor variables as described in Section 3.4.

> dzgroup ← dzgroup[] # use dzgroup[,drop=T] if Hmisc not in effect

> table(dzgroup)

1:ARF/MOSF 2:COPD 3:CHF 4:Cirrhosis 5:Coma 6:Colon Cancer 7:Lung Cancer

1513 458 726 296 247 269 459

8:MOSF w/Malig

333

Now the new version of dzgroup will replace the old one in any subsequent calculations.
Another problem that may arise is when you want to collapse a few levels of a factor into a single

level. To do this one can redefine the levels of the factor. The %in% operator can help here; see
Sections 3.4 and 4.4 for other examples. Let us look at the variable group2 in the data frame.

> group ← group2

> table(group)

1:surgery 2:cardiology 3:oncology 4:pulmonary/MICU 5:medicine 6:medicine 6C

692 784 757 886 970 70

7:medicine 8B 8:medicine 9B 9:medical house staff 10:surgical house staff

50 82 0 0
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We would like to collapse levels 6,7 and 8 into level 5. We redefine the levels attribute of group this
way.

> levels(group)[levels(group) %in% c("6:medicine 6C","7:medicine 8B",

+ "8:medicine 9B")] ← "5:medicine"

> # or levels(group) ← list(medicine=c(’5:medicine’,’6:medicine 6C’,

> # ’7:medicine 8B’,’8:medicine 9B’))

> table(group)

1:surgery 2:cardiology 3:oncology 4:pulmonary/MICU 5:medicine

692 784 757 886 1172

9:medical house staff 10:surgical house staff

0 0

> # Now delete unused levels

> group ← group[] $ group[,drop=T] if Hmisc not in effect

> table(group)

1:surgery 2:cardiology 3:oncology 4:pulmonary/MICU 5:medicine

10 692 784 757 886 1172

Notice that the the values of medicine 6C, 8B, 9B etc have been correctly collapsed into medicine.

9.3.4 A Comprehensive Hypothetical Example

As another example of using many of the Design functions (as well as the describe and impute
functions in Hmisc), suppose that a categorical variable treat has values "a", "b", and "c", an
ordinal variable num.diseases has values 0,1,2,3,4, and that there are two continuous variables, age
and cholesterol. age is fitted with a restricted cubic spline, while cholesterol is transformed
using the transformation log(cholesterol+10). Cholesterol is missing on three subjects, and we
impute these using the overall median cholesterol. We wish to allow for interaction between treat
and cholesterol. The following S program will fit a logistic model, test all effects in the design,
estimate effects, and plot estimated transformations. The fit for num.diseases really considers the
variable to be a 5-level categorical variable. The only difference is that a 3 d.f. test of linearity is
done to assess whether the variable can be re-modeled “asis”. Here we also show statements to store
predictor characteristics from datadist.

library(Design, T)

ddist ← datadist(cholesterol, treat, num.disease, age)

# Could have used ddist ← datadist(data.frame.name)

options(datadist="ddist") # defines data dist. to Design

cholesterol ← impute(cholesterol)

fit ← lrm(y ∼ treat + scored(num.diseases) + rcs(age) +

log(cholesterol+10) + treat:log(cholesterol+10))

describe(y ∼ treat + scored(num.diseases) + rcs(age))

# or use describe(formula(fit)) for all variables used in fit

# describe function (in Hmisc) gets simple statistics on variables

#fit ← robcov(fit) # Would make all statistics which follow

# use a robust covariance matrix

# would need x=T, y=T in lrm()

specs(fit) # Describe the design characteristics

anova(fit)
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anova(fit, treat, cholesterol) # Test these 2 by themselves

plot(anova(fit)) # Summarize anova graphically

summary(fit) # Estimate effects using default ranges

plot(summary(fit)) # Graphical display of effects with C.L.

summary(fit, treat="b", age=60) # Specify reference cell and adjustment val

summary(fit, age=c(50,70)) # Estimate effect of increasing age from

# 50 to 70

summary(fit, age=c(50,60,70)) # Increase age from 50 to 70, adjust to

# 60 when estimating effects of other factors

# If had not defined datadist, would have to define ranges for all var.

plot(fit, age=seq(20,80,length=100), treat=NA, conf.int=F)

# Plot relationship between age and log

# odds, separate curve for each treat,

# no C.I.

plot(fit, age=NA, cholesterol=NA)# 3-dimensional perspective plot for age,

# cholesterol, and log odds using default

# ranges for both variables

plot(fit, num.diseases=NA, fun=function(x) 1/(1+exp(-x)) ,

ylab="Prob", conf.int=.9) # Plot estimated probabilities instead of

# log odds

# Again, if no datadist were defined, would have to tell plot all limits

# Estimate and test treatment (b-a) effect averaged over 3 cholesterols

contrast(fit, list(treat=’b’, cholesterol=c(150,200,250)),

list(treat=’a’, cholesterol=c(150,200,250)),

type=’average’)

logit ← predict(fit, expand.grid(treat="b",num.dis=1:3,age=c(20,40,60),

cholesterol=seq(100,300,length=10)))

# Could also obtain list of predictor settings interactively

logit ← predict(fit, gendata(fit, nobs=12))

# Since age doesn’t interact with anything, we can quickly and

# interactively try various transformations of age, taking the spline

# function of age as the gold standard. We are seeking a linearizing

# transformation.

ag ← 10:80

logit ← predict(fit, expand.grid(treat="a", num.dis=0, age=ag,

cholesterol=median(cholesterol)),

type="terms")[,"age"]

# Note: if age interacted with anything, this would be the age

# "main effect" ignoring interaction terms

# Could also use

# logit ← plot(f, age=ag, ...)$x.xbeta[,2]

# which allows evaluation of the shape for any level of interacting

# factors. When age does not interact with anything, the result from

# predict(f, ..., type="terms") would equal the result from

# plot if all other terms were ignored
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# Could also specify

# logit ← predict(fit, gendata(fit, age=ag, cholesterol=...))

# Un-mentioned variables set to reference values

plot(ag^.5, logit) # try square root vs. spline transform.

plot(ag^1.5, logit) # try 1.5 power

latex(fit) # invokes latex.lrm, creates fit.tex

# Draw a nomogram for the model fit

nomogram(fit)

# Compose S function to evaluate linear predictors analytically

g <- Function(fit)

g(treat=’b’, cholesterol=260, age=50)

# Letting num.diseases default to reference value

The following is a typical sequence of steps that would be used with Design in conjunction with the
Hmisc transcan function to do single imputation of all NAs in the predictors1, fit a model, do backward
stepdown to reduce the number of predictors in the model (with all the severe problems this can
entail), and use the bootstrap to validate this stepwise model, repeating the variable selection for
each re-sample. Here we take a short cut as the imputation is not repeated within the bootstrap.
In what follows we (atypically) have only 3 candidate predictors. In practice be sure to have the
validate and calibrate functions operate on a model fit that contains all predictors that were involved
in previous analyses that used the response variable. Here the imputation is necessary because
backward stepdown would otherwise delete observations missing on any candidate variable.

xt <- transcan(~ x1 + x2 + x3, imputed=T)

impute(xt) # imputes any NAs in x1, x2, x3

# Now fit original full model on filled-in data

f <- lrm(y ~ x1 + rcs(x2,4) + x3, x=T, y=T) # x,y allow boot.

fastbw(f) # derive stepdown model (using default stopping rule)

validate(f, B=100, bw=T) # repeats fastbw 100 times

cal <- calibrate(f, B=100, bw=T) # also repeats fastbw

plot(cal)

See Section 13.2 for a much more comprehensive example of the use of Design.

9.3.5 Using Design and Interactive Graphics to Generate Flexible Func-
tions

Sometimes one wishes to simulate data from a complex non–monotonic regression relationships. In
this example we open an empty plot, draw a curve using mouse clicks, fit the function using least
squares via a spline function, and create an S function representing a close approximation to the
manually drawn function. This latter function can then be used inside a simulation loop to create
a population predictor effect, for example. This example also shows how restricted cubic splines are
fitted. You may have to specify knot locations yourself to fit the tails of the curve adequately if you
don’t click the mouse very rapidly there.

1 Multiple imputation would be better but would be harder to do in the context of bootstrap model validation.
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plot(0,0, xlim=c(0,1), ylim=c(0,1)) # open empty graph

z ← locator(type=’b’) # return points until right mouse button

# clicked, drawing pts and lines

x1 ← z$x # pull off x-coordinates

y ← z$y # pull off y-coordinates

w ← datadist(x1)

options(datadist=’w’)

h ← ols(y ~ rcs(x1,6)) # least squares fit

plot(h, add=T, conf.int=F, col=2) # show fitted curve

hf ← Function(h) # represent fit as an S function

xx ← seq(0,1,length=100) # grid of points to evaluate

lines(xx, hf(xx), lwd=2, col=2) # re-draw fitted curve

9.4 Checklist of Problems to Avoid When Using Design

1. Don’t have a formula like y ~ age + age^2. In S you need to connect related variables using
a function which produces a matrix, such as pol or rcs. This allows effect estimates (e.g.,
hazard ratios) to be computed as well as multiple d.f. tests of association.

2. Don’t use poly or strata inside formulas used in Design. Use pol and strat instead.

3. Almost never code your own dummy variables or interaction variables in S. Let S do this
automatically. Otherwise, anova and other functions can’t do their job.

4. Almost never transform predictors outside of the model formula, as then plots of predicted
values vs. predictor values, and other displays, would not be made on the original scale. Use
instead something like y ~ log(cell.count+1), which will allow cell.count to appear on
x–axes. You can get fancier, e.g., y ~ rcs(log(cell.count+1),4) to fit a restricted cubic
spline with 4 knots in log(cell.count+1). For more complex transformations do something
like

f ← function(x) {
... various ’if’ statements, etc.

log(pmin(x,50000)+1)

}
fit1 ← lrm(death ∼ f(cell.count))

fit2 ← lrm(death ∼ rcs(f(cell.count),4))

5. Don’t put $ inside variable names used in formulas. Either attach data frames or use data=.

6. Don’t forget to use datadist and options(datadist=...). Try to use it at the top of your
program so that all model fits can automatically take advantage if its distributional summaries
for the predictors.

7. Don’t validate or calibrate models which were reduced by dropping “insignificant” predic-
tors. Proper bootstrap or cross–validation must repeat any variable selection steps for each
re–sample. Therefore, validate or calibrate models which contain all candidate predictors,
and if you must reduce models, specify the option bw=T along with any non–default stopping
rules when you run validate or calibrate.
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8. Dropping of “insignificant” predictors ruins much of the usual statistical inference for re-
gression models (confidence limits, standard errors, P–values, χ2, ordinary indexes of model
performance) and it also results in models which will have worse predictive discrimination.

9. Make sure you include the T in library(Design, T), and do library(Design, T) after
library(Hmisc, T)

9.5 Describing Representation of Subjects

The Hmisc dataRep function is useful for describing how well a new subject was represented in a
dataset used to develop a predictive model. This can supplement confidence intervals in guarding
against over–interpretation when extrapolation is done.



Chapter 10

Principles of Graph Construction

The ability to construct clear and informative graphs is related to the ability to understand the
data. There are many excellent texts on statistical graphics (many of which are listed at the end
of this chapter). Some of the best are Cleveland’s 1994 book The Elements of Graphing Data and
the books by Tufte. The suggestions for making good statistical graphics outlined here are heavily
influenced by Cleveland’s books, and quotes below are from his 1994 book.

10.1 Graphical Perception

• Goals in communicating information: reader perception of data values and of data patterns.
Both accuracy and speed are important.

• Pattern perception is done by

detection : recognition of geometry encoding physical values

assembly : grouping of detected symbol elements

estimation : assessment of relative magnitudes of two physical values

• For estimation, many graphics involve discrimination, ranking, and estimation of ratios

• Humans are not good at estimating differences without directly seeing differences (especially
for steep curves)

• Humans do not naturally order color hues

• Only a limited number of hues can be discriminated in one graphic

• Weber’s law: The probability of a human detecting a difference in two lines is related to the
ratio of the two line lengths
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• This is why grid lines and frames improve perception and is related to the benefits of having
multiple graphs on a common scale.

– eye can see ratios of filled or of unfilled areas, whichever is most extreme

• For categorical displays, sorting categories by order of values attached to categories can improve
accuracy of perception. Watch out for over-interpretation of extremes though.

• The aspect ratio (height/width) does not have to be unity. Using an aspect ratio such that
the average absolute curve angle is 45◦ results in better perception of shapes and differences
(banking to 45◦).

• Optical illusions can be caused by:

– hues, e.g., red is emotional. A red area may be perceived as larger.
– shading; larger regions appear to be darker
– orientation of pie chart with respect to the horizon

• Humans are bad at perceiving relative angles (the principal perception task used in a pie chart)

• Here is a hierarchy of human graphical perception abilities:

1. Position along a common scale (most accurate task)
2. Position along identical nonaligned scales
3. Length
4. Angle and slope
5. Area
6. Volume
7. Color: hue (red, green, blue, etc.), saturation (pale/deep), and lightness

– Hue can give good discrimination but poor ordering

10.2 General Suggestions

• Exclude unneeded dimensions (e.g. width, depth of bars)

• “Make the data stand out. Avoid Superfluity”; Decrease ink to information ratio

• “There are some who argue that a graph is a success only if the important information in the
data can be seen in a few seconds. . . . Many useful graphs require careful, detailed study.”

• When actual data points need to be shown and they are too numerous, consider showing a
random sample of the data.

• Omit “chartjunk”

• Keep continuous variables continuous; avoid grouping them into intervals. Grouping may be
necessary for some tables but not for graphs.

• Beware of subsetting the data finer than the sample size can support; conditioning on many
variables simultaneously (instead of multivariable modeling) can result in very imprecise esti-
mates
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10.3 Tufte on “Chartjunk”

Chartjunk does not achieve the goals of its propagators. The overwhelming fact of data
graphics is that they stand or fall on their content, gracefully displayed. Graphics do not
become attractive and interesting through the addition of ornamental hatching and false
perspective to a few bars. Chartjunk can turn bores into disasters, but it can never rescue
a thin data set. The best designs . . . are intriguing and curiosity-provoking, drawing the
viewer into the wonder of the data, sometimes by narrative power, sometimes by immense
detail, and sometimes by elegant presentation of simple but interesting data. But no
information, no sense of discovery, no wonder, no substance is generated by chartjunk.

— Tufte p. 121, 1983

10.4 Tufte’s Views on Graphical Excellence

“Excellence in statistical graphics consists of complex ideas communicated with clarity, precision,
and efficiency. Graphical displays should

• show the data

• induce the viewer to think about the substance rather than about methodology, graphic design,
the technology of graphic production, or something else

• avoid distorting what the data have to say

• present many numbers in a small space

• make large data sets coherent

• encourage the eye to compare different pieces of data

• reveal the data at several levels of detail, from a broad overview to the fine structure

• serve a reasonably clear purpose: description, exploration, tabulation, or decoration

• be closely integrated with the statistical and verbal descriptions of a data set.”

10.5 Formatting

• Tick Marks should point outward

• x- and y-axes should intersect to the left of the lowest x value and below the lowest y value,
to keep values from being hidden by axes

• Minimize the use of remote legends. Curves can be labeled at points of maximum separation
(see the Hmisc labcurve function).
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10.6 Color, Symbols, and Line Styles

• Some symbols (especially letters and solids) can be hard to discern

• Use hues if needed to add another dimension of information, but try not to exceed 3 different
hues. Instead, use different saturations in each of the three different hues.

• Make notations and symbols in the plots as consistent as possible with other parts, like tables
and texts

• Different dashing patterns are hard to read especially when curves inter-twine or when step
functions are being displayed

• An effective coding scheme for two lines is to use a thin black line and a thick gray scale line

10.7 Scaling

• Consider the inclusion of 0 in your axis. Many times it is essential to include 0 to tell the full
story. Often the inclusion of zero is unnecessary.

• Use a log scale when it is important to understand percent change of multiplicative factors or
to cure skewness toward large values

• Humans have difficulty judging steep slopes; bank to 45◦, i.e., choose the aspect ratio so that
average absolute angle in curves is 45◦.

10.8 Displaying Estimates Stratified by Categories

• Perception of relative lengths is most accurate — areas of pie slices are difficult to discern

• Bar charts have many problems:

– High ink to information ratio

– Error bars cause perception errors

– Can only show one-sided confidence intervals well

– Thick bars reduce the number of categories that can be shown

– Labels on vertical bar charts are difficult to read

• Dot plots are almost always better

• Consider multi-panel side-by-side displays for comparing several contrasting or similar cases.
Make sure the scales in both x and y axes are the same across different panels.

• Consider ordering categories by values represented, for more accurate perception
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10.9 Displaying Distribution Characteristics

• When only summary or representative values are shown, try to show their confidence bounds
or distributional properties, e.g., error bars for confidence bounds or box plot

• It is better to show confidence limits than to show ±1 standard error

• Often it is better still to show variability of raw values (quartiles as in a box plot so as to not
assume normality, or S.D.)

• For a quick comparison of distributions of a continuous variable against many categories, try
box plots.

• When comparing two or three groups, overlaid empirical distribution function plots may be
best, as these show all aspects of the distribution of a continuous variable.

10.10 Showing Differences

• Often the only way to perceive differences accurately is to actually compute differences; then
plot them

• It is not a waste of space to show stratified estimates and differences between them on the
same page using multiple panels

• This also addresses the problem that confidence limits for differences cannot be easily derived
from intervals for individual estimates; differences can easily be significant even when individual
confidence intervals overlap.

• Humans can’t judge differences between steep curves; one needs to actually compute differences
and plot them.

The plot in figure 10.1 shows confidence limits for individual means, using the nonparametric boot-
strap percentile method, along with bootstrap confidence intervals for the difference in the two
means. The code used to produce this figure is below.

attach ( d i abe t e s )
bootmean ← function (x ,B=1000) {

w ← smean . c l . boot (x , B=B, reps=T)
reps ← attr (w, ’ r eps ’ )
attr (w, ’ r eps ’ ) ← NULL
l i s t ( s t a t s=w, reps=reps )

}

set . seed (1)
male ← bootmean ( glyhb [ gender==’ male ’ ] )
female ← bootmean ( glyhb [ gender==’ female ’ ] )
d i f ← c (mean=male$ s t a t s [ ’Mean ’ ]− female$ s t a t s [ ’Mean ’ ] ,

quantile ( male$ reps−female$ reps , c ( . 0 2 5 , . 9 7 5 ) ) )
male ← male$ s t a t s
female ← female$ s t a t s

par (mar=c ( 4 , 6 , 4 , 1 ) )
plot (0 , 0 , xlab=’ Glycated Hemoglobin ’ , y lab=’ ’ ,

xl im=c ( 5 , 6 . 5 ) , yl im=c ( 0 , 4 ) , axes=F)
axis (1 )
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Glycated Hemoglobin

5.0 5.5 6.0 6.5

Female

Male

Difference

-0.25  0.25  0.75

Figure 10.1: Means and nonparametric bootstrap 0.95 confidence limits for glycated hemoglobin for males
and females, and confidence limits for males - females. Lower and upper x-axis scales have same spacings
but different centers. Confidence intervals for differences are generally wider than those for the individual
constituent variables.

axis (2 , at=c ( 1 , 2 , 4 ) ,
labels=c ( ’ Female ’ , ’Male ’ , ’ D i f f e r e n c e ’ ) ,
l a s =1, adj=1, lwd=0)

points (c ( male [ 1 ] , female [ 1 ] ) , 2 : 1 )
segments ( female [ 2 ] , 1 , female [ 3 ] , 1)
segments ( male [ 2 ] , 2 , male [ 3 ] , 2)

of f set ← mean(c ( male [ 1 ] , female [ 1 ] ) ) − d i f [ 1 ]
points ( d i f [ 1 ] + offset , 4)
segments ( d i f [2 ]+ offset , 4 , d i f [3 ]+ offset , 4)

at ← c ( − . 5 , − . 25 , 0 , . 25 , . 5 , . 75 , 1 )
axis (3 , at=at+offset , l a b e l=format ( at ) )

10.11 Choosing the Best Graph Type

The recommendations that follow are good on the average, but be sure to think about alternatives
for your particular data set. For nonparametric trend lines, it is advisable to add a “rug” plot to
show the density of the data used to make the nonparametric regression estimate. Alternatively,
use the bootstrap to derive nonparametric confidence bands for the nonparametric smoother.

10.11.1 Single Categorical Variable

Use a dot plot or horizontal bar chart to show the proportion corresponding to each category. Second
choices for values are percentages and frequencies. The total sample size and number of missing
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values should be displayed somewhere on the page. If there are many categories and they are not
naturally ordered, you may want to order them by the relative frequency to help the reader estimate
values.

10.11.2 Single Continuous Numeric Variable

An empirical cumulative distribution function, optionally showing selected quantiles, conveys the
most information and requires no grouping of the variable. A box plot will show selected quantiles
effectively, and box plots are especially useful when stratifying by multiple categories of another
variable. Histograms are also possible.

10.11.3 Categorical Response Variable vs. Categorical Ind. Var.

This is essentially a frequency table. It can also be depicted graphically (Section 6.3).

10.11.4 Categorical Response vs. a Continuous Ind. Var.

Choose one or more categories and use a nonparametric smoother to relate the independent variable
to the proportion of subjects in the categories of interest. Show a rug plot on the x-axis.

10.11.5 Continuous Response Variable vs. Categorical Ind. Var.

If there are only two or three categories, superimposed empirical cumulative distribution plots with
selected quantiles can be quite effective. Also consider box plots, or a dot plot with error bars, to
depict the median and outer quartiles. Occasionally, a back-to-back histogram can be effective for
two groups (see the Hmisc histbackback function).

10.11.6 Continuous Response vs. Continuous Ind. Var.

A nonparametric smoother is often ideal. You can add rug plots for the x- and y-axes, and if the
sample size is not too large, plot the raw data. If you don’t trust nonparametric smoothers, group
the x-variable into intervals having a given number of observations, and for each x-interval plot
characteristics (3 quartiles or mean ± 2 SD, for example) vs. the mean x in the interval. This is
done automatically with the Hmisc xYplot function with the methods=’quantile’ option.

10.12 Conditioning Variables

You can condition (stratify) on one or more variables by making separate pages by strata, by making
separate panels within a page, and by superposing groups of points (using different symbols or colors)
or curves within a panel. The actual method of stratifying on the conditional variable(s) depends
on the type of variables.

Categorical variable(s) : The only choice to make in conditioning (stratifying) on categorical
variables is whether to combine any low-frequency categories. If you decide to combine them
on the basis of relative frequencies you can use the combine.levels function in Hmisc.
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Continuous numeric variable(s) : Unfortunately, to condition on a continuous variable without
the use of a parametric statistical model, one must split the variable into intervals. The
first choice is whether the intervals of the numeric variable should be overlapping or non-
overlapping. For the former the built-in equal.count function can be used for a paneling or
grouping variable in trellis graphics (these overlapping intervals are called “shingles” in trellis).
For non-overlapping intervals the Hmisc cut2 function is a good choice because of its many
options and compact labeling.

biostat.mc.vanderbilt.edu/StatGraphCourse has more information on statistical graphics
and links to pertinent sites.

http://biostat.mc.vanderbilt.edu/StatGraphCourse
biostat.mc.vanderbilt.edu/StatGraphCourse
http://biostat.mc.vanderbilt.edu/StatGraphCourse
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Chapter 11

Graphics in S

11.1 Overview

S has a large variety of plotting routines. In order to be able to display a plot one needs to open a
special window for this purpose as described in Section 12.2. For example, UNIX users might open
a graphics window using X11() or motif(), and Windows 3.3 users usually use win.graph(), while
4.x or later Windows users let the system open a graph sheet.

We will begin this chapter by covering some of the lower–level plotting functions, then we will
move up to the higher–level multi–way trellis graphics (which generalize the coplot function).
All of the basic graphs and many trellis–type graphs can be produced in S-Plus 4.x or later using
dialog boxes, and graphs can be edited and annotated interactively using point–and–click. All this
is usually done by clicking on a data frame in the left pane of the Object Browser to get a list of
the frame’s variables in the right pane. Then one or more variable names are highlighted (using left
click or control–left–click) and a graph type is clicked on a 2D or 3D graphics palette. However,
with our slant of being able to reproduce analyses when data are updated, we will present only the
command interface in this chapter.

In 4.x or later you can edit an S-Plus graph, whether it was produced by a dialog or by com-
mands, using the S-Plus graphics editor, or you can even edit the graph in Microsoft Word or
Powerpoint when the editing process requires S-Plus to manipulate graphics objects. This is done
through dynamic object linking in Windows 95. Also take a look at Metafile Companion for editing
Windows metafiles, as described briefly in Section 1.9.

The typical plotting command is of the form plot(fun1(var1),fun2(var2),...). This will
plot a transformation (fun2) of var2 on the y–axis vs. the transformation fun1 of var1 on the
x–axis. The ... represent graphical parameters to pass to plot to control different aspects of the
plot such as plot size, labeling of axes, position of the plot on the paper, orientation, limits for the
axes, line type, number of plots to a page, etc.

Graphical parameters can be passed to plot as part of its arguments, or be defined beforehand
through the par(...) function. In this latter case, they remain in effect for the duration of the
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Figure 11.1: Basic Plot

S session, while in the former they are only active for that particular plot command. There are
many graphical parameters and we can classify them in basically four groups: parameters affecting
graphical elements (lines, points, polygons and so on), parameters affecting axes and tick marks,
parameters affecting margins and parameters affecting a multiple figure layout. Let’s do some
examples using the car.test.frame dataframe that is supplied with S-Plus.

> attach(car.test.frame)

> names(car.test.frame)

[1] "Price" "Country" "Reliability" "Mileage" "Type"

[6] "Weight" "Disp." "HP"

> plot(log(Weight),Disp.)

The results are shown in Figure 11.1.
Axes are labeled with variable names and they are scaled to include all observations in the data

frame. We will improve it a little bit by adding titles, a smooth fitting line and axis labels

> plot(log(Weight),Disp.,xlab="Log of Weight",

+ ylab="Displacement",

+ main="Displacement vs log of Weight")

> lines(supsmu(log(Weight),Disp.))

If at this point we wanted to print the plot, there is an option in the graphics window to do so (in
UNIX, click the right mouse button on Graph and choose Print from the menu). You can also make a
copy of the plot in a smaller window or resize it to your preferences). For Windows 4.x and later you
use the Print Graph Sheet Page command in the File menu. In the example above, the arguments
for labels and titles could have been given in a different command title(main,sub,xlab,ylab).
The command lines(x,y) adds lines with coordinates determined by the vectors x and y (it could
also be a matrix with two columns). Here, the role of x and y is played by the pair of vectors returned
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Figure 11.2: Basic Plot with Labels and Title

by supsmu which determine a non-parametric smooth fit. lowess is another function which does
smooth fitting note that you must remove NAs yourself to use it. A function similar in purpose to
lines is points. The results are shown in Figure 11.2.

Let us look at the distribution of mileage by type of car. Let us try

> plot(Type,Mileage,boxmeans=T,rotate=T)

Here, again we see how S is smart enough to recognize that Type is a factor variable and does
a boxplot. The arguments boxmeans and rotate display the mean Mileage by Type and rotate
labels on the x-axis. However, to do boxplots, the boxplot function is preferred due to its greater
flexibility.

> boxplot(split(Mileage,Type),varwidth=T,notch=T)

The split function here is needed to classify Mileage by Type. The argument varwidth specifies
that the box widths is proportional to the square root of the number of observation in each box.
The notch arguments provide notches that can be used for a rough significance test at the 5% level.

Let us examine how plot behaves on fitted models. (plot acts differently on models not fitted
with a Design function).
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> f ← ols(Mileage ∼ Weight+Type+Disp.,x=T)

> f

Least Squares Regression Model

ols(formula = Mileage ∼ Weight + Type + Disp.)

n=60 p=7

Residuals:

Min 1Q Median 3Q Max

-5.515 -1.141 -0.05707 1.54 4.715

Coefficients:

Value Std. Error t value Pr(>|t|)

Intercept 33.9640 4.1053 8.2733 0.0000

Weight -0.0017 0.0018 -0.9152 0.3643

Type=Large 2.6627 1.8435 1.4444 0.1546

Type=Medium -0.4514 0.9673 -0.4666 0.6427

Type=Small 4.3597 1.1194 3.8948 0.0003

Type=Sporty 2.6860 0.9985 2.6900 0.0096

Type=Van -3.2339 1.4875 -2.1740 0.0343

Disp. -0.0361 0.0124 -2.9100 0.0053

Residual standard error: 2.238 on 52 degrees of freedom

Multiple R-Squared: 0.8077 Adjusted R-Squared: 0.7818

plot can be applied to fitted models to display how the response function behaves as the predic-
tors in the model vary. When using plot with Design for this purpose we need to tell the function
how to adjust the predictors that are not being plotted. This can be done in two ways: by passing
them explicitly to plot as arguments, or by means of the datadist function. datadist takes a
dataframe or a list of variable names and returns an object of class “datadist” with information that
helps plot determine the limits of the variables being plotted, and adjustments for other variables
in the model. We then set the options(datadist=...) parameter which instructs S where to point
to find the limits for the variables. For example

> dd ← datadist(Type,Weight,Disp.)

> options(datadist="dd")

> dd

Type Weight Disp.

Low:effect 2571.25 113.75

Adjust to Compact 2885.00 144.50

High:effect 3231.25 180.00

Low:prediction Compact 2165.25 90.90

High:prediction Van 3735.00 302.00

Low Compact 1845.00 73.00

High Van 3855.00 305.00

Values:
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Type : Compact Large Medium Small Sporty Van

This is saying that if we want to plot the predicted values from f as a function of Weight and
Disp., they will range from 2165.25 to 3735.00 and 90.90 to 302.00 respectively, while the Type
factor will be adjusted to the value Compact. To specify that we want plot to cover the full range
determined by datadist we use NA by convention

> plot(f,Weight=NA,Disp.=NA,fun=function(x) 100/x)

In this example we chose to represent a transformation of the response (100/x) by defining it in
line through the fun= argument. This is a feature common to many S functions. If we wanted to
use a factor rather than a continuous variable as a predictor we would have obtained one curve for
each level of the factor plus confidence intervals.

We can override the values chosen by datadist as limits and adjustment

> plot(f,Disp.=seq(150,250,by=5),Type=NA,Weight=2800,conf.int=F)

How does plot manage to behave so differently depending on the kind of arguments we give it?
The answer is in the class attribute of its main argument. If we try to look at the plot function
itself we get

> plot

function(x, ...)

UseMethod("plot")

What this means is that when we type plot(x), plot looks at the class attribute of x, say z, and
then calls the function plot.z which will produce the appropriate plot.

> class(f)
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[1] "ols" "Design" "lm"

> args(plot.ols)

Error: Object "plot.ols" not found

Dumped

> args(plot.Design)

function(fit, ..., xlim, ylim, fun, xlab, ylab, conf.int = 0.95, add = F,

label.curves = T, eye, lty, col = 1, adj.zero = F, ref.zero = F,

adj.subtitle, cex.adj = 1, non.slopes, time, loglog = F, val.lev = F,

digits = 4, cex.label = 0.75)

> class(site)

[1] "factor"

> args(plot.factor)

function(x, y = NULL, ..., style = "box", rotate = sum(nchar(xalabs)) > 80,

boxmeans = F, character, xlab = fn, ylab = yname, ylim = ymm, ask = T,

data = NULL)

This is showing that an object can have more than one class attribute and plot will look at all
of them starting from the left until it finds a function of the form plot.z. This behavior is not
restricted to plot. Many other functions such as print, summary and anova also act this way.
They are called generic functions and methods can be written for them, meaning special functions
to handle special objects. One consequence of this software design is that when we look up help, we
want to make sure that we are looking for help for the correct function. For example help(anova)
will give us help for the S anova function, while help(anova.Design) will give us help on Design’s
anova function.

Two other plotting functions that we want to look at are qqnorm and coplot. qqnorm (comple-
mented by qqline) does a normal probability plot. In our example we may want to check if the
residuals from the fitted model are normally distributed. We could extract the residuals by using
resid and then type
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> qqnorm(resid(f))

> qqline(resid(f))

There are functions to do quantile-quantile plots for other distributions (See [7, section 5.5.4.1]).
If we want to see how Mileage depends on Weight across the different types we can do a

conditioning plot or coplot.

coplot(y ∼ x|z, given.values=z, panel=panel.smooth)

gives a scatterplot of y vs x conditioning on the values of z. z could be a factor or a series of
overlapping (or not) intervals. In this latter case, if z is divided into, say, m intervals, then m plots of
y vs x are done with the variables restricted to those intervals. When z is a factor we get one plot
for each level of the the factor.

> coplot(Mileage ∼ Weight|Type)

The labeling here is a little unusual since it starts from left to right and from bottom to top. The
idea is that it should be read like any other graph, with the origin in the bottom left of the page and
values on the x-axis increasing to the right, and values on the y-axis increasing upwards. The key
on how to read it is given by the top panel. If z is a continuous variable the function co.intervals
could be used to construct the intervals. It doesn’t matter what function we use to construct them
as long as the end result is a matrix with two columns and the interval extremes as rows.

There are many other plotting functions. Two that are worth exploring are pairs and interaction.plot.

11.2 Adding Text or Legends and Identifying Observations

In the example above, we fitted a least squares model to Mileage. We specified x=T to store the design
matrix along with the fit. Using this information we can now use the function which.influence to
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extract influential observations

> w ← which.influence(f,cutoff=.5)

> w

$Intercept:

[1] "Ford Festiva 4" "Honda Civic CRX Si 4"

$Weight:

[1] "Ford Festiva 4"

$Type:

[1] "Ford Festiva 4"

w is a list with one component for each factor with influential observations according to a criteria
defined by the cutoff= argument. Each component lists the observations that unduly affect that
particular coefficient. We would like to refit the model dropping this observations. This is a good
time to use unlist.

> wu ← unlist(w,use.names=F)

> wu

[1] "Ford Festiva 4" "Honda Civic CRX Si 4" "Ford Festiva 4"

[4] "Ford Festiva 4"

> wu ← sort(unique(wu))

> wu

[1] "Ford Festiva 4"

> wuc ← match(wu,row.names(car.test.frame))

unlist makes the list w into a vector but one with repeated components and not sorted. This is solved
by using unique and sort. Then we use match to get a vector with the indexes of car.test.frame
corresponding to the influential observations. We can use them to extract those elements not in wu.

> fu ← update(f,. ∼ .,subset=row.names(car.test.frame)[-wuc],x=F)

> fu

Least Squares Regression Model

ols(formula = Mileage ∼ Weight + Disp. + Type, subset = row.names(

car.test.frame)[ - wuc], x = F)

n=58 p=7

Residuals:

Min 1Q Median 3Q Max

-5.067 -1.216 0.103 1.188 4.245

Coefficients:

Value Std. Error t value Pr(>|t|)

Intercept 28.0726 4.1988 6.6859 0.0000

Weight 0.0007 0.0018 0.3771 0.7077

Disp. -0.0421 0.0117 -3.6100 0.0007

Type=Large 1.4479 1.7522 0.8263 0.4125
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Figure 11.8: Identifying Observations

Type=Medium -1.1343 0.9186 -1.2347 0.2227

Type=Small 4.9799 1.0654 4.6739 0.0000

Type=Sporty 2.3026 0.9553 2.4104 0.0197

Type=Van -4.7508 1.4495 -3.2775 0.0019

Residual standard error: 2.067 on 50 degrees of freedom

Multiple R-Squared: 0.8096 Adjusted R-Squared: 0.7829

> p ← predict(fu,newdata=car.test.frame)

> plot(Mileage,p)

> identify(Mileage,p,label=abbreviate(row.names(car.test.frame)))

We can try to look for the influential observations in the plot of observed vs predicted. When we
type identify(...) we are calling an interactive procedure; now S expects us to point at the points
in the graph and click on the left mouse button. It will then label the point with the vector given
to the label= argument. (See fig 9). Here we used abbreviate to produce a shortened version of
the label. When we don’t want to label any more points, we just position the cursor anywhere on
the graphics window and click on the middle mouse button. S will then return a vector with the
indexes of those observations labeled, which we can use to check the data.

The legend in the plot was obtained using a combination of legend and locator.

> ss ← lowess(Mileage,p,iter=0)

> plot(Mileage,p)

> lines(ss,lty=1)

> abline(0,1,lty=2)

> legend(locator(1),c("smooth line","45 degree line"),lty=1:2)

The arguments to legend are pretty easy to interpret here, except perhaps for locator(1). locator(n)
is just a drawing function which will connect n points with lines as you draw them on the screen by
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clicking the mouse. legend interprets locator(1) to mean to position 1 point (the top left of the
box) in the place where you click the mouse. Alternatively, a vector of coordinates could have been
used.

The legend function has largely be obsoleted by the key function which is more versatile. When
identifying separate curves you may also want to let Hmisc’s labcurve function call key for you.

11.3 Hmisc and Design High–Level Plotting Functions

Table 11.1 summarizes high–level plotting commands from Hmisc, Design, and standard S.
The Hmisc function scat1d has several options for showing the density of the raw data through a

rug plot on one of the four axes or along a user–specified curve. scat1d is especially good at showing
the data density for very large datasets, as it will draw a random sub–segment of each whisker or
“strand” of the rug. It has an argument which allows you to place the rug plot along a curve rather
than on an axis. For extremely large datasets, you may want to use the histSpike function instead
(see below). By default, if n ≥ 2000, scat1d calls histSpike automatically.

The datadensity function is a generalization of scat1d which calls scat1d for each continuous
variable in a data frame and draws frequency bar plots for categorical variables. datadensity places
each variable on a separate axis and writes the number of missing values to the right of each axis if
there are any NAs. datadensity is a good tool for initial data inspections (see Section 3.6). Figure
11.9 shows the result of the commands

> datadensity(prostate) # prostate is on Web page

datadensity accepts a group argument which will cause tick marks for individual raw data
points to be distinguished by color. This can be used to identify associations between the group
variable and the other variables.

histSpike draws a “spike” histogram using by default 100 bins. This is especially useful for large
datasets as such histograms can have high resolution. histSpike can also draw a kernel density
plot. A useful feature of histSpike is that like scat1d it can be used to enhance an existing plot
(e.g., scatter diagram) with histograms or density plots showing the marginal distribution of one of
the variables plotted. These plots point inward from any of the 4 axis lines. Unlike scat1d you have
to add the argument add=T to do this.

The ecdf function in the Hmisc library draws empirical cumulative distributions for either indi-
vidual variables or for all variables in a data frame. For the latter case, a suitable matrix of plots is
set up automatically. ecdf also accepts a group variable, so it can automatically draw multiple cdfs
based on stratifying the data on categorical variables. Curves are labeled using labcurve. Here are
some examples.

ecdf(age, group=sex)

ecdf(age, group=interaction(sex,race))

Empirical distribution functions have two advantages over histograms: they do not require the choice
of bins, and you can overlay several distributions on the same plot. There is a trellis version of
ecdf (see Section 11.4). It is easy to have ecdf call scat1d to add a rug plot to the cumulative
distribution plot, or to call histSpike to add a histogram or density plot to the plot. For example,
you can type ecdf(age, datadensity=’rug’).
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Table 11.1: Non–trellis High Level Plotting Functions

Function Description
barplot vertical or horizontal bar graph
bpplot box–percentile plots (Hmisc)
boxplot side-by-side boxplots
contour contour plot
coplot separate plots of different ranges
datadensity multivariable version of Hmisc’s scat1d

displays data density for all variables in a data frame
dotchart displays values based on position of dots
ecdf empirical distribution function plot (Hmisc)
faces Chernoff faces for multivariate data
hist histogram
hist.data.frame histrogram of all variables in a data frame (Hmisc)
histSpike high–resolution “spike” histograms and density plots
labcurve draw and label curves or label existing curves (Hmisc)
nomogram nomograms (Design)
pairs all possible pairs of scatterplots
persp 3-D perspective plots of grids
pie pie charts
plclust plots of cluster trees from hclust
plot scatterplot or line plot
plot.anova.Design Dot chart of anova table (Design)
plot.Design family of functions for fitted objects
plot.summary.Design plots effect ratios and CIs (Design)
plot.summary.formula plotting functions for summary.formula function (Hmisc)
plsmo plot smoothed nonparametric estimates (Hmisc)
qqnorm normal probability plot
qqplot quantile-quantile plot
scat1d add data density (rug plot) to plot (Hmisc enhancement of rug)
survplot survival plots (Design)
symbol.freq diagram of frequency table (Hmisc)
tsplot time series plots
usa map of the US
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Figure 11.9: datadensity plot for the prostate data frame
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The builtin function cdf.compare draws an empirical CDF alongside a theoretical one. See also
the trellis stripplot function discussed in Section 11.4.

There are several builtin ways to draw box and whisker plots in S. These plots provide useful
overall summaries but they are not especially sensitive to the behavior of the tails of the distributions.
A continuous version of the box plot called the box–percentile plot, was developed by Esty and
Banfield. Banfield’s bpplot function, with slight modifications, is included in Hmisc. To quote from
Banfield’s help file for bpplot: “Box-percentile plots are similiar to boxplots, except box–percentile
plots supply more information about the univariate distributions. At any height the width of the
irregular ‘box’ is proportional to the percentile of that height, up the the 50th percentile, and above
the 50th percentile the width is proportional to 100 minus the percentile. Thus, the width at any
given height is proportional to the percent of observations that are more extreme in that direction.
As in boxplots, the median, 25th and 75th percentiles are marked with line segments across the
box”.

The leftmost arguments to bpplot may be a sequence of not necessarily equal–length vectors or
a list containing the same. The latter is often produced by the split function in order to stratify
on a grouping variable.

Here is an example of a box–percentile plot showing the distribution of ages in the titanic data
frame, stratified by passenger class. We add a group representing the overall age distribution and a
hypothetical group having a normal distribution with the same mean and variance of the overall age
distribution. To omit these extra groups use the simple command bpplot(split(age,pclass),
xlab=’Passenger Class’, ylab=’Years’).

w ← split(age, pclass)

w$Overall ← age

a ← age[!is.na(age)]

w$Normal ← rnorm(2000, mean(a), sqrt(var(a)))

bpplot(w, xlab=’Passenger Class’, ylab=’Years’, srtx=30)

# labels are rotated 30 degrees

The result is shown in Figure 11.10.
Hmisc’s labcurve function will automatically label a set of existing curves on the current plot, or

draw and label curves, if you tell it the coordinates of all of the curves. labcurve has many options.
By default it will label curves at the points for which they are maximally separated. You can usually
get away without a legend if you do this. If you want a legend, labcurve will position the legend at
the most empty area of the plot, and it is easier to use than the key or legend commands in many
cases. Here is an example where labcurve draws and labels the curves. The lines are distinguished
by different colors and styles.

labcurve(list(Female=list(ages.f,height.f,col=2),

Male =list(ages.m,height.m,col=3,lty=2)),

xlab=’Age’, ylab=’Height’, pl=T)

# add ,keys=c(’f’,’m’) to label curves with single letters

The plsmo function plots smoothed estimates of x vs. y, handling missing data for lowess
or supsmu, and adding axis labels. It optionally suppresses plotting extrapolated estimates. An
optional group variable can be specified to compute and plot the smooth curves by levels of group.
When group is present, the datadensity option will draw tick marks showing the location of the
raw x–values, separately for each curve. plsmo also has an option to plot connected points for raw
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Figure 11.10: Box–percentile plot showing the distribution of ages of passengers on the Titanic stratified
by passenger class. More than half of the passengers are omitted from this plot due to missing ages. The
rightmost part of the plot shows the box–percentile plot for a normal distribution having mean and standard
deviation equal to that of the ages in the data.

data, with no smoothing. Here is an example in which the log odds of smoothed estimates of the
probability of death vs. age is plotted, stratified by sex.

plsmo(age, death, group=sex, datadensity=T, fun=plogis)

See also the Hmisc trellis panel function panel.plsmo described in Section 11.4.

11.4 trellis Graphics

S-Plus also comes with a library of advanced graphics functions called trellis. In R, this library is
called lattice. The library name comes from the fact that when you are displaying multiple graphics
panels after conditioning on other variables, the resulting display looks like a garden trellisor lattice.
trellis has these advantages over S’s older graphical functions:

1. trellis uses better defaults for fonts, colors, and point symbols.

2. It uses S symbolic formulas for specification of the main and conditioning variables.

3. Related to the last point, you can condition on one variable or on the cross–classifications of
any number of “given” variables.

4. Some new graphics types are implemented, including some for 3–D plots.

5. Graphical parameters such as the aspect ratio are chosen for improved graphical perception.
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Function Purpose Formula Argument
barchart Bar chart y ~ x | g1*g2
bwplot Box and whisker plot y ~ x | g1*g2
densityplot Probability density plot ~ x | g1*g2
dotplot Dot plot y ~ x | g1*g2
Dotplot Hmisc generalization of dotplot y ~ x | g1*g2
ecdf Hmisc ECDF plot ~ x | g1*g2,

groups=g3
histogram Histogram ~ x | g1*g2
parallel Parallel coordinate plot ~ x | g1*g2
panel.bpplot enhanced box plots and

box–%-tile plots with bwplot
panel.plsmo Hmisc panel function for y ~ x | g1*g2,

xyplot groups=g3
splom Multi–panel scatterplot matrices ~ x | g1*g2
stripplot One–dimensional scatter plot y ~ x | g1*g2
xyplot Conditioning plots/scatter plots y ~ x | g1*g2
xYplot Hmisc generalization of xyplot Cbind(y,y2,y3) ~ x | g1*g2,

for multi–column y groups=g3
setTrellis Hmisc trellis setup
trellis.strip.blank Hmisc function to set trellis

to use blank background for panel titles
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Here is a list of some of the most commonly used trellis functions.
Type ?trellis to see several other trellis functions. In the formulas, g1,g2,g3 are categorical

“given” (conditioning) variables. There may be more than two of them. If only one is given, the *s
are omitted. y is a factor variable (except for xyplot for which it is numeric), and x is a numeric
variable. For splom, x is a matrix or a data frame. parallel is useful for representing multivariate
data. For it, x is a numeric matrix whose columns represent the multivariate response. See Section
11.4.1 for a generalization of xyplot in Hmisc.

You can use trellis’s shingle function to make overlapping intervals of a continuous variable,
to use it as a conditioning or y variable. The equal.count function is convenient for this. For
example, the g1, g2 variables above could be of the form equal.count(z) where z is a numeric
continuous variable. Optional arguments to equal.count are number (number of intervals) and
overlap (degree of overlap between intervals). Defaults are 6 and .5, respectively.

When plotting a factor variable, particularly when making dot plots, one frequently wants to con-
trol the ordering of factor levels in constructing an axis or in arranging panels. The reorder.factor
function is useful for this. As an example consider two simple vectors. For generality, we create a
factor variable whose levels are not in alphabetic order.

> a ← c(1, 3, 2.5, 2.2)

> b ← factor(c(’a’,’c’,’b’,’d’), c(’d’,’c’,’b’,’a’))

levels(b)

[1] "d" "c" "b" "a"

> dotplot(b ∼ a) # y-axis is a b c d (from bottom to top)

> # Now re-order levels of b to be in order of a

> b ← reorder.factor(b, a)

> b

[1] a c b d

> levels(b)

[1] "a" "d" "b" "c"

> dotplot(b ∼ a) # y-axis is a d b c (bottom to top)

This places the dots in ascending order from bottom to top. To put them into descending order, use
instead

> b ← reorder.factor(b, -a)

You can also order factor levels by another variable, and if the data are not already grouped, by the
value of a summary statistic computed after grouping. reorder.factor creates an ordered variable
and trellis functions respect the order of the levels of such variables (see the ordered function).

Most of the trellis functions accept a groups argument that is used in conjunction with
the panel.superpose function to plot different classes of points in the same plot (superposition),
distinguishing them by different symbols or colors. For example, to plot age vs. height on one plot
using different color symbols for females and males we might use the command

xyplot(height ∼ age, groups=sex, panel=panel.superpose)
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This can be enhanced by allowing the user to control the plotting symbols and other characteristics.
In what follows we plot males using an x (pch=2) and females using a triangle (pch=4). We use the
key option to place a legend on top of the plot.

s ← trellis.par.get(’superpose.symbol’)

s$pch[1:2] ← c(2,4) # replace first 2 elements with 2,4; ignore others

trellis.par.set(’superpose.symbol’,s) # replace trellis default pch

xyplot(height ∼ age, groups=sex, panel=panel.superpose,

key=list(text=list(c(’female’,’male’)), points=Rows(s,1:2)))

If you want the key to have one row, specify columns=2 inside the key list.
By combining trellis’ xyplot function with Hmisc’s panel.plsmo function, more flexibility is

obtained and keys can be created to define multiple groups of data points on one trellis panel.
By default, both raw data and nonparametric trend estimates are graphed. The previous example
could be done using

xyplot(height ∼ age, groups=sex, panel=panel.plsmo, type=’p’)

Key()

Here type=’p’ caused only points to be drawn. The default, type=’b’ causes both raw data points
and lowess–smoothed trend lines to be drawn, and the different curves are labeled by the group
names where the curves are furthest apart. Specify type=’l’ to omit the raw data points.

Here are some other examples:

# Plot points and smooth trend line (add type=’l’ to suppress points)

xyplot(blood.pressure ∼ age, panel=panel.plsmo)

# Do this for multiple panels

xyplot(blood.pressure ∼ age | sex, panel=panel.plsmo)

# Do this for subgroups of points on each panel, show the data

# density on each curve, and draw a key at the default location

xyplot(blood.pressure ∼ age | sex, groups=race, panel=panel.plsmo,

datadensity=T)

Key() # Use Key(locator(1)) to position key with mouse

The Key function is created by panel.plsmo when a groups variable is present. Key calls the builtin
key function with suitable arguments for drawing the key, remembering what was specified to xyplot
in the form of symbols and colors.

Here are some other trellis examples.

trellis.device() # not needed for 4.x or later

bwplot(sex ∼ age | pclass, data=titanic)

bwplot(sex ∼ age | pclass*survived, data=titanic)

bwplot(sex ∼ age | pclass, panel=panel.bpplot, data=titanic)

# Uses Hmisc’s panel.bpplot function for drawing more versatile box plots

# Result is in Figure 11.11

ecdf(∼ age | pclass, groups=sex, q=.5, label.curve=F,

col=c(1,.4)) # use gray scale for one of the sexes, show medians

# Hmisc ecdf.formula function - Figure 11.12
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Figure 11.11: Extended box plot for titanic data. Shown are the median, mean (solid dot), and quantile
intervals containing 0.25, 0.5, 0.75, and 0.9 of the age distribution.

# Add datadensity=’rug’, ’hist’, or ’density’ to augment CDF with

# density information

library(Design,T); attach(prostate) # prostate is on web page

x ← nomiss(cbind(age,wt,sbp,dbp,hg,sz))

# Using nomiss in Hmisc - splom has a bug in handling missing values

splom(∼ x)

trellis shades panels which label the current level of conditioning variables. To instead use
white backgrounds on these title panels, use the following commands:

s.b ← trellis.par.get("strip.background")

s.b$col ← 0

trellis.par.set("strip.background", s.b)

s.s ← trellis.par.get("strip.shingle")

s.s$col ← 0

trellis.par.set("strip.shingle", s.s)

This can be also be done by using the command trellis.strip.blank(), which calls a little
function in Hmisc. trellis.strip.blank must be called before the graphics device is opened.
Another way to remove shading from the strip is to add the following argument to a top–level
trellis function:

strip=function(...) strip.default(..., style=1)

The help file for strip.default documents the various values of style:

1. the full strip label is colored in background color and the text string for the current factor
level is centered in it



232 CHAPTER 11. GRAPHICS IN S

0.0
�

0.2
�

0.4
�

0.6
�

0.8
�

1.0
1st

0
�

20
�

40
�

60
�

2nd
�

0
�

20
�

40
�

60
�

3rd
�

0
�

20
�

40
�

60
�

age�

Pr
op

or
tio

n 
<

=
 a

ge

Figure 11.12: Multi–panel trellis graph produced by the Hmisc ecdf function.

2. all the factor levels are spread across the strip with the current level is drawn atop a colored
rectangle

3. identical to style 1 but a portion of the strip is highlighted (as in a shingle) to indicate the
position of the current level

4. like 2 except the entire strip label is colored in background color

5. like 1 but the current factor level is positioned left-to-right across the strip

6. like 5 but the string adjustment varies from left-justified to right-justified as the string moves
left-to-right

The Hmisc setTrellis function by default calls trellis.strip.blank and sets the line thick-
ness for dot plot reference lines to 1 instead of the usual default of 2. See also the setps Hmisc
function.

For Lattice graphics under R, the best way to set up for black and white graphics with transparent
strip backgrounds is to use the following commands at the top of the program.

library(lattice)

ltheme <- canonical.theme(color = FALSE)

ltheme$strip.background$col <- "transparent"

lattice.options(default.theme = ltheme)

There are many standard options to high-level trellis functions (a good reference is Kraus &
Olson Section 6.4). If you are making a multi-panel graph that is 2 rows × 2 columns with one of
the four panels unused, you can specify that all 3 panels are to be put in a row. Add layout=c(1,3)
to put then in one row or layout=c(3,1) to put the three panels in one column. You can specify a
logical vector skip to control where unused panels appear. To make a 2× 2 layout with the upper
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left panel being blank, specify layout=c(2,2), skip=c(F,F,T,F); note the numbering from the
origin of the lower left panel. You can arrange and number panels from the upper left by using the
as.table=T argument.

Trellis graphs are not actually drawn until a print function is executed, either explicitly or
implicitly. This can be used to great advantage in composing a multi-graph display of different
types of Trellis graphs. In the following example we make four graphs and do not draw them
immediately. The print.trellis is invoked to put the four graphs in the desired locations on the
page.

plot1 ← xYplot(...)

plot2 ← Dotplot(...)

plot3 ← histogram(...)

plot4 ← xyplot(...)

print(plot1, split=c(1,1,2,2), more=T)

print(plot2, split=c(1,2,2,2), more=T)

print(plot3, split=c(2,1,2,2), more=T)

print(plot4, split=c(2,2,2,2), more=F)

The first two arguments to split specify the column and row number (from the lower left) the
current graph should occupy. The last two arguments specify the overall number of columns and
rows that are to be set aside.

To have finer control of positioning of sub-graphs you can use the position argument which
contains fractional values. For details see the help file for print.trellis.

To specify axis details, use scales=. For example, to specify that 10 tick marks are to appear on
the x-axis and 5 on the y-axis, use scales=list(x=list(tick.number=10),y=list(tick.number=5)).

Specify aspect=’xy’ to bank panels to 45◦.
See the trellis.args help file for more information about general trellis arguments includ-

ing main, sub, page, xlim, ylim, xlab, ylab. To graphically display all the current trellis
settings, issue the show.settings() command.

When you want to display the data density of one variable stratified by one or more other
variables and you don’t like cumulative distribution functions or multiple histograms, the trellis
stripplot function may be of interest, as a generalization of Hmisc’s datadensity function (Section
11.3). By default, stripplot makes a separate horizontal band for each level of the stratification
variable and plots small circles at each actual data point (with optional jittering). You can give
stripplot a panel argument to specify other representations. Here are some examples:

trellis.device()

# Separate strips of circles by treatment

stripplot(treatment ∼ y, subset=!is.na(y))

# Instead, use a rug plot via scat1d

stripplot(treatment ∼ y,

panel=function(x,y,...) scat1d(x,y=y),

subset=!is.na(y))

# Substitute an estimated density plot for individual points

g ← function(x, y, ...) {
for(yy in unique(y)) {
d ← density(x[y==yy], na.rm=T)
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lines(d$x, d$y + yy)

}
}
stripplot(treatment ∼ y, panel=g)

A much easier approach to producing the previous graph is to use the trellis densityplot function
as shown below. A second example uses the prostate data frame that is in the Design library.

densityplot(∼ y | treatment)

densityplot(∼hg | rx*factor(stage), width=3, data=prostate)

See Section 6.1 for an example where a frequency table is constructed for two categorical variables,
row percents are computed, and these are plotted using dotplot.

You can find out more about trellis by visiting MathSoft’s Web page
http://www.mathsoft.com/splus.html.

11.4.1 Multiple Response Variables and Error Bars

The trellis xyplot function is quite flexible as long as you are plotting a single response variable.
Trellis in general requires the response variable to be univariate so there is no opportunity to add,
for example, a systolic blood pressure time trend to a diastolic pressure trend on the same panels.
There is also no way with xyplot of plotting “error bars” such as mean ± 2 standard errors, or the
median and outer quartiles. Hmisc’s xYplot function uses a trick to get around this problem. The
trick is that the analyst specifies multiple response variables, but all but the first are converted to
become attributes of the first variable, using an auxiliary function Cbind. Then a new panel function
panel.xYplot fetches these attributes as needed.

xYplot other advantages over xyplot.

1. It automatically goes into “superpose” mode when a groups variable is present. No panel =
panel.superpose needs to be specified.

2. xYplot produces a function Key that makes it easy to plot a key for how the groups variable
is denoted in the plot.

3. xYplot can use the Hmisc labcurve function to automatically label multiple curves generated
by the groups variable.

4. xYplot uses variable labels, when they are present, to label axes.

5. xYplot can aggregate raw data automatically, given a function that produces a 3-number sum-
mary. Numeric x-variables can be collapsed into intervals containing a pre-specified number
of observations, and represented by the mean x within the intervals.

Here are some examples taken from the help file. The first several examples draw error bars,
then other examples show how to plot multiple curves generated by the multiple response variables,
using e.g. method=’band’. For any plot, you can control whether lines or points are plotted through
the use of type=’l’, ’p’, or ’b’ (both).
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# First generate combinations of some variable values

dfr ← expand.grid(month=1:12, continent=c(’Europe’,’USA’),

sex=c(’female’,’male’))

attach(dfr) # to get access to 3 new variables

set.seed(13) # so values can be replicated

# Add a response variable (monthly mean) to the predictor settings

# using an assumed linear regression model

y ← month/10 + 1*(sex==’female’) + 2*(continent==’Europe’) +

runif(48,-.15,.15)

lower ← y - runif(48,.05,.15) # Generate hypothetical monthly ranges

upper ← y + runif(48,.05,.15)

# Show mean and range at each month, for one panel

xYplot(Cbind(y,lower,upper) ∼ month,subset=sex==’male’ & continent==’USA’)

# add ,label.curves=F to suppress use of labcurve to label curves where farthest apart

# Now make a panel for each continent, for males

xYplot(Cbind(y,lower,upper) ∼ month|continent,subset=sex==’male’)

# Make a panel for each continent; within each panel, separate sex

# groups; use Key to automatically place a key

xYplot(Cbind(y,lower,upper) ∼ month|continent,groups=sex); Key()

# Separate sex groups within a single panel

xYplot(Cbind(y,lower,upper) ∼ month,groups=sex,subset=continent==’Europe’)

# Same as above but automatically position labels for sex groups

xYplot(Cbind(y,lower,upper) ∼ month,groups=sex,subset=continent==’Europe’,keys=’lines’)

# keys=’lines’ causes labcurve to draw a legend where the panel is most empty

# Draw 3 lines for the three variables

xYplot(Cbind(y,lower,upper) ∼ month,groups=sex,subset=continent==’Europe’,method=’bands’)

# Show error bars once again, but only the upper part

xYplot(Cbind(y,lower,upper) ∼ month,groups=sex,subset=continent==’Europe’,method=’upper’)

# Now use a label for y, and alternate using only upper or lower bars

# so bars for different groups don’t run into each other

label(y) ← ’Quality of Life Score’

# can also specify Cbind(’Quality of Life Score’=y,lower,upper)

xYplot(Cbind(y,lower,upper) ∼ month,groups=sex,subset=continent==’Europe’,method=’alt bars’,

offset=.4) # offset passed to labcurve to label .4 y units away from curve

In the standard R Lattice package you can add error bars to plots with xyplot by passing an
auxiliary variable and using the subscripts of the data being plotted in the current panel1:

> xyplot(y ∼ x, data, sd = data$sd,

+ panel = function(x, y, subscripts, sd, ...) {
+ larrows(x, y - 2 * sd[subscripts],

1This example was provided by Deepayan Sarkar.
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+ x, y + 2 * sd[subscripts],

+ angle = 90, code = 3, ...)

+ panel.xyplot(x, y, ...)

+ })

11.4.2 Multiple x–axis Variables and Error Bars in Dot Plots

The Hmisc Dotplot function has three of the four advantages over the builtin trellis function
dotplot that xYplot has over xyplot. But instead of generalizing the function to allow multiple
y–axis variables, Dotplot generalizes dotplot to allow for several x–axis variables. The main usage
of this is displaying confidence or quantile intervals on the horizontal reference lines, in addition to
showing point estimates. For example, to turn the last xYplot example into a dot plot, use

Dotplot(month ∼ Cbind(y,lower,upper), groups=sex,

subset=continent==’Europe’)

# Cbind(y,lower,upper)|sex may work better

Key() # Key is generated by Dotplot for the sex variable

This will produce a solid line2 connecting the lower and upper values for each month, with a solid
dot indicating the value of y. To further emphasize the range rather than the point estimate, specify
pch=3 (plus sign) as the plotting symbol.

Like dotplot, panel variables can be used with Dotplot when the formula contains a |. Dotplot
does not fully handle both superposition (using groups) and multiple x–variables, as it currently
does not use different colors or other line styles to distinguish the low–high line segments for the
superposed groups.

See Section 4.8 for examples where Dotplot is used for profiling multiple groups, based on means,
confidence limits, and ranks.

11.4.3 Using summarize with trellis

The Hmisc summarize function creates a new data frame containing multi–way descriptive statistics.
This data frame is suitable for use by all trellis functions. In the next example we generate a dataset
containing 24 month × year combinations with 100 observations per combination. Then we compute
24 medians and 0.025 and 0.975 quantiles to show the center and 0.95 coverage intervals for each
stratum.

set.seed(111) # so we can replicate the example

dfr ← expand.grid(month=1:12, year=c(1997,1998), reps=1:100)

attach(dfr)

y ← abs(month-6.5) + 2*runif(length(month)) + year-1997

s ← summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

# To plot only the median we can use any trellis function, e.g.:

xyplot(y ∼ month, groups=year, panel=panel.superpose, data=s)

# But now show all 3 values for each stratum

xYplot(Cbind(y,Lower,Upper) ∼ month, groups=year, data=s,

keys=’lines’, method=’alt’)

2The line style is taken from trellis.par.get(’plot.line’).
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# Can also show 3 quantiles

s ← summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c(’y’,’Q1’,’Q3’))

xYplot(Cbind(y, Q1, Q3) ∼ month, groups=year, data=s, keys=’lines’)

# To display means and bootstrapped nonparametric confidence intervals use:

s ← summarize(y, llist(month,year), smean.cl.boot)

s

month year y Lower Upper

1 1997 6.55 6.44 6.67

1 1998 7.51 7.40 7.62

2 1997 5.58 5.47 5.69

2 1998 6.44 6.33 6.55

3 1997 4.53 4.42 4.67

3 1998 5.47 5.37 5.58

4 1997 3.36 3.26 3.46

4 1998 4.59 4.49 4.69

5 1997 2.48 2.36 2.60

5 1998 3.31 3.22 3.41

6 1997 1.58 1.47 1.69

6 1998 2.50 2.38 2.60

7 1997 1.39 1.28 1.51

7 1998 2.47 2.36 2.58

8 1997 2.54 2.43 2.64

8 1998 3.43 3.32 3.55

9 1997 3.52 3.42 3.63

9 1998 4.56 4.45 4.67

10 1997 4.50 4.39 4.63

10 1998 5.52 5.41 5.62

11 1997 5.49 5.37 5.61

11 1998 6.44 6.34 6.56

12 1997 6.51 6.39 6.64

12 1998 7.47 7.37 7.58

xYplot(Cbind(y, Lower, Upper) ∼ month | year, data=s)

To convert this to a dot plot, use

Dotplot(month ∼ Cbind(y, Lower, Upper) | year, data=s, pch=3)

The combination of summarize and trellis graphics is also useful for showing empirical results
when the number of points is too large to make an interpretable scatterplot (especially when stratified
by categories of a third variable). In what follows we compute the three quartiles of height stratified
by age and sex simultaneously. We either round age to the nearest year, or group it into deciles,
to have sufficient sample sizes in each age × sex stratum. For grouping age into deciles, we use a
feature of the Hmisc cut2 function in which the levels for the decile groups are the mean values of
age within each decile group. We have to go to extra trouble to convert the factor variable created
by cut2 to a numeric variable.

ageg ← round(ageg) # or:

ageg ← as.numeric(as.character(cut2(age,g=10,levels.mean=T)))
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# Also see the m= argument to cut2

s ← summarize(height, llist(sex,age=ageg), smedian.hilow,

conf.int=.5) # 3 quartiles named height,Lower,Upper

xYplot(Cbind(height,Lower,Upper) ∼ age, groups=sex, method=’bands’,

data=s)

This process has been automated in xYplot:

xYplot(height ∼ age, groups=sex, method=’quantiles’)

Here method=’quantiles’ runs cut2 and summarize on the raw data to produce the summarized
data. By default, this will, for each sex, group age into intervals containing min(40, n/4) obser-
vations where n is the number of observations in that sex group. You can override this using the
nx argument to xYplot. You can also specify the vector of 3 quantiles to compute, in a probs
argument. The central quantile needs to be listed first. method can also be the name of a function
that returns a matrix containing, in order, a measure of central tendence and some sort of limits.
For example:

xYplot(y ∼ month | year, nx=F, method=smean.cl.boot)

displays the mean y and bootstrap confidence limits, stratified by unique values of month (with no
intervals, because nx=F was specified). You can specify instead nx=m where m is the number of
observations to achieve in each automatically-created x interval.

See Section 6.1 for an example where row percentages are computed from a frequency table, and
then displayed using trellis graphics. Section 4.8 has other examples for summarize and Dotplot.

If the data frame is organized so that the multiple variables to plot are in separate rows, the
Hmisc reShape function may be useful for reorganizing the data for plotting. Here is an example
where for each Department there is a row for each of three salary levels: low, middle, and high. A
variable named type tells what each row pertains to. reShape will create a matrix with columns
named low,middle,high. Here we assume the levels of type are in the order middle, low, high.
indexhlabel

label(salary) ← ’Salary, $’

a ← reShape(salary, id=Department, colvar=type)

dept ← dimnames(a)[[1]]

Dotplot(dept ∼ Cbind(a))

Note that when there is a single argument to Cbind and that argument is a matrix, Cbind will pull
off the first column as the main variable and “hide” the other columns as an attribute to the main
variable.

11.4.4 A Summary of Functions for Aggregating Data for Plotting

Various functions in S can be used to compute aggregate statistics with stratification that can be
passed to various plotting routines. A summary of these functions is below.

tapply: This function will stratify a single variable by one or a list of stratification variables. When
you stratify by more than one variable, the result is a matrix which is generally difficult to plot
directly. The Hmisc reShape function can be used to re–shape the result into a data frame for
plotting. When you stratify by a single variable, tapply creates a vector of summary statistics
suitable for making a simple dot or bar plot without conditioning.
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aggregate: The function takes as input a vector or a data frame and a by list of one or more strati-
fication variables (see p. 89). It is handy to enclose the by variables in the llist function. You
can summarize many variables at once but only a single number such as the mean is computed
for each one. aggregate does not preserve numeric stratification variables — it transforms
them into factors which are not suitable for certain graphics. The result of aggregate is a
data frame for printing or plotting.

summary.formula: This Hmisc function by default will compute separate summaries for each of
the stratification variables. It can also do cross–classifications when method=’cross’. You
can summarize the response variable using multiple statistics (e.g., mean and median) and if
you specify a fun function that can deal specially with matrices, you can summarize multiple–
column response variables. summary.formula creates special objects and has special plotting
methods (e.g., plot.summary.formula.response) for plotting those objects. In general you
don’t plot the results of summary.formula using one of the trellis functions.

summarize: This Hmisc function has a similar purpose as aggregate but with some differences.
It will summarize only a single response variable but the FUN function can summarize it with
many statistics. Thus you can compute multiple quantiles or upper and lower limits for error
bars. summarize will not convert numeric stratifiers to factors, so summarize is suitable for
summarizing data for xyplot or xYplot when the stratification variable needs to be on the
x–axis. summarize only does cross–classification. It will not do separate stratifications as the
summary.formula function does. Unlike summary.data.frame, summarize creates an ordinary
data frame suitable for any use in S, especially for passing as a data argument to trellis graphics
functions. You can also easily use the GUI to graph this data frame.

method=function with xYplot: This automatically aggregates data to be plotted when central
tendency and upper and lower bands are of interest.
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Chapter 12

Controlling Graphics Details

S has the capabilities to produce very complex and detailed graphical summaries. Loosely speaking,
there are three levels of complexity in the elements comprising a plot. The first level consists of
commands that can produce a plot by themselves. They set up a coordinate system for us and
automatically determine the size of the plot, margins, orientation, font, plotting characters and the
box surrounding the plot. They are called high level plotting functions. They can be described
as functions that will produce results with a single call to them. Examples of high level plotting
functions include plot, hist and boxplot. The next level allows to add detail to the plot by including
other elements such as lines, symbols, legends, draw polygons, etc. These kind of functions are called
low level plotting functions. They are functions whose output is added to a currently active graphics
device. Finally, the greatest detail and control over your graphics can be exercised through the use
of graphics parameters. Some of them can only be used in high level plotting functions; they are
called high level parameters. Others can be used in high level functions or through the function
par; these are classified as general parameters. There are also layout parameters which can only be
changed through par because they change the overall layout of plots or figures. The last category of
parameters are information parameters which cannot be changed but can be queried through par.

Table 12.1 summarizes low–level plotting commands for taking charge of details of how plots are
drawn.

The undocumented Hmisc function pstamp uses the stamp function to date/time stamp an
existing plot or multi–image plot. Under UNIX, pstamp can optionally stamp the plot with the
current project directory name. Additional user–specified text (the first argument) can be specified;
this is used as a prefix to the stamp. Unlike stamp, pstamp uses very small letters so as to not
obstruct the rest of the graph.

12.1 Graphics Parameters

The function par() with no arguments returns a list. We list below the names of all the parameters
in alphabetical order. In order for par() to work, a graphics device should be active.

241
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Table 12.1: Low Level Plotting Functions

Function Description
abline add straight line to plot
arrows draw arrow
axes add axis label
axis add custom axis
box add box to plot
character.table show special text symbols (Hmisc)
frame advance to next figure
labelclust add labels to cluster plot
legend add legend to plot
lines add lines
minor.tick add minor tick marks (Hmisc)
mtext add text in margins
mtitle add titles and subtitles to a multiple image plots (Hmisc)
perspp project points on perspective plots
points add points
polygon draw and shade polygons
pstamp date/time stamp current plot (Hmisc enhancement of stamp)
qqline draw median line on qqnorm plot
rug add data-based marks to an axis
segments draw disconnected line segments
show.pch show plotting characters (Hmisc)
stamp add a time stamp to a plot
symbols draw symbols on a plot
text add text
title add title or axis labels
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> names(par())

[1] "1em" "adj" "ask" "bty" "cex" "cin" "col" "cra" "crt" "csi"

[11] "cxy" "din" "err" "exp" "fig" "fin" "font" "frm" "fty" "lab"

[21] "las" "lty" "lwd" "mai" "mar" "mex" "mfg" "mgp" "new" "oma"

[31] "omd" "omi" "pch" "pin" "plt" "pty" "rsz" "smo" "srt" "tck"

[41] "uin" "usr" "xaxp" "xaxs" "xaxt" "xpd" "yaxp" "yaxs" "yaxt"

To change one or more of the parameters we pass them to par as arguments with their new
values. For instance, to change the default plotting symbol from "*" to "+" and setup a matrix of
plots with two rows and three columns, we would type

> par(mfrow=c(2,3),pch=3)

The statements above, did not only change the value of mfrow and pch but also returned invisibly
a list containing the original values of the parameters that we changed. Thus, if we were going to
assign the statement, we would get a list with these original values. This can be useful to restore
the parameters to its previous values.

> par.old ← par(mfrow=c(2,3),pch=3)

> par.old

$mfrow:

[1] 1 1

$pch:

[1] "*"

> par(par.old)

> par()$mfrow

NULL

> par()$pch

[1] "*"

The value of some parameters may change when you change another. The parameter cex for
example, which controls character expansion relative to the device size, is related to the mfrow
parameter. When you change mfrow, cex will be set automatically, so that the character size is not
too big for the number of plots in the screen. You can still change cex to be whatever you like. You
just have to do it after you set mfrow and in a different par. The reason for doing it in a different
par is that cex is a general graphics parameter and mfrow is a layout parameter. S sets general
parameters first and then layout parameters.

> par(mfrow=c(3,2))

> par(cex=0.75) # NOT par(mfrow=c(3,2),cex=0.75)

12.1.1 The Graphics Region

To understand what each parameter does it is necessary to visualize how S divides up the device
surface. We have an outer margin, inside of which we find the figure region. This region contains
one or more plot areas surrounded by a margin.
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Outer Margin

Figure Region

Plot Region

Figure 12.1: Plot Region

By default the device is initialized with zero area in the outer margin. Typically the axis line
is drawn in the border between the plot region and the margin. If we change the size of one of the
regions, the others are adjusted automatically.

12.1.2 Controlling Text and Margins

The parameters to control the size of the outer margin are oma,omi and omd. For the figure margin
we use mar and mai. Related to all of them is mex. The parameters fig and fin control the physical
size of the figure region, while plt and pin do likewise for the plot region. Here is a description of
all of them

fig=c(x1,x2,y1,y2)

coordinates of the current figure region expressed as a

fraction of the device surface. This is dependent on

mfrow and mfcol.

fin=c(w,h)

width and height of figure in inches.

mai=c(xbot,xlef,xtop,xrig)

margin size specified in inches. Values given for bottom,

left, top, and right margins in that order.

mar=c(xbot,xlef,xtop,xrig)

lines of margin on each side of plot. Margin coordinates
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range from 0 at the edge of the box outward in units of

mex sized characters. If the margin is respecified by mai

or mar, the plot region is re-created to provide the ap-

propriate sized margins within the figure. The default

value is c(5,4,4,2)+.1. Problems with lines not appearing

on some devices might be remedied by specifying non-

integer values in mar.

mex=x the coordinate unit for addressing locations in the

margin is expressed in terms of mex. Margin coordinates

are measured in terms of characters of size cex equal to

mex. mex does not change the font size - it merely states

which font is to be used to measure the margins.

oma=c(xbot,xlef,xtop,xrig)

outer margin lines of text. oma provides the maximum

value for outer margin coordinates on each of the four

sides of the multiple figure region. oma causes recrea-

tion of the current figure within the confines of the new-

ly specified outer margins. The default is rep(0,4). See

mtext to create titles in the outer margin.

omd=c(x1,x2,y1,y2)

coordinates of the outer margin region as a fraction of

the device surface.

omi=c(xbot,xlef,xtop,xrig)

size of outer margins in inches.

pin=c(w,h)

width and height of plot, measured in inches.

plt=c(x1,x2,y1,y2)

the coordinates of the plot region measured as a fraction

of the figure region.

By default we start with zero area for the outer margin. We can change it by changing oma, omd
or omi. It is easiest to work with oma since it measures relative sizes; namely, the number of lines
of text that we want to have in the outer margin. The height of the lines is measured in units of
mex which is just the size of the default font. Thus if oma is c(0,0,5,0) and mex has the default
value of one, it means that we are leaving room for zero lines of text in the bottom, right and left
margin and 5 lines of text of the default size at the top. This does not mean that the text itself that
we type has to be of the default size. The size of text is determined by the value of cex (character
expansion). If cex equals 2.5, then we can only fit two lines of text at the top. Of course changing
oma changes some of the other parameters. The physical size of the figure and plot regions will be
reduced. However the space for margins in the figure region will remain the same.

Let us look at an example. We list below the default values of the parameters mentioned above.

> par(Cs(fig,fin,mai,mar,mex,cex,oma,omd,omi,pin,plt))

$fig:
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[1] 0 1 0 1

$fin:

[1] 8.00 6.32

$mai:

[1] 0.714 0.574 0.574 0.294

$mar:

[1] 5.1 4.1 4.1 2.1

$mex:

[1] 1

$cex:

[1] 1

$oma:

[1] 0 0 0 0

$omd:

[1] 0 1 0 1

$omi:

[1] 0 0 0 0

$pin:

[1] 7.132 5.032

$plt:

[1] 0.0717500 0.9632500 0.1129747 0.9091772

Now, let us change the value of oma to allow space for 5 lines of text in the default size of the
default font (mex=1).

> par(oma=c(0,0,5,0))

> par(Cs(fig,fin,mai,mar,mex,cex,oma,omd,omi,pin,plt))

$fig:

[1] 0.0000000 1.0000000 0.0000000 0.8892405

$fin:

[1] 8.00 5.62

$mai:

[1] 0.714 0.574 0.574 0.294

$mar:

[1] 5.1 4.1 4.1 2.1

$mex:
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[1] 1

$cex:

[1] 1

$oma:

[1] 0 0 5 0

$omd:

[1] 0.0000000 1.0000000 0.0000000 0.8892405

$omi:

[1] 0.0 0.0 0.7 0.0

$pin:

[1] 7.132 4.332

$plt:

[1] 0.0717500 0.9632500 0.1270463 0.8978648

We see that all the parameters have changed with the exception of mai, mar, mex and cex. Let
us now change mar and cex to allow for only one line of text of size 2.5 in the top margin figure.

> par(mar=c(0,0,2.5,0))

> par(cex=2.5)

> mtext("A Title in the Figure Margin",side=3)

> mtext("A Title in the Outer Margin",side=3,outer=T,line=2.5)

> mtext("Another Title in the Outer Margin",side=3,outer=T)

> text(0.5,0.5,"This is the qPlot Region",cex=1)

> box()

Look at the help file for an explanation on the use of mtext. Also notice that we used text with
a pair of coordinates despite the fact that there was no plot in the graphics surface. The reason
we could do this is that S sets up a coordinate system as soon as you open a graphics device. The
default coordinates are c(0,1,0,1) as determined bypar("usr"). If we were going to issue a high
level plotting command this coordinates would be set according to the range of your data.

One other layout command that we can look at is pty. The value of pty is a character string:
"s" for a square plotting region, and "m" for a maximal region.

12.1.3 Controlling Plotting Symbols

We can specify the type of line to be used and its width with the parameters lty and lwd. The
plotting symbol used by default is a “.”. We can change it to any character we want by specifying
pch="c", where “c” is any character. We may also use a number from 0 to 18 instead of a character
to obtain a variety of symbols. Other numbers up to 252 yield characters that are font and device
dependent as explained in the section of the help file below. If we use a character as a plotting
symbol its size will be determined by the value of cex just as in the case of text. If we use a special
symbol (by using the pch=n form) the size of the symbol will be given by mkh. The value of mkh is a
non-negative number giving the height in inches of the symbol. A value of zero for mkh (the default)
means that the symbol will be of approximately the same size as a capital letter according to cex.
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A Title in the Figure Margin
�

A Title in the Outer Margin
�

Another Title in the Outer Margin
�

This is the Plot Region
�

Figure 12.2: Handling text in margins
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lty=x line type, device dependent. Normally type 1 is solid,

2 and up are dotted or dashed. A few devices have only

one line type.

lwd=x line width, device dependent. Width 1 is the standard

width for the device. Many devices cannot change line

width.

mkh=x height in inches of mark symbols drawn when pch is

given as a number. The default value of 0 means that the

cex parameter controls the size of symbols when pch is a

number (the symbol is approximately the size of a capital

letter in this case).

pch="c" the character to be used for plotting points. If pch

is a period, a centered plotting dot is used.

pch=n the number of a plotting symbol to be drawn when plot-

ting points. Basic marks are: square (0); octagon (1);

triangle (2); cross (3); X (4); diamond (5) and inverted

triangle (6). To get superimposed versions of the above

use the following arithmetic(!): 7==0+4; 8==3+4; 9==3+5;

10==1+3; 11==2+6; 12==0+3; 13==1+4; 14==0+2. Filled marks

are square (15), octagon (16), triangle (17), and diamond

(18). Use the mkh graphics parameter to control the size

of these marks. See the EXAMPLES section for a display of

the plotting symbols. Using the numbers 32 through 126

for pch yields the 95 ASCII characters from space through

tilde (see the SPLUS data set font). The numbers between

161 and 252 yield characters, accents, ligatures, or noth-

ing, depending on the font (which is device dependent).

You may use the code below to produce a graph of the different plotting symbols and line types,
then print a copy to have as a reference. Then you could do something similar to look at the effects
of changing the mkh and lwd parameters.

> # A comprehensive pch table can be obtained using the Hmisc show.pch function

> par(usr=c(-1,19,0,1))

> for(i in 0:18)

> points(i,.5,pch=i)

> text(i,.35,i)

> title(’Samples of "pch=" Parameter’)

> box()

> par(usr=c(-1,11,0,11))

> for(i in 1:10)

> abline(h=i,lty=i)

> text(5,i+.5,paste("lty=",i,sep=""))

> box()

> title(’Examples of "lty"’)

The Hmisc character.table function written by Pierre Joyet shows the numeric equivalents
of all latin characters, facilitating the use of special characters in graph titles and other character
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Figure 12.3: Plotting Symbols
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Figure 12.4: Different Types of Lines
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strings. Typing character.table(8) for example will show the characters in font 8. From that you
will see that ρ is equivalent to 162. So title(’\162’, font=8) will write a title of ρ.

12.1.4 Multiple Plots

To construct a plot with several figures in it we use the parameters mfrow=c(m,n) or mfcol=c(m,n).
These set up a matrix of plots with m rows and n columns and the plots are drawn row-by-row or
column-by-column. Setting one implies setting the other, to the same value. To know the order
in which to do the plots, S looks at fty which will have the value "r" (rows) or "c" (columns)
depending on which parameter was set. If the number of rows or columns is greater than 2 then cex
and mex are set to 0.5.

12.1.5 Skipping Over Plots

We will now examine the function frame. We can use it to cause the graphics driver to advance to
the next frame, that is, the next plot. If we have only one plot per page, the command frame() will
erase the current plot (because it is moving to the next frame). In a multiple figure layout, a call to
frame will move to the next figure. This provides an alternative way to skip over one or more plots
in the layout. Two successive calls to frame will skip over the next figure.

The parameter new on the other hand, is a logical parameter whose purpose is to determine
whether or not a high level function will move to the next figure or overlay the current one. If new=T
it is assumed there are no plots in the current figure and therefore the canvas will not be erased when
we call a high level function. If new=F then a call to a high level function will cause the graphics
device to move to the next figure in order to avoid overwriting the current one. After executing a
high level graphics command new is immediately set to F. This the normal situation; there are no
plots in the current figure, we do a plot (new is set to F), add lines, text or whatever is necessary;
once we are finished with this particular plot we want to move to a new one. Since new is F we only
need to call the high level function and it will start a new plot without overwriting the current one.
In some circumstances we may want to overlay the results of two high level plotting functions. In
this case we type par(new=T) before executing the second one and its output will be overlayed on
top of the output of the first function. We will have more examples about this later.

A side effect of the way new operates is that when setting up the device layout, if there is more
than one plot per page, the current figure is set to be the last one in the layout and new is set to F.
This way, calling a high level plotting command will cause the device to move to the next figure in
the layout, i.e. the first one, correctly producing the plot. The problem is that if we try to execute a
low level plotting command, the results will apply to the last figure in the layout which is probably
not what we intended.

12.1.6 A More Flexible Layout

Other parameters that change when setting mfrow or mfcol are fig and mfg. Notice that the mf*
parameters divide the screen in regions of the same size. Additional flexibility is possible by using
mfg and fig. In fact, setting one of mfrow or mfcol changes both of these. mfg allows under certain
conditions to expand a particular plot to fill a whole row or a whole column. fig is much more
flexible and permits creative arrangements of the different plots.
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This is a box
�

Figure 12.5: Flexible layout using mfg

The form of mfg is c(i,j,m,n), where i and j denote the row and column of the current figure
in the multiple figure layout and m and n are the number of rows and columns. Thus, mfg can be
used to make a specific figure active. The way to use mfg is to plan our layout and then after each
plot change its value to make the next figure span a different region. For example

> par(mfg=c(1,1,3,2))

> box()

> par(mfg=c(1,2,3,2))

> box()

> par(mfg=c(2,1,3,1))

> box()

> par(mfg=c(3,1,3,2))

> box()

> par(mfg=c(3,2,3,2))

> box()

> title("This is a box")

The fig parameter allows greater flexibility than mfg. Simply set the coordinates of the figure
region as a fraction of the device surface before each plot. The example above could have been

> par(fig=c(0,.5,.66,1))

> par(new=F)

> box()

> frame()

> par(fig=c(0,.5,.66,1))

> box()

> par(fig=c(.5,1,.66,1))

> box()

> par(fig=c(0,1,.33,.66))
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> box()

> par(fig=c(0,0.5,0,.33))

> box()

> par(fig=c(0.5,1,0,.33))

> box()

> title("This is a box")

It is clear that by varying the parameters in fig we can obtain a much more flexible layout
than by using mfg alone. A combination of both is most efficient, but setting fig will leave mfg
unchanged. Also notice that the title function only affects the current figure. If we want to use an
overall title we need to use mtext. There is an Hmisc function called mtitle which can also write
an overall title. Look at it to see how it uses mtext.

12.1.7 Controlling Axes

With one exception, the parameters used to control the axes are all general parameters. That is,
they can be changed as part of the argument to a high level plotting function, or through par. The
exception is axes which is a high level parameter and can only be changed in the call to a high level
plotting function. Using said parameters we can control four aspects of the axes: whether or not
to draw an axis at all, the axis style (meaning, in general, the range), the style and positioning of
labels, and length and position of tick marks.

We will now examine axes:

axes=L if FALSE, suppresses all axis plotting (x, y axes and

box). Useful to make a high-level plotting routine gen-

erate only the plot portion of the figure.

If we choose to set this parameter to F, we may add a custom axis later by means of the axis
function. It is also possible to eliminate the plotting of only one axis by using xaxt or yaxt. Setting
either of these to "n" will produce that result. Other possibilities for these parameters are "s"
(standard axis), "t" (time) and "l" (logarithmic).

The axis labels are modified through the parameters mgp, exp, lab and las. These are described
below.

exp=x if exp=0, then axis labels in exponential notation have

the "e" and the exponent on a newline. If exp is equal to

1, then such numbers are written all on one line. When

exp=2 (the default), then numbers are written in the form

2*10^6.

lab=c(x,y,llen)

desired number of tick intervals on the x and y axes and

the length of labels on both axes. The default is

c(5,5,7).

las=x style of axis labels. 0 = always parallel to axis (the

default), 1 = always horizontal, 2 = always perpendicular

to axis.
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Figure 12.6: Controlling Axis Labels Style

mgp=c(x1,x2,x3)

margin line for the axis title, axis labels, and axis line

in units of mex (see below). The default is c(3,1,0).

Larger numbers are farther from the plot region, negative

numbers are inside the plot region.

The next example from the car.test.frame dataframe illustrates the use of lab, las and exp.

> attach(car.test.frame)

> par(mfrow=c(2,2))

> plot(Price,Mileage,main="lab=c(5,5,7), las=0, exp=2")

> plot(Price,Mileage,main="lab=c(5,5,4), las=0, exp=2",

+ lab=c(5,5,4),las=0)

> plot(Price,Mileage,main="lab=c(5,5,4), las=1, exp=1",

+ lab=c(5,5,4),las=1,exp=1)

> plot(Price,Mileage,main="lab=c(5,5,4), las=2, exp=0",

+ lab=c(5,5,4),las=2,exp=0)

The mode of axis interval calculation can be controlled individually for the x and y axis by
means of xaxs and yaxs. The value for these parameters can be any of "r", "i", "e", "s" or "d".
A description of what they mean follows

xaxs="c" style of axis interval calculation. The styles "s"

and "e" set up standard and extended axes, where numeric

axis labels are more extreme than any data values. Ex-

tended axes may be extended another character width so

that no data points lie very near the axis limit. Style

"i" creates an axis labeled internal to the data values.



12.1. GRAPHICS PARAMETERS 255

This style wastes no space, yet still gives pretty labels.

Style "r" extends the data range by 4% on each end, and

then labels the axis internally. This ensures that all

plots take up a fixed percent of the plot region, yet

keeps points away from the axes. Style "d" is a direct

axis, and axis parameters will not be changed by further

high-level plotting routines. This is used to "lock-in"

an axis from one plot to the next. The default is "r".

yaxs="c" see xaxs.

The most useful of these is style “d” which comes in handy when we want to overlay plots.
We already mentioned one of the parameters that control the number of tick marks, lab. They

can also be controlled individually for each axis using xaxp and yaxp, but for this we need to set
axes to F or xaxt or yaxt to "n" and then add the axes using axis. The length of tick marks is
determined by tck which can also be used to put grids on the plot.

tck=x the length of tick marks as a fraction of the smaller

of the width or height of the plotting region if less than

one-half. When tck is more than one-half, the ticks are

drawn across that fraction of the side; thus if tck equals

1, grid lines are drawn. If tck is negative, ticks are

drawn outside of the plot region. The default is -.02.

xaxp=c(ul,uh,n)

coordinates of lower tick mark ul, upper tick mark uh, and

number of intervals n within the range from ul to uh. For

log axes if uh>1, uh is the number of decades covered plus

2 and n is the number of tick marks per decade (n may be

1, 2, or 9); if uh==1 then n is the upper tick mark. xaxp

and yaxp are set by high level plotting functions, based

on the current values in lab (and log) and used by the

axis function (which is called implicitly by most high

level plotting functions unless you use the argument

axes=F).

yaxp=c(ul,uh,n) see xaxp.

Here’s an example of different tck values.

> par(mfrow=c(2,2))

> plot(x,y,main="tck=-0.02")

> plot(x,y,main="tck=0.05",tck=0.05)

> plot(x,y,main="tck=1",tck=1)

> plot(x,y,yaxt="n",main="Different tick marks for each axis")

> axis(2,tck=1,lty=2)

The minor.tick function in Hmisc makes it easy to add tick marks for minor axis subdivisions.
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Figure 12.7: Examples of tick marks

12.1.8 Overlaying Figures

If we have a plot and we want to overlay different graphics elements on top of it, usually, the simplest
way to do it is to use some low-level graphics functions such as lines or points. Other possibilities
include arrows, symbols, abline, segments, matlines, matpoints, and, in the case of time-series
plots, tslines and tspoints. These functions may not work if the new plot is on a different scale
than the existing one. We have two main methods of dealing with this situation. One is to use
a combination of the function axis and the parameter new, and the other is to use the function
subplot. The latter one has other uses as well.

Let us examine in more detail the axis function. A section of the help file follows

Add an Axis to the Current Plot

DESCRIPTION:

Adds an axis to the current plot. The side, positioning

of tick marks, labels and other options can be specified.

USAGE:

axis(side, at=<<see below>>, labels=T, ticks=T, distn=NULL, line=0,

pos=<<see below>>, outer=F)

REQUIRED ARGUMENTS:

side: a number representing the side of the plot for the axis

(1 for bottom, 2 for left, 3 for top, and 4 for right).

OPTIONAL ARGUMENTS:

at: vector of positions at which the ticks and tick labels
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will be plotted. If side is 1 or 3, at represents x-

coordinates. If side is 2 or 4, at represents y-

coordinates. If at is omitted, the current axis (as

specified by the xaxp or yaxp parameters, see par) will be

plotted.

labels: if labels is logical, it specifies whether or not to

plot tick labels. Otherwise, labels must be the same

length as at, and label[i] is plotted at coordinate at[i].

ticks: if TRUE, tick marks and the axis line will be plotted.

distn: character string describing the distribution used for

transforming the axis labels. The only choice is

distn="normal", in which case values of at are assumed to

be probability levels, and the labels are actually plotted

at qnorm(at). This also implies a reasonable default set

of values for the at argument. By default the values in

at are used as the labels.

...

Graphical parameters may also be supplied as arguments to

this function (see par). However, arguments to title such

as xlab and ylab are not allowed. For string rotation use

the las graphical parameter: 0 = always parallel to the

axis (the default), 1 = always horizontal to the axis, 2 =

always perpendicular to the axis. The srt graphical

parameter may be ignored for Windows.

This is a low-level plotting function (it adds an axis to the existing plot), and graphics parameters
can be part of its argument. The only required argument is side, which indicates where the axis is
going to be drawn, following the usual convention to denote the axes numbers. Most commonly, the
at argument is used to specify the position of the tick marks, and the labels argument determines
how they are going to be labeled. The labels justification and style are given by the parameters srt
and adj. However, if at is not specified, then the values of las gives the orientation of labels. They
will be centered at the tick mark if parallel to the axis, and right or left justified if perpendicular to
it; left justified if inside the plot, right justified if outside, as determined by mgp. In this case srt
and adj are ignored. Example

> fahrenheit ← c(25, 28, 37, 49, 59, 69, 73, 71, 63, 52, 42, 29)

> plot(fahrenheit, axes=F, pch=12, xlab="", ylab="Fahrenheit",

+ sub="Monthly Mean Temperatures for Hartford, Conn.")

> axis(2)

> axis(1, at=1:12, labels=month.abb)

> celsius ← pretty((range(fahrenheit)-32)*5/9)

> axis(side=4, at=celsius*9/5+32, lab=celsius, srt=90)

Notice that there is no box and the axis style is somewhat different from what we are used to
see. The reason for the absence of a box is that we set axes=F in the call to plot, which not only
suppressed the axes but also the box. If we wanted to have a box we may easily do so by typing
box(). On the other hand, we may want to have the old axis style and no box. One quick and easy
fix is to look at the values of usr and draw vertical lines using abline.
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Figure 12.8: Use of axis

> par("usr")

[1] 0.56 12.44 23.08 74.92

> abline(v=0.56)

> abline(h=23.08)

If we want to be purists however, and get the right axes style from the beginning, we would just
suppress the plotting of the x-axis by setting xaxs to "n" and change the box style with bty="l".
The calls to axis as shown will give us the correct results.

> fahrenheit ← c(25, 28, 37, 49, 59, 69, 73, 71, 63, 52, 42, 29)

> plot(fahrenheit, xaxt="n", pch=12, xlab="", ylab="Fahrenheit",

+ sub="Monthly Mean Temperatures for Hartford, Conn.",bty="l")

> axis(1, at=1:12, labels=month.abb)

> celsius ← pretty((range(fahrenheit)-32)*5/9)

> axis(side=4, at=celsius*9/5+32, lab=celsius, srt=90)

Let us now use axis in combination with xaxs will also be handy here. We begin by changing the
right margin to add space for an axis title there.

> par(mar=c(5,4,4,5)+.1)

> tsplot(hstart,ylab="Housing Starts")

Next we set par(new=T) in order not to erase the plot with a new call to tsplot and also par(xaxs="d")
to retain the x-axis from the previous plot.

> par(new=T,xaxs="d")

> tsplot(ship,axes=F,lty=2)

> axis(side=4)

> mtext(side=4,line=3.8,"Manufacturing (millions of dollars)")
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Figure 12.9: Overlaying high-level plots

The basic form of the subplot function is subplot(fun,x,y,size=c(1,1)). fun is any plotting
routine that we want executed; x and y are the (user) coordinates of the current figure where the
new plot will be positioned, and size is the size in inches of the new plot. subplot returns the
values of the graphics parameters that were in effect for the subplot. For example, we could fit a
least squares model in the car.test.frame and add a boxplot of the distribution of the predictors.

> attach(car.test.frame)

> dd ← datadist(car.test.frame);options(datadist="dd")

> f ← ols(Mileage ∼ Type+Disp.)

> plot(f,Disp.=NA,Type=NA,conf.int=F)

> subplot(plot(Type,Disp.,rotate=T,xlab="",cex=.8),c(55,100),c(15,20))

This plot allows to look at the distribution of Disp. by Type at the same time that examine their
combined effect on Mileage.

More elaborate plots are possible using subplot. The next example adds graphical estimates of
the density of Price and Mileage on top of a plot of Mileage vs Price.

> par(usr=c(0,1,0,1))

> o.par ← subplot(plot(Price,Mileage,log="x"),x=c(0,.85),y=c(0,.85))

> # Save the parameters from subplot

> o.usr ← o.par$usr # Save specially the user coordinates

> o.usr

[1] 3.743326 4.418767 17.240000 37.759998

> den.p ← density(Price,width=3000)

> # density returns a list with an estimate of the density of Price.

> den.m ← density(Mileage,width=10) # ditto for Mileage

> subplot(fun=par(usr=c(o.usr[1:2],0,1.04*max(den.p$y)),xaxt="l");lines(den.p);

+ box(),x=c(0,.85),y=c(.85,1))
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Figure 12.10: Example of subplot

> # Define the function using a logarithmic axes and plot the density

> subplot(x=c(.85,1),y=c(0,.85),fun=par(usr=c(0,1.04*max(den.m$y),o.usr[3:4]));

+ lines(den.m$y,den.m$x);box()) # same here

In this example we have created a plot of Mileage vs Price using a logarithmic axis for the
x-axis. We stored the value of the graphics parameters and later we stored the user coordinates of
this plot (which was possible because we used subplot rather than plot). Then we created two lists
with density estimates for Price and Mileage respectively. The next step is to plot these densities
using subplot. Note that in the fun argument to subplot we are defining a function which changes
the values of some parameters in the plot that subplot is going to create. The user coordinates
y-axis range in the density plot of Price is is 4% bigger than the maximum value of the density
estimate, and the x-axis range takes its values from the user coordinates from the first subplot. The
xaxt parameter was set to "l" since the first plot also had a logarithmic x-axis. Something similar
was done for the last subplot except that the roles of x and y had to be reversed.

12.2 Specifying a Graphical Output Device

Under UNIX, the printgraph function can be used to obtain a printed copy of the plot on the
screen. In its simplest form, printgraph(), will send a copy of the plot on the screen to the default
printer. This is equivalent to clicking on the print button of your current graphics device (usually
openlook, motif, or win.graph). printgraph does not offer many options to control the printed
output, and thus it does not provide any significant advantages over just clicking on the print button.
In either UNIX or Windows you can use the dev.print function to print the current plot window
or dev.copy to copy the current plot to a graphics file.

To effectively exercise control over aspects of your plot such as fonts and pointsize, you need to
use a function appropriate to your printer or graphics editor. If you have a postscript printer, the
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Figure 12.11: Another subplot example

function to use is postscript. For HP LaserJet printers you can use hplj, while for plotters using
the HP-GL command set, the function to use is hpgl. To make a Windows metafile suitable for
inclusion in Word or PowerPoint, you can use the format="placeable metafile" parameter with
win.printer. Check the help for Devices for many more possibilities.

12.2.1 Opening Graphics Windows

In UNIX you usually open a graphics window with one of the following commands: openlook(),
motif(), or X11(). In version 3.3 for Windows you can use win.graph or win.slide (see below),
or gs.slide to set nice defaults for graph sheets in version 4.x.

12.2.2 The postscript, ps.slide, setps, setpdf Functions

There are many functions for specifying how graphics output can be stored in specially formatted
graphics files. One of the most important functions is postscript, which works for both UNIX and
Windows, although the onefile and print.it options do not apply to Windows.

> args(postscript)

function(file = NULL, width = -1, height = -1, append = F, onefile = T,

print.it = NULL, ...)

When we type postscript(...), we open a graphics file in the same way that typing openlook
opens a graphics device on the screen. The difference is that we will not be able to see the results until
we close the postscript device and send the resulting postscript file to a printer or view the file with
a postscript previewer. For this reason, it is advisable to create our plot in an openlook, motif, or
win.graph device, and when we are satisfied with the results open a postscript device and repeat
exactly the commands we used to get the plot in openlook. When we close thepostscript device
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by typing dev.off() we will have a postscript file with our plot, or we may choose to send the
output directly to the printer without saving the postscript file. It helps to keep all your plotting
commands in a scratch file, that you may then copy and paste to your S-Plus session window. For
example, Fig. 12.10 was produced with the following commands.

postscript("/users/cfa/Sclass/subplot1.ps",

width=4/0.727,height=4,hor=F,

pointsize=6)

par(bty="o")

dd ← datadist(car.test.frame)

options(datadist="dd")

f ← ols(Mileage ∼ Type+Disp.)

plot(f,Disp.=NA,Type=NA,conf.int=F)

subplot(plot(Type,Disp.,rotate=T,xlab="",cex=.8),c(60,100),c(15,20))

dev.off()

Once you create a postscript graphics file you can preview it using Ghostview or other postscript
previewers in UNIX or Windows.

Notice that the example uses an extra argument, pointsize that is not present in the list of
arguments to postscript. The ... imply that other arguments are accepted. In UNIX (only), a
list of all such arguments (including fonts), is available by typing ps.options().

The onefile=T argument means that successive plots will be acumulated in one file until we turn
the device off. This may not be very useful if we want to incorporate the plots into a document.
Setting onefile to F produces some peculiar results. In this case, each call to a high level plotting
function will result in S sending all the plotting commands entered so far to the postscript file
overwriting what was in it. To avoid this problem we must turn the device off before calling another
high level plotting command. Another way around it is to omit the file argument and set print.it
to F.

> postscript(onefile=F,print.it=F)

> plot(corn.rain)

> plot(corn.yield)

Starting to make postscript file.

Generated postscript file "ps.out.0001.ps".

> plot(corn.rain,corn.yield)

Starting to make postscript file.

Generated postscript file "ps.out.0002.ps".

> dev.off()

Starting to make postscript file.

Generated postscript file "ps.out.0003.ps".

The second call to plot closed the first postscript file; the third call closed the second file; to end
with the third plot we had to close the device. This is just a way to produce several files with a single
call to postscript. The reason for setting print.it to F is that, otherwise, S-Plus would have
printed the ps.out.* files and then deleted them. We could also have used a naming convention for
the files.

> postscript(onefile=F,print.it=F,tempfile="corn.###.ps")

The ### refer to a sequential number for the file name.
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The Hmisc ps.slide function for UNIX or Windows uses nice defaults to make four types of
common postscript images, as controlled by an argument named type. Specify type=1 to make
nice fullsize graphs or type=3 for making 5 × 7” landscape graphs using 14–point type (useful for
submitting to journals). type=2 (the default) is for color 35mm slides. Use type=4 to make nice
black and white overhead projection transparancies (portrait mode). For example, use the following
code for making a 5× 7” black and white graph with nice fonts.

ps.slide(’myplot’, type=3) # makes myplot.ps

plot(x, y)

dev.off()

See the online help for ps.slide for more options.
The Hmisc setps function makes small postscript figures suitable for papers. setps was used to

produce the small graphs in this document1. Here is an example.

setps(myplot) # makes myplot.ps Note absence of quotes

plot(....)

topdf() # converts myplot.ps to myplot.pdf using Ghostscript

# topdf is created by setps

dev.off()

setps also has an option to set up for trellis postscript graphics, and for converting postscript
to .pdf. There is also an Hmisc function setpdf for setting up .pdf files, although creating a
postscript file and converting it to .pdf often works better (as in the above example).

Windows users can easily incorporate postscript graphics into Microsoft Word and other appli-
cations (even though such graphics will not display on the screen) as long as they have a postscript
printer.

12.2.3 The win.slide and gs.slide Functions

The basic plotting devices for Windows version 3.3 are win.graph and win.printer. To use nicer
defaults for presentations and publications you can use the win.slide function in Hmisc. win.slide
works similarly to ps.slide but draws graphs in the graphics window or writes a Windows metafile.
If the file name is ’’, the graph is sent directly to the printer. The default value for type is 3
for win.slide. For S-Plus version 4.x for Windows, you can use the Hmisc gs.slide function to
set up nice defaults for graph sheets. When you copy graph sheets that have been produced with
gs.slide in effect to the clipboard and paste the graphs into Microsoft applications, the results will
be more pleasing than when using the default graphical parameters.

12.2.4 Inserting S Graphics into Microsoft Office Documents

In S-Plus 2000 and S-Plus 6, copying and pasting a graph sheet page into Microsoft Word, Power-
point, etc. does not reliably render a graph. A more reliable approach is to do File ... Export
Graph to explicitly export the graph into a Windows metafile. In Word you can insert the graph
using Insert ... Picture ... From File. It is important not to resize or otherwise edit the

1setps was changed to use a Helvetica font by default after these graphics were created.
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graph using the mouse (for example by dragging a corner of the graph) as the graph will often be-
come corrupted. To resize, right click and select a new size. To use a command to create a wmf file,
use win.printer. In S-Plus 6.0 (even under UNIX/Linux) you can use the wmf.graph function.

Julian Wells has provided some valuable pointers for setting up graphics in Word:

Word 97 has good tools for explicit formatting of pictures: select the picture, then choose
Format → Picture (may show up as Format → Object; this seems to depend on exactly
what option one chose when inserting the picture with Paste→ Special). This brings up
a tabbed dialogue box:

The Picture tab allows you to crop the picture (so one can trim unwanted margins:
there are also control here for colour, brightness and contrast, but I assume that
scientific work will normally be black-and-white only)

The Size tab allows one to change the size; the important thing here is that one has
options to size relative to the original, and to maintain the original aspect ratio (the
alternatives should be viewed very critically, in my opinion – not keeping the aspect
ratio will distort your favourite type face, for a start).

All this can be programmed simply by recording a macro, of course, so repetitive work
is no problem.

The key thing in lining up the charts neatly is a good understanding of the use of the
Word ruler and/or the Format→ Paragraph dialogue in line formatting (e.g. margins and
indenting). I also find it very helpful to use table cells as containers for graphic material
and captions – just about essential if one wants them in a multi-column layout.sent you.

Windows metafiles under the best of circumstances often do not render the graphic very well.
The most beautiful graphs will be produced by outputting a postscript file for S and using Insert
... Picture in Word. This will put up a blank box on the screen but will print perfectly well to
a postscript printer. If you want to be able to preview the graph on the screen (which is essential
for Powerpoint presentations), have S-Plus export the graph with a TIFF preview image. This will
greatly enlarge the size of the graphics file, however.

Pstoedit is a useful program for converting postscript graphics files to a variety of formats (in-
cluding windows metafiles) for editing and for importing into Micro Office. The Windows version of
the program includes an Office graphics import plug-in for importing postscript graphics. pstoedit
may be obtained at http://www.geocities.com/SiliconValley/Network/1958/pstoedit.

file:P.J.Wells@open.ac.uk
http://www.geocities.com/SiliconValley/Network/1958/pstoedit


Chapter 13

Managing Batch Analyses, and
Writing Your Own Functions

13.1 Using S in Batch Mode

As an exploratory tool it is best to use S interactively. Interactive use is also valuable for debugging
a large S program. But it is useful to ultimately create a file which will have the main elements of
the analysis and which we can submit at any point to obtain a final report. That way analyses can
easily be updated when new data arrive, when data are corrected, or when additional analyses are
desired.

In what follows, S-language source files have extension .s. If using the Windows S-Plus script
editor you might use its default suffix of .ssc. You can submit source files from inside S-Plus to
get the results on the screen, or use a batch command which will save the printed results to a file.
See Section 1.5 for related material.

13.1.1 Batch Jobs in UNIX

Typing the following command at the UNIX prompt will cause S-Plus to be run in batch mode in
the background (omit the & to run it in the foreground):

Splus <file.s >file.lst &

This will run the S program file.s and produce the output file file.out.The command
Splus BATCH file.s file.lst & is supposed to work but some users may have to prefix the com-
mand with nohup. It may be advantageous to define a UNIX shell program called Bs (in for example
/usr/local/bin) to run S-Plus jobs in the background at a low priority, causing input commands
to be interspersed with the printed output. The shell (csh) program is defined as follows:

265
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/bin/nice -5 Splus BATCH $1.s $1.lst
echo "echo "‘pwd‘"/$1.lst;tail "’$1’ ‘pwd‘"/$1.lst" > $HOME/.lj
chmod a+x $HOME/.lj

Then you can initiate the job by typing Bs file at the UNIX prompt (note that the .s and & are
implied automatically). Bs causes an executable program .lj to be placed in your root directory.
When you enter the command .lj from any directory (assuming your home directory is in the
directory path), the tail of the .lst file for the last job submitted will be printed. That makes it
easy to monitor the job’s progress.

Another useful script is Bsw, which causes the system to wait until the S-Plus job is finished
before running the next program. In some occasions you may have several files that need to be run
in a given order; rather than doing one at a time you may create an executable file with a Bsw for
all the files that need to be created and then have control returned to you after that file is executed.
As an example suppose that we had edited a file create.all.s with all the S-Plus jobs that need
to be submitted. This master file might contain the following.

Bsw create.file1.s
Bsw create.file2.s

.

.

Make it into an executable file (file owner only)

biostat3{cfa}: chmod u+x create.all.s

Now run it

biostat3{cfa}: create.all.s &

Bsw is defined as follows:

echo "echo "‘pwd‘"/$1.lst;tail "’$1’ ‘pwd‘"/$1.lst" > $HOME/.lj
chmod +x $HOME/.lj
/bin/nice -5 echo ’options(echo=T)’ | cat - $1.s | Splus 1>$1.lst 2>&1

The following is an example of a file you could submit.

store()

library(Design,T)

postscript(’/tmp/plot’)

....

plot(fit)

# Define a function to print a heading with surrounding blank lines

note ← function(text) cat(’\n’, text, ’\n\n’)
note ← function(string) invisible(cat(’\n’,string,’\n\n’))
note("time to dnr among pts with preference to forgo CPR")

print(f)

print(anova(f))
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We can run this code from inside S by typing source("filename.s") or src(filename), or in
batch mode. Notice that we don’t need quotes nor the ".s" extension with src. Apart from that
the only difference is that src “remembers” the last file executed successfully, so, if you want to
re-submit it, you need only type src().

13.1.2 Batch Jobs in Windows

As mentioned in Chapter 1, it is a good idea to make a shortcut to S-Plus in each project directory.
This will allow S-Plus to be run interactively from that project directory. You can make a second
shortcut for running S-Plus in batch mode. For example, to run the program filename.s and
create an output file filename.lst, use the Properties option in a shortcut to define a command
such as c:\splus45\cmd\splus.exe S PROJ=. /BATCH filename.s filename.lst filename.-
log. Also, have the Start in box set to the project directory. Unfortunately, you’ll have to edit
the Properties or make a new shortcut for each source file to be used as the basis for a batch job.

To have your commands appear in the .lst file, put the command options(echo=T) at the
start of the program or use the S_FIRST option below.

Assuming you are currently in the correct project directory, you can run S-Plus from the DOS
prompt using a command such as

start splus /BATCH my.s my.lst my.err S_PROJ=. S_FIRST=’options(echo=T)’

To make DOS wait until S-Plus finishes before running the next command, insert /w after start.
To do the same thing in the Cygnus bash command shell under the Cygnus cygwin32 system, use
a command like

/sp2000/cmd/splus.exe /BATCH my.s my.lst my.err S_PROJ=. S_FIRST=’options(echo=T)’

Add & after the command to cause the system not to wait until S-Plus finishes to go on to the next
command.

You can run S-Plus batch jobs from the Windows Start . . . Run command by specifying a
command such as splus /BATCH \mydir\prog.s \mydir\prog.lst S_PROJ=\mydir.

Using any of these approaches you will see a progress dialog. Add /BATCH_PROMPTS min to
iconify this dialog.

The authoritative reference to the S-Plus 2000 command line is S-Plus 2000 Programmer’s
Guide, 1999, Chapter 19, which is available on the online help.

13.2 Managing S Non-Interactive Programs

As just discussed, an S program may easily be run in batch mode, producing a single .lst file
containing the output. The batch program may also produce one or more plot files. However,
in an analysis project it is frequently the case that some components of the analysis actually get
completed, and if these require significant computer time, it is advantageous to not repeat those
sub-analyses every time the program is run. Many analysts break down components of the analyses
into a long array of batch programs which often contain highly repetitive setup code (e.g., recoding
variables, extracting subsets of observations to process). Multiple programs can cause bookkeeping
problems, so it is often better to keep related analysis steps in a single batch file. One can comment
out sections of code that do not need to be executed again, it requires a significant amount of editing
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to comment and un-comment large sections of code. A better approach is to make if statements
apply to blocks of code:

f ← ols(y ~ rcs(x1,4), x=T, y=T)

if(F) {
anova(f)

summary(f)

validate(f)

}

This can be improved upon by making the program more self-documenting:

create ← F

fitmod ← F

valmod ← T

if(create) {
df ← sas.get(...)

df.desc describe(df)

ddist ← datadist(df)

}
if(fitmod) {
fit ← lrm(death ∼ age*sex, x=T, y=T)

print(fit)

print(anova(fit))

}
if(valmod) {
val ← validate(fit)

print(val)

}

There are two disadvantages to the last two examples. First, you must explicitly print objects;
typing fit instead of print(fit), for example, will not cause the object fit to print. This is
because when you put a series of commands inside {}, the last object listed before the closing brace
is “returned” by the nested expression, and only this last object is printed automatically. The second
disadvantage is that the .lst file that was created when earlier parts of the program were executed
will be overwritten by the new output.

The do function in Hmisc was created to facilitate conditional execution of parts of the analysis
depending on what needs to be re-run. do makes it easy to write different parts of the analysis to
different .lst files, and similarly it can segment plot output files. The first argument to do is a
logical value. When this value is T, the second argument, which is an expression of arbitrary length,
is executed. Otherwise this second argument is ignored. The second argument must be enclosed in
{}; that is how it can contain multiple S statements. There are several optional arguments to do:

device: This specifies a function that sets up the graphics device if any graphics are being done.
do expects one of the following to be specified (in quotes): ’postscript’, ’ps’, ’ps.slide’,
’win.slide’, ’win.printer’. device may also be specified through a system option called
do.device, e.g., options(do.device = ’ps.slide’).

file: The name of the output file for this section of the program. It is automatically suffixed by
.lst. file can be a special keyword ’condition’, in which case the .lst file will be the
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name of the first argument to do. file may also be specified through a system option called
do.file.

append: Set this to T to have .lst output appended to an existing file.

multiplot: Set this to T if you are using Windows and you wish each plot to go in a separate
graphics file, with the files numbered sequentially.

... Any number of other arguments may be specified, which are passed to the plotting device
function. For example, if using device=’ps.slide’

Besides the system options mentioned above, selected system options work with do.

do.prefix: A character string to prepend before .lst file names.

do.echo: Type options(do.echo=F) to prevent S commands from being interspersed with function
output in the .lst file.

do.comments: Type options(do.comments=T) to include comments in the .lst file.

Here is an annotated example showing how to use this function. This example also shows how
the Design library was used.

options(digits=3, datadist=’ddist’, continue=’\n +’,

do.device=’postscript’, do.file=’condition’)

# do.file=’condition’ outputs do(condition,...) to condition.lst

# ’postscript’ makes do(condition, ...) output postscript graphics

# into condition.ps

# May want to use do.device=’win.slide’ for Windows - uses nice defaults

# Add for example options(do.prefix=’model’) if you want .ps and .lst

# file names created by do() to be prefixed by ’model.’ before any

# prefix normally created by do().

# Here is the analysis program, model.s

create ← F

descriptives ← F

ordinality ← T

cluster.fit.impute ← F

full.model ← F

find.penalty ← F

check.residuals ← F

separate.binary.fits← F

validate.mod ← T

simplify.nomogram ← T

do(create, {
tami.chf ← sas.get(’/users/jdl/projects/COConnor’,’frankchf’,recode=T,

id=’studyno’, ifs=’if chfdev>.’)

hist.data.frame(tami.chf, n.unique=2)



270CHAPTER 13. MANAGING BATCH ANALYSES, AND WRITING YOUR OWN FUNCTIONS

pstamp() # pstamp in Hmisc date-time stamps plots

par(mfrow=c(4,5))

plot(tami.chf[-c(2,4,5,9,11,12,16,18,19,21,22,24,25,26,27,28,32,36,37,38)],

ask=F) # omit binary and ID vars

pstamp()

desc.tami ← describe(tami.chf)

ddist ← datadist(tami.chf)

})

store()

attach(tami.chf)

table(chfdev)

table(newpe)

y ← score.binary(chfdev, newpe, death)

table(y)

yn ← score.binary(chfdev, newpe, death, retfactor=F)

table(y, yn)

# Could also use:

# y ← ifelse(death, 3, ifelse(newpe,2, ifelse(chfdev, 1, 0))) or

# y ← 0; y[chfdev==1] ← 1; y[newpe==1] ← 2; y[death==1] ← 3

do(ordinality, {

y.nodeath ← score.binary(chfdev, newpe)

summary(death ∼ y.nodeath)

par(mfrow=c(2,2))

# The following is new:

plot.xmean.ordinaly(y ∼ age + efpre + izpre + numdz, cr=T)

pstamp(’Figure 1’)

})

do(descriptives, {

y3 ← cbind(’>=CHF’=yn>=1, ’>=PE’=yn>=2, Death=yn==3)

# Stratify separately on each predictor variable, computing all

# cumulative probabilities. For continuous variables, quartiles are used.

s ← summary(y3 ∼ age + cptrttim + diabp + sysbp + drug + efpre +

eversmk + htn + hxdiab + hxsmk5 + izpre + miloc +

nonizpre + numdz + ptca + pulse + pvd + race +

ralesyn + s3 + sex, nmin=15)

# Default summary function (fun=) is mean of each column of Y

# Add ,fun=’%’ after nmin=15 to compute % instead of fractions

w ← latex(s, longtable=T, title=’descriptives’) #makes descriptives.tex
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# Instead, summarize using logits of cumulative probs.

# qlogis is S’s built-in log(p/(1-p)) function

g ← function(y3) qlogis(c(’Logit >=CHF’=mean(y3[,1]),

’Logit >=PE’ =mean(y3[,2]),

’Logit Death’=mean(y3[,3])))

s ← update(s, nmin=15, fun=g)

# update -> do same summary as created previous s but change options

# Make dot plots for first 11 of 21 predictor vars (too many for 1 page)

plot(s[1:11,], which=1:3, xlab=xl ← ’Log Odds of Cumulative Probability’,

cex.labels=.6, pch=c(5,10,183),

main=d ← ’Examining Proportional Odds Assumption’)

pstamp(’Figure 2’) # date-time stamps lower right corner

# Make dot plots for remaining variables

plot(s[11:21,], which=1:3, xlab=xl, cex.labels=.6,

pch=c(5,10,183), main=d)

pstamp(’Figure 3’)

logit ← function(p) ifelse(p==0 | p==1, NA, log(p/(1-p)))

# qlogis did not work for next function - some conditional

# probabilities were 0 and qlogis returned -infinity

# logit is actually pre-defined (in /suserlib/.Data)

h ← function(y) logit(c(mean(y==0), mean(y[y>=1]==1), mean(y[y>=2]==2)))

s ← update(s, yn∼., fun=h) # same as previous s but with new fun

plot(s[1:11,], which=1:3, xlab=xl ← ’Log Odds of Conditional Probability’,

cex.labels=.6, pch=c(5,10,183),

main=d ← ’Examining Continuation Ratio Assumption’)

pstamp(’Figure 4a’)

plot(s[11:21,], which=1:3, xlab=xl, cex.labels=.6,

pch=c(5,10,183), main=d)

pstamp(’Figure 4b’)

})

do(cluster.fit.impute, {

par(mfrow=c(2,1))

plot(naclus(tami.chf))

pstamp(’Figure 5’)

# Do hierarchical clustering based on a similarity matrix of

# squared Spearman correlations

vclus ← varclus(∼.-studyno-race-tami-chfgrp-chf-timtohf-timtodth,
data=tami.chf, sim=’spearman’)

store(vclus)

plot(vclus)

pstamp(’Figure 6’)
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# Have transcan develop customized regression to predict each

# predictor for all the other predictors. transcan will also

# impute missing values. Use trantab=T so that fitted transformations

# can be easily evaluated for future data

trans ← transcan(∼age + cptrttim + diabp + efpre + eversmk + hbeta +

hcablock + htn + hxdiab + hxsmk5 + izpre + miloc +

murmur + nonizpre + numdz + ptca + pulse + pvd +

ralesyn + s3 + sex + sysbp + timi90,

imputed=T, shrink=T, trantab=T, eps=.5, pl=F)

store(trans)

par(mfrow=c(6,4))

plot(trans)

pstamp(’Figure 7’)

})

# Note how the following union of conditions makes it clear which

# parts of the analysis depend on the use of imputed values

do.impute.reduce ← full.model | find.penalty | check.residuals |

separate.binary.fits | simplify.nomogram

do(do.impute.reduce,

{

# Imputation and data reduction needs to be done before any multivariable

# model fits

impute(trans) # imputes all variables, here putting them in .Data.tempxxxx

# To only impute certain ones, do e.g. numdz ← impute(trans, numdz)

describe(efpre)

describe(efpre[is.imputed(efpre)])

numdz ← round(numdz) # some imputed values were fractional

# since didn’t tell transcan that

# numdz was categorical

drug ← impute(drug) # replace 3 missing with most frequent (t-PA)

table(race)

# Combined last 5 levels of race

levels(race) ← levels(race)[c(1,2,7,7,7,7,7)]

# or levels(race) <- list(other=levels[3:7])

table(race)

sex ← factor(sex, labels=c(’male’,’female’)) # was a numeric var

map ← (2*diabp+sysbp)/3

label(map) ← ’Mean Arterial Blood Pressure’

table(is.imputed(diabp),is.imputed(sysbp))
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nrisk ← htn + pvd + hbeta + hcablock + murmur

label(nrisk) ← ’Number of Misc. Risk Factors’

s3.rales ← s3 | ralesyn

label(s3.rales) ← ’S3 Heart Sound or Rales’

ddist ← datadist(ddist, map, race, nrisk, s3.rales, sex)

})

do(full.model,

{

f ← lrm(y ∼ rcs(age,3) + sex + race + rcs(map,4) + rcs(pulse,4) +

pol(timi90,2) + rcs(izpre,4) + rcs(nonizpre,3) + rcs(efpre,3) +

miloc + hxsmk5 + s3.rales + rcs(cptrttim,4) + ptca + drug +

hxdiab + scored(numdz) + nrisk, x=T, y=T)

f$stats

prlatex(latex(f, caption=’Full Unpenalized Nonlinear Model’))

an ← anova(f)

an

plot(an)

title(’Strength of Predictors of Ordinal Response’)

pstamp(’Figure 8’)

par(mar=c(5,4,4,5)+.1)

plot(f, efpre=NA, ref.zero=T, ylim=c(-1.5,1.5))

abline(h=0, lty=2)

abline(v=medef ← ddist$limits$efpre[2], lty=2)

axis(4, log(at ← c(.25,.5,.75,1,1.25,1.5,1.75,2,2.5,3,3.5,4,4.5)),

labels=format(at), srt=90)

mtext(’Odds Ratio’, side=4, line=3)

text(medef, -1.3, ’Median efpre’, adj=0, srt=90)

title(’Effect of efpre - Relative Log Odds’)

title(sub=’plot(f, efpre=NA, ref.zero=T)’, adj=0)

pstamp(’Figure 8a’)

par(mfrow=c(4,5), mar=c(5,4,4,1)+.1)

plot(f, ref.zero=T, ylim=c(-1.5,1.5)) # no variables mentioned -> plot all

# ref.zero=T -> Subtract a constant from X beta before plotting so

# that the reference value of the x-variable yields y=0.

pstamp(’Figure 8b’)

store(f, ’fit.full’)

})

options(do.file=’condition’) # now make do() store results in sep. files
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do(find.penalty, {

# First try penalizing all parameters (except the intercept)

# Try the following vector of penalty factors:

pens ← c(1:10,20,40,80,160,320,640,1280,2500)

pentrace(fit.full, pens)

# Best penalty was 40, with 19.98 effective d.f. (AIC=147.1)

# (Started with 34 d.f. in the unpenalized fit, AIC=133.5)

# Now try penalizing only parameters associated with nonlinear effects

pentrace(fit.full, pens, penalize=2)

# Penalized model most likely to cross-validate the best is a model

# with infinite penalty for the nonlinear terms (i.e., all betas for

# nonlinear terms shrunk to zero).

# This is consistent with the Wald statistics from

# the combined nonlinear terms being 15.94 with 14 d.f., i.e., the

# chi-sq is less than 28 -> further justification for using a linear

# model. The model with no nonlinear terms has 20 d.f. and the

# effective AIC in a 20.4 d.f. penalized model is 145, almost as good

# as the 19.98 d.f. fully penalized nonlinear model.

# Let’s also fit a linear model and see if it could be improved on

# by penalizing the linear effects. Let’s cheat a little and use

# prior knowledge on the ejection fraction transformation.

f ← lrm(y ∼ age + sex + race + map + pulse +

timi90 + izpre + nonizpre + pmin(efpre,60) +

miloc + hxsmk5 + s3.rales + cptrttim + ptca + drug +

hxdiab + numdz + nrisk, x=T, y=T)

f$stats

prlatex(latex(f, caption=’Full Unpenalized Linear Model’))

anova(f)

store(f, ’fit.full.linear’)

pt ← pentrace(f, pens)

pt

# We see that further shrinkage yields AIC=153 (with penalty=80, df=12.6)

# Fit and save this penalized linear model

f ← update(f, penalty=pt$penalty, x=T, y=T)

prlatex(latex(f, caption=’Full Penalized Linear Model’))

anova(f)

store(f, ’fit.full.linear.penalized’)

})

do(check.residuals,
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{

# Fit reduced model and check residuals on most important variables,

# to look for non-proportional odds. Also take a look at residuals

# from building block models used in continuation ratio model.

# Fast backward step-down, using default statistic (AIC) but

# Compute it on individual variables instead of using residual chi-square

# aics=0 means delete variables with AIC<2, AIC = chisq-2 x d.f.

# Override: do put map in model, and add hxsmk5 because of what was

# found later in the program.

fastbw(fit.full, type=’individual’, aics=2)

# Use untransformed predictors since we want to estimate transformations

# using partial residuals

f ← lrm(y ∼ age + map + efpre + ptca + hxsmk5, x=T, y=T)

par(mfrow=c(2,3),oma=c(3,0,3,0))

resid(f, ’score.binary’, pl=T)

mtitle(’Binary Logistic Model Score Residuals\nFrom Ordinal Model Fit’,

ll=’Figure 9’)

# overall title+stamp, plus Figure # in lower left corner (ll)

par(mfrow=c(2,3),oma=c(3,0,3,0))

resid(f, ’partial’, pl=T)

mtitle(’Binary Logistic Model Partial Residuals\nFrom Ordinal Model Fit’,

ll=’Figure 10’)

# Compute global goodness-of-fit statistics

# le Cessie - van Houwelingen - Hosmer (see residuals.lrm for refs)

resid(f, ’gof’)

# Plot smoothed partial residuals for binary models that would be

# components of a forward continuation ratio model (temporarily

#combining 2 CHF categories).

fit.none ← lrm(yn==0 ∼ age + map + efpre + ptca + hxsmk5, x=T, y=T)

fit.chf ← update(fit.none, yn==1 | yn==2 ∼ ., subset=yn>=1)

fit.none$stats; fit.chf$stats

# The plot.lrm.partial function computes partial residuals for a

# sequence of binary logistic fits, and draws smoothed (lowess)

# partial residual plots for each predictor (all fits) on one graph.

# This is repeated for all predictors. See online help for residuals.lrm

par(mfrow=c(2,3), oma=c(3,0,3,0))

plot.lrm.partial(fit.none, fit.chf)

mtitle(’Partial Residuals for 2 Binary Model Fits:\nY=0 and Y=1 or 2 | Y>0’,
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ll=’Figure 11’)

# Do the same thing for backward continuation ratio models

fit.death ← lrm(yn==3 ∼ age + map + efpre + ptca + hxsmk5, x=T, y=T)

fit.chf ← update(fit.death, yn==1 | yn==2 ∼ ., subset=yn<3)

fit.death$stats; fit.chf$stats

par(mfrow=c(2,3), oma=c(3,0,3,0))

plot.lrm.partial(fit.death, fit.chf)

mtitle(’Partial Residuals for 2 Binary Model Fits:\nY=3 and Y=1 or 2 | Y<3’,

ll=’Figure 12’)

})

do(separate.binary.fits,

{

# Find list of variables that are important from either of 2

# dichotomizations. Use linear models.

# First, model for any CHF or death

f.any ← update(fit.full.linear, yn>0 ∼ ., x=F, y=F)

fastbw(f.any, type=’individual’, aics=2)

# Now model for death

f.death ← update(f.any, yn==3 ∼ ., x=T, y=T)

f.death

fastbw(f.death, type=’individual’, aics=2)

# Demonstrate that if we wanted to develop a separate model for death,

# significant shrinkage is needed since there are only 89 events

pt ← pentrace(f.death, c(1,2,4,8,16,32,64,128,256))

pt

xbeta.orig ← predict(f.death)

f.death ← update(f.death, penalty=pt$penalty, x=F, y=F)

# pt$penalty is best penalty as determined by pentrace (here, 32,

# resulting in 11.7 effective d.f. - we started with 20 d.f.)

f.death$stats

# Compare predictive discrimination of customized death model

# with ordinal model when asked to predict dead vs. alive

somers2(predict(fit.full.linear.penalized), yn==3)

plot(xbeta.orig, predict(f.death), ylab=’Shrunken X*Beta’, pch=202)

# 202=small open circles (degree sign) on postscript printers

abline(a=0, b=1, lwd=3)
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title(’Effect of Shrinkage on Linear Predictors\nIn Model for Death’)

pstamp(’Figure 13’)

f.any ← lrm(yn>0 ∼ age + map + pmin(efpre,60) + miloc + ptca +

numdz + hxsmk5)

f.death ← update(f.any, yn==3 ∼ .)

# Show side-by-side odds ratio charts. The the default (inter-quartile-

# range odds ratios) for continuous variables

s.any ← summary(f.any)

s.death ← summary(f.death)

par(mfrow=c(1,2), mgp=c(3,.4,0))

plot(s.any, log=T, main=’Binary Model for Y>0’,

at = at ← c(.25,.5,1,2,4,8))

plot(s.death, log=T, main=’Binary Model for Y=3’, at=at)

pstamp(’Figure 14’)

# Fit a reduced ordinal model and compare the predictions it

# gives for Prob{death} to the predictions from f.death

f ← update(f.death, y ∼ .)

prob.death.ordinal ← predict(f, type=’fitted’) #Computes all Prob(Y>=j)

prn(prob.death.ordinal[1:10,],

’First 10 Rows of Reduced Ordinal Predictions’)

prob.death.ordinal ← prob.death.ordinal[,3]

prob.death.customized ← predict(f.death, type=’fitted’)

describe(prob.death.ordinal - prob.death.customized)

par(mfrow=c(1,1))

plot(prob.death.ordinal, prob.death.customized, pch=202, log=’xy’,

xlim=c(.001,.5),ylim=c(.001,.5))

abline(a=0, b=1, lwd=3)

scat1d(prob.death.ordinal)

scat1d(prob.death.customized, side=4)

title(’Predicting Prob{Death} From\nCustomized and Proportional Odds Model’)

# Form intervals of predicted probability of death from the ordinal

# model, such that there are 100 pts in each interval

# The levels.mean option to cut2 forces intervals to be labeled

# with the mean value within the interval, rather than the

# interval endpoints. This allows estimates to be positioned

# sensibly on the x-axis

pdo ← cut2(prob.death.ordinal, m=100, levels.mean=T)

# Now find 0.9 quantile of prob of death stratified by prob of

# death from ordinal model. Do same for 0.1 quantile.
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upper ← tapply(prob.death.customized, pdo, quantile, probs=.9)

lower ← tapply(prob.death.customized, pdo, quantile, probs=.1)

# convert levels of stratification variable to numeric

x ← as.numeric(levels(pdo))

lines(x, upper, lty=2, lwd=3) # lty=2: dotted lwd=3: triple thickness

lines(x, lower, lty=2, lwd=3)

pstamp(’Figure 15’)

})

do(validate.mod, {
# Bootstrap validation of various indexes of fit

val ← validate(fit.full.linear.penalized, B=150)

val

store(val)

# Bootstrap smooth (lowess) nonparametric calibration curve

cal ← calibrate(fit.full.linear.penalized, B=150)

store(cal)

plot(cal)

title(’Bootstrap Calibration of Penalized Linear Model’)

pstamp(’Figure 16’)

cal.unpen ← calibrate(fit.full.linear, B=150)

store(cal.unpen)

plot(cal.unpen)

title(’Bootstrap Calibration of Unpenalized Linear Model’)

pstamp(’Figure 16b’)

}, file=’’) # file=’’ -> print output goes to model.lst

do(simplify.nomogram, {
# Approximate final model’s predictions (logits) from a sub-model

# This is more stable than doing stepwise variable selection against

# the output, and it automatically makes use of penalization

# Get predicted logit from final model (using first intercept)

plogit ← predict(fit.full.linear.penalized)

# Add a random error to this so that stepwise variable selection works

alogit ← plogit + rnorm(length(plogit), sd=.2)

f ← ols(alogit ∼ age + sex + race + map + pulse +

timi90 + izpre + nonizpre + pmin(efpre,60) +

miloc + hxsmk5 + s3.rales + cptrttim + ptca + drug +

hxdiab + numdz + nrisk)

fastbw(f, aics=10000) # aics=10000: eventually delete all variables

# Fit sub-model against final model’s predicted logit, using last

# few variables deleted by fastbw
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f ← ols(plogit ∼ pmin(efpre,60) + age + ptca + izpre + numdz +

map + miloc + hxdiab + s3.rales)

f

# Compare approximate predicted logits to full model logits

describe(abs(predict(f) - plogit))

store(f, ’fit.full.linear.penalized.approx’)

# Make a nomogram based on the approximate model, with axes for

# reading off predictions for all levels of output severity

intercepts ← fit.full.linear.penalized$coefficients[1:3]

fun2 ← function(x) plogis(x-intercepts[1]+intercepts[2])

fun3 ← function(x) plogis(x-intercepts[1]+intercepts[3])

nomogram(f, fun=list(’Prob(CHF or Death)’=plogis, ’Prob(PE or Death)’=fun2,

’Prob(Death)’=fun3),

fun.at=c(.01,.05,seq(.1,.9,by=.1),.95,.99),

cex.var=.7, cex.axis=.75, lmgp=.2)

pstamp(’Figure 17’)

}, file=’’)

print(scan(’/users/feh/.lst’, list(char.string=’’)), quote=F)

# .lst was created by do() if using UNIX (don’t usually print this)

# can say .lst lpr to send all .lst files to printer, or .lst xless

# to view them all in windows. Do .lst ls to see their names.

# Note: The very first time .lst is created, the system won’t

# be able to find it in your root directory unless it is the current

# directory. When you re-log in in the future, the system will

# note the existence of this executable file in your root area

# (you can issue the UNIX ’rehash’ command to have .lst instantly

# available from any directory).

13.3 Reproducible Analysis

Common problems for an analyst are figuring out how she obtained a certain calculation, what
subset of subjects was used to draw a graph, whether a regression analysis was run before or after a
data error was corrected, and what sequence of menus was run to produce an analysis. These issues
are especially important when formal inference is an important part of the analysis, and especially
when results are submitted to a peer-reviewed journal or to a regulatory authority such as the FDA.
We have worked with investigators who are completely unable to reproduce results they obtained
using interactive software.

Even though interactive or exploratory analysis may be an ideal mode of operation for an FDA
reviewer or anyone else wishing to review an analysis to check for robustness, interactive analysis
does not lead to well-documented and easily re-run analyses. The best way to have reproducible
analyses is to build a complete, cumulative script file as the analysis develops. This script file can
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be run as a batch file to produce a list or report file as well as several graphics files. Roger Koenker
argues that the ultimate documentation of much of scientific research is the source code behind the
production of calculations, plots, and tables, and such code (or a URL to it) should be included in
many scientific publications.

But what if the analysis was split into several S jobs, and what if the analysis depended on
an S data frame that was imported from a SAS dataset? If the SAS dataset were to be updated,
how do we know what all needs to be re-run in S-Plus? What if the graphics needed to be run
through a command-oriented conversion program before inclusion in a report or on a Web page and
we get tired of running the conversion steps manually? A solution to this problem is the use of
the (originally) UNIX make utility program, also available on Linux and Windows 95/98/NT/2000
from the free Cygnus cygwin32 package from sourceware.cygnus.com/cygwin1. In a Makefile
you specify file dependencies. make analyzes these dependencies and examines file dates to see which
programs need to be run so that all files are up to date.

Often in S-Plus the final file to be produced is an object. Specifying an object name in .Data
or _Data in your Makefile is no problem except that under Windows, S-Plus still translates long
file names to legal DOS names, and you will usually not know (or care about) such names. Possible
solutions to this problem include creating as the final object in a job an object with a plain 8-letter
(or less) name, or creating an ASCII file in the project directory (not in .Data) of any name. These
“last objects created” can be used as the principal object name in the make dependencies.

As a demonstration of make under Windows, suppose we have the following files in our project
directory:

test.dat
-------
1 11
2 22
3 33

create.s
--------
dat <- read.table(’test.dat’,col.names=c(’x’,’y’))

analyze.s
---------
library(Hmisc, T)
results <- describe(dat)

1You have to install the full cygwin32 product to get make, i.e., full.exe, not usertools.exe. See biostat.mc.

vanderbilt.edu/EmacsLaTeXTools for tips on installing cygwin32.

http://www.econ.uiuc.edu/~roger/repro.html
http://sourceware.cygnus.com/cygwin/
http://biostat.mc.vanderbilt.edu/EmacsLaTeXTools
biostat.mc.vanderbilt.edu/EmacsLaTeXTools
biostat.mc.vanderbilt.edu/EmacsLaTeXTools
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Makefile
--------
Splus = /sp2000/cmd/splus.exe S_PROJ=. S_FIRST=’options(echo=T)’ /BATCH
DATA = ./_Data

.IGNORE:

.INIT:

all: $(DATA)/results $(DATA)/dat

$(DATA)/results: analyze.s $(DATA)/dat
$(Splus) analyze.s analyze.lst analyze.err

$(DATA)/dat: create.s test.dat
$(Splus) create.s create.lst create.err

Note that in Makefile the indented lines have a tab, not spaces, on the left. To run the Makefile
type make at the bash prompt. This will cause objects to be created if they don’t already exist, or
cause them to be re-created if their ancestors are deleted or modified.

A very nice tutoral on make by Duncan Temple Lang and Steve Golovich may be found in in an
issue of the Statistical Computing and Graphics Newsletter at http://cm.bell-labs.com/cm/ms/
who/cocteau/newsletter/issues/v92/v92.pdf.

Perl is a powerful language that is useful for a huge variety of tasks (such as manipulating data
files) including managing program execution. In the example below for Unix/Linux, a directory
named input dir contains a list of input files to process, in a text file called List (one file name per
line). An application called APP is run on each file to create a corresponding output file in directory
output dir. APP is only run when the input file has changed since the output file was last created,
or if the corresponding output file does not exist. There is one exception. One of the file names in
List needs to be changed. Also, the name of the output file is actually contained in the first line of
the individual input file, after “# ”, with a suffix of .ppp added.

#!/usr/bin/perl
$input_dir = "/home/mine/dir";
$output_dir = "/home/mine/otherdir";
open(LSTFILE,"$input_dir/List");
@files = <LSTFILE>;
foreach $file (@files) {
chop $file; # remove end of line character
# Exception for input file name: use yyyy instead of xxx for one file
$file =~ s/xxx/yyyy/;
$outfile = ‘head -1 $input_dir/$file‘; # Get 1st line
# Note: command enclosed in back quotes: run UNIX command, return result
chop $outfile;
$outfile = substr($outfile, 2, 100); # Remove leading "# "
$infile_age = (-M "$input_dir/$file"); # -M: modification age in days

http://cm.bell-labs.com/cm/ms/who/cocteau/newsletter/issues/v92/v92.pdf
http://cm.bell-labs.com/cm/ms/who/cocteau/newsletter/issues/v92/v92.pdf
http://www.perl.org
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$destfile = "$output_dir/$outfile.ppp";
if(fileolder($destfile,$infile_age)) {
print "Converting $file \tto\t$destfile\n";
system("cd $output_dir; APP < $input_dir/$file > $outfile.ppp;");
}

}

# Define a function that returns true if a file exists and is
# older than $age, or if the file does not exist
sub fileolder { #(filename, age)
my($file, $age) = @_;
(! ((-f $file) && ((-M $file) < $age)))

}

http://biostat.mc.vanderbilt.edu/StatReport has pointers to useful information about re-
producible analysis.

13.4 Reproducible Reports

As it is relatively easy to specify S commands to produce ASCII files containing LATEX code, especially
for tables, and it is very easy to produce postscript or pdf graphics files in an S program, running a
master LATEX document containing \input statements that include LATEX code fragments or graphics
files through the LATEX compiler will update the entire report, including cross-references, the table of
contents, the index, etc. This LATEX step could easily be added to a Makefile such as the one above.
See biostat.mc.vanderbilt.edu/StatReport/summary.pdf for detailed documentation for using
S and LATEX to produce statistical graphical and tabular reports.

To assist in documenting how graphics are produced in a report, you can include the S code in
the LATEX document after putting special comments in the code, e.g.

\begin{Example} # Example environment is in S.sty
# LaTeX style from UVa Web page

setps(fig1) # setps is in Hmisc
plot(...) # Figure \ref{fig1}
dev.off()
\end{Example}

When the code is listed in the document, the actual figure number will be inserted in the S comment.

13.5 Writing Your Own Functions

13.5.1 Some Programming Commands

We will describe here the commands for loops and conditional execution of statements. In general,
for dealing with structures such as matrices and vectors, it is preferable to use vectorized arithmetic
and indexing rather than loops, but sometimes they are necessary.

The commands and their syntax are

http://biostat.mc.vanderbilt.edu/StatReport
http://biostat.mc.vanderbilt.edu/StatReport
http://biostat.mc.vanderbilt.edu/StatReport
http://biostat.mc.vanderbilt.edu/statReport/summary.pdf
biostat.mc.vanderbilt.edu/StatReport/summary.pdf
http://biostat.mc.vanderbilt.edu/statReport/summary.pdf
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if(cond) expr Evaluates cond; if T evaluates expr
if(cond) expr1 else expr2 Evaluates cond; if T evaluates expr1; if F evaluates expr2
ifelse(cond,expr1,expr2) This is a vectorized version of if .. else ... It evaluates

cond and returns elements of expr1 for TRUE elements,
and elements of expr2 for FALSE elements.

switch(expr, ...) The result of expr must be character or numeric, it is compared
to rest of the arguments and returns the first one that matches exactly.

for(name in expr1) expr2 Evaluates expr2 for each name in expr1

13.5.2 Creating a New Function

One of the best features of S is perhaps the capability of writing your own functions. Most functions
are written in the S language and you can look at them by just typing the function name

> sqrt

function(x)

x^0.5

Other functions are written in C or Fortran and you don’t have easy access to them. However you
can write a function that interfaces to a C or Fortran subroutine by using the functions .C and
.Fortran. The general form of writing a function is

f ← function(x,y,z,...) {

S statements

. . .

}

We can either create a text file with this code and submit it through a batch command such as
Splus < filename.s or Bs filename in UNIX, or use the source or src functions or paste the
function definition if operating in an interactive session. The function will then reside in your .Data
directory unless you have something else attached in position one of the search list (same rules as
with other objects apply).

The bpower function in Hmisc, which approximates the power of a two-sample binomial test, is
a good example of a simple function that has a few options for how the calculations are done.

bpower ← function(p1, p2, odds.ratio, percent.reduction, n, n1, n2, alpha =0.05)

{
if(!missing(odds.ratio))

p2 ← (p1 * odds.ratio)/(1 - p1 + p1 * odds.ratio)

else if(!missing(percent.reduction))

p2 ← p1 * (1 - percent.reduction/100)

if(!missing(n)) {
n1 ← n2 ← n/2

}
z ← qnorm(1 - alpha/2)

q1 ← 1 - p1

q2 ← 1 - p2

pm ← (n1 * p1 + n2 * p2)/(n1 + n2)
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ds ← z * sqrt((1/n1 + 1/n2) * pm * (1 - pm))

ex ← abs(p1 - p2)

sd ← sqrt((p1 * q1)/n1 + (p2 * q2)/n2)

c(Power = 1 - pnorm((ds - ex)/sd) + pnorm(( - ds - ex)/sd))

}

Here is another simple function.

> spearman ← function(x, y)

{
notna ← !is.na(x + y) # exclude NAs

c(rho = cor(rank(x[notna]), rank(y[notna])))

}

This function just calculates the Pearson correlation on the ranks of x and y after excluding missing
values (since cor does not accept missing values).

We could build on the existing functions and write our own versions of them. We could issue the
command

> my.matrix ← edit(matrix)

to change the default parameter byrow from F to T. xedit will make an “edit” window with the
code for matrix to appear and make the changes there. It is possible to use other editors. Others
may use the function fix which works in a very similar way.

13.6 Customizing Your Environment

You can customize your S environment a little by defining a .First function. Here is an example:

> .First ← function() {
attach("/support/1/s", pos = 4) # get access to data frames

# in another directory

library(Hmisc, T)

library(Design, T)

options(digits=4) # default no. digits for printing

invisible() # makes .First not print anything

}

The .First function contains commands that we want executed each time we start S-Plus. For
UNIX S-Plus, If you want this function to be the same in all your subdirectories, you don’t need
to type it again. It is enough if you copy it to your .Data subdirectory. You can also have a
.Last function as well. The store function in the Hmisc library creates a .Last function to delete
temporary objects before S exits.
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C index, see ROC area or somers2
χ2 test, 130, 141
x fixed, 165
x random, 165
.Data, 5
.First, 284
.RData, 81
.lst, 265–268
.pdf file, 19, 20, 263, 282
.sdd file, 66
.wmf file, 20, 213, 263
?, 25
LATEX, 20, 144, 150, 177, 179, 182, 193, 198, 270,

273, 282
Data, see .Data
Prefs, 6

S-Plus transport file, 54, 73

abbreviate, 91
accelerated failure time model, 177
accessing objects, 82, 84
Acrobat reader, 20
addressing individual observations, 3
adj, 257
adjust to, 218
Adobe Acrobat, 20
Adobe Illustrator, 20
aggregation, see by processing
AIC, 179, 197, 274, 276
approximating models, 278
arguments to functions, 27, 29, 30
array, 42
aspect, 233
aspect ratio, 227
assignment, 30
attach, 65, 73, 74, 80
attaching data frame subset, 76

attribute, 25, 39, 40, 55, 64, 78, 83, 176
deleting, 39
new, 40

audit file, 4, 9
axes, 214, 241, 253–257

Banfield, Jeffrey, 226
bash, 281
batch processing, 6, 10, 265, 267, 269
bias–corrected estimates, 189
bilinear regression, 176
black and white, 232
bootstrap, 114, 116, 117, 120, 123, 125, 126, 154,

163, 164, 167, 177, 179, 180, 189, 207,
208, 278

ranks, 118
box plot, 215, 226, 229
box–percentile plot, 126, 226
Buckley–James model, 177
by processing, 85, 89, 123, 125, 141, 223, 226,

233, 236, 238, 239, 277

C, 52, 120
calibration, 180, 201, 278
case, 25, 64, 89, 92
categorical predictor, 198
categorical response, 155
categorical variable, 178
categorization, 91, 182, 186, 220, 229, 277
censored data, 177
censoring distribution, 132
cex, 243, 247, 251
change, computing, 101
character string, 89, 92
character values, 11, 31, 72
class, 27, 40–42, 218
cluster sampling, 163, 164
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coefficients, 179
colors, 226
column percents, 143
command prompt, 7, 9, 266, 267
comment, 7, 269
conditioning plot, 220, 227, 229
confidence limits, 110, 117, 123, 125, 128, 130,

163, 164, 166, 169, 179, 207, 208, 218
confounder, unmeasured, 178, 179
continuation ratio model, 177
contrasts, 169
coplot, 220
covariable distribution, 121, 223
covariance matrix estimation, 177
Cox model/test, 131, 135, 177, 190, 192
cross–validation, 180
cubic spline, 163, 164, 176–178, 182, 198, 200
current working directory, 6
Cygnus, 267, 280
cygwin32, 267, 280

d.f., 179
data density, 69, 223, 226, 233, 241, 276
data directory, 71, 80
data frame, 38, 42, 54, 71, 78, 80, 83, 84, 108,

196
data management, 71, 81, 89
data manipulation, 89, 92, 94
data, example, 7
data.frame, 40
date, 52, 72, 92, 96, 101, 241
DateTimeClasses, 62
DBMSCOPY, 55
default argument values, 30
degrees of freedom, see d.f.
deleting variables, 31, 44, 78
density, 126, 223, 234, 259
derived variables, 103, 107
descriptive statistics, 74, 144, 148, 150
Design, 1, 38, 115, 175, 176, 197, 200, 201
Design example, 114, 137, 181, 194, 198, 200,

215, 221, 259, 268, 269
Design fitting functions, 178
design matrix, 38, 176, 179, 196, 220
Design troubleshooting, 197, 201
device, 20, 213, 230, 243, 247, 260, 261, 263, 268

diagnosis, 155, 181
dialog, 7
digits, 66, 67, 136, 144, 193, 269, 284
dim, 39, 42
dimnames, 39, 42, 97
directory, 4, 71, 84, 241, 267, 283
distribution, 233

F , 126
χ2, 126
t, 126
beta, 126
binomial, 126, 283
Cauchy, 126
exponential, 126, 148
Gamma, 126
Gaussian, 126, 219, 226, 241
geometric, 126
Gompertz, 132
log–normal, 132
logistic, 126
lognormal, 126
multivariate Gaussian, 165
negative binomial, 126
normal, 126
Poisson, 126
uniform, 126
Weibull, 126, 132

documentation, 10, 83
DOS, 267
dot plot, 117, 144, 229
double, 53
drop, 52, 65
drop.factor.levels, 52
dummy variable, 92, 169, 182, 201
dumpdata, 54, 66
duplicate variable names, 82

echo, 266, 267
edit, 64
editing functions, 10
editing graphs, 213
editor, 9, 10, 19, 21–23, 284
effects of predictors, 99, 177, 179, 187, 198, 218,

227
efficiency, 130
Emacs, 9, 19, 20, 69
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empirical distribution function, 126
entering commands, 9, 10, 283, 284
environment, 284
error bars, 125, 207, 234, 236, 239
escape character, 11, 66, 72
ESS, 19
exiting, 6
exporting data, 54, 66
expressions, 108

F, 27, 29, 32
F10, 10
factor, 40–42, 52–55, 65, 78, 80, 91, 117, 197, 198,

215, 220, 229, 272
fig, 251
figure region, 243
file names, 11, 72
filter, 6, 84
fit object, 3, 81, 179, 195
for, 282
foreign, 54
formula, 142, 175, 179, 195
Fortran, 52, 120
FPTEX, 20
frequency table, 74, 141, 151
FUN, 144
function, 29
functions built–in to S

.First, 5, 52, 284

.Last, 284
?, 25, 83
[.factor, 52, 197
[.factor], 65
%*%, 35
abbreviate, 89, 91, 222
abline, 222, 241, 249, 256, 257, 273
ace, 113, 154
aggregate, 89, 238
anova, 169, 172, 174, 181
aov, 169
apply, 35, 38, 86, 116, 143
args, 26
arrows, 241, 256
as.factor, 97
as.numeric, 97
as.vector, 97

assign, 80
attach, 65, 73–76, 78, 80, 84, 266
attr, 40
attribute, 40
avas, 113, 154, 156
axes, 241
axis, 241, 255, 256, 258, 273
barchart, 143, 229
barplot, 223
binom.test, 135
bootstrap, 117–119
box, 241, 247, 249, 257
boxplot, 215, 223, 241
bwplot, 229, 230
by, 86, 95, 109
c, 30
canonical.theme, 232
casefold, 64, 89, 92
cat, 6, 66, 67
cbind, 97
cdf.compare, 68, 135, 226
chisq.gof, 135
chisq.test, 135
chron, 92, 101
class, 27, 40, 42
coef, 169, 195
col, 97
contour, 223
coplot, 213, 219, 220, 223
cor, 8, 123, 284
cor.test, 8, 135, 136
coxph, 178
crossprod, 35
crosstabs, 141
cumsum, 123
cut, 91
data.dump, 54, 66
data.frame, 38, 40, 78, 81, 88, 89
data.restore, 54, 66
datadensity, 67, 69
date, 40
density, 223, 234, 259
densityplot, 234
detach, 74–76
dev.off, 261, 262
dev.print, 20, 260
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dim, 39, 42
dimnames, 39, 42, 97
dotchart, 223
dotplot, 67, 143, 229
drop1, 169
duplicated, 89
ecdf, 229
edit, 9, 55, 64, 65, 284
equal.count, 210, 229
expand.grid, 89, 91, 99, 161, 234
expression, 108
faces, 223
factor, 40, 41, 55, 65, 105, 117, 144, 178, 197,

198, 229, 272
find, 73, 83
fisher.test, 135
fitted, 158
fix, 10
format, 66, 67
formula, 179, 195
frame, 241, 251
friedman.test, 135
gam, 154
get, 82, 83
glm, 178
help, 25, 30, 83
help.start, 26
hist, 223, 241
hist2d, 151
histogram, 229
hpgl, 261
hplj, 261
I, 156, 176
identify, 220, 222
ifelse, 282
image, 151
install.packages, 52
interaction, 86, 223
interaction.plot, 220
key, 223, 226, 230
kruskal.test, 135
ks.gof, 135
labelclust, 241
lapply, 88
lattice.options, 232
legend, 222, 226, 241

length, 39, 42
levels, 10, 39, 42, 65, 85, 92, 103, 105, 197,

272
library, 44, 202
limits.emp, 117
lines, 166, 169, 200, 214, 215, 241, 256
list, 36
lm, 169, 178, 181
load, 82
locator, 200, 222
lowess, 166, 215, 222, 226
ls, 72
mantelhaen.test, 135
masked, 83
match, 89, 221
matlines, 256
matpoints, 256
matrix, 25, 34, 35, 97, 178
max, 123
mcnemar.test, 135
mean, 29, 123, 179, 186
median, 116, 123
merge, 89, 93–95, 98
merge.levels, 89, 103–105, 198
methods, 3, 27
min, 123
mode, 39
model.frame.default, 177
motif, 213, 260, 261
mtext, 241, 247, 253, 273
na.pattern, 33, 67
names, 27, 34, 39, 40, 42, 64, 73, 75, 88, 104,

241
ns, 178
objects, 72, 81
objects.summary, 72
openlook, 260, 261
options, 8, 9, 22, 26, 52, 66, 69, 144, 169,

182, 193, 198, 200, 201, 217, 259, 262,
266–269, 274, 284

order, 85, 101
ordered, 178, 229
outer, 35
page, 67, 69
pairs, 220, 223
panel.superpose, 143, 234
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par, 213, 241, 244, 245, 249, 251, 253
parallel, 229
paste, 66, 67, 92
pbinom, 128
pdf.graph, 20
persp, 223
perspp, 241
pf, 128
pie, 223
plclust, 223
plogis, 227
plot, 8, 169, 179, 200, 207, 213, 223, 229,

241, 269
plot.data.frame, 67, 68
plot.factor, 219
pmatch, 89
pmax, 123
pmin, 123
points, 207, 215, 241, 249, 256
pointwise, 169
poly, 175, 176, 178, 201
polygon, 241
postscript, 261–263, 266, 268
predict, 99, 169, 179, 195
print, 41, 179
print.char.matrix, 67, 141
print.trellis, 233
printgraph, 260
prop.test, 135
ps.options, 262
q, 6
qf, 128
qlogis, 270
qqline, 219, 241
qqnorm, 158, 219, 223
qqplot, 223
quantile, 88, 109, 116, 123, 179, 191, 192
rank, 118
read.csv, 82
read.S, 54
read.table, 6, 38, 53, 65
remove, 31, 44
reorder.factor, 117, 229
resid, 158, 169, see residuals
residuals, 169, 179, 219
rev, 85

rm, 31, 44
round, 66
row, 97
row.names, 38, 39, 42
rug, 233, 241
runif, 125
sample, 116
sapply, 38, 67, 88
save, 82
scan, 6, 53, 54
search, 71
segments, 207, 241, 256
seq, 89
set.seed, 125
shingle, 229
show.settings, 233
sink, 10, 67
sort, 27, 67, 85, 221
source, 6, 267, 283
split, 215, 226
splom, 229, 230
stamp, 241
strata, 178, 201
strip.default, 231
stripplot, 229, 233
subplot, 256, 259, 260
substring, 89, 92
summary, 86, 109, 169, 179
supsmu, 154, 214, 226
Surv, 177
survreg, 178
sweep, 143
switch, 282
symbols, 151, 241, 256
system, 5, 6
t.test, 135, 138
table, 89, 143, 197, 198
tapply, 86, 94, 96, 186, 238, 277
text, 241, 247, 249
title, 169, 241, 249, 273
transform, 76
tree, 67, 155
trellis.device, 230, 233
trellis.par.get, 230, 231, 236
trellis.par.set, 230, 231
tslines, 256
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tsplot, 223, 258
tspoints, 256
unclass, 41
unique, 89, 221
unix, 40
unlist, 37, 221
update, 176, 197, 221, 270, 274
update.packages, 52
usa, 223
var, 123
var.test, 128, 135, 139
wilcox.test, 135, 137
win.graph, 67, 213, 261
win.printer, 261, 264, 268
win3, 6
with, 99
wmf.graph, 264
write.table, 65
X11, 213, 261
xyplot, 89, 93, 229, 235, 239

functions in Design library
%ia%, 186
anova, 118, 178, 179, 182, 183, 196, 198, 219
asis, 178
bj, 178
bootcov, 114, 179
calibrate, 180, 201, 278
catg, 178
contrast, 179, 198
cph, 178, 179, 190, 192
datadist, 182, 198, 200, 201, 217, 218, 259,

262, 269
Dialog, 179
effective.df, 179
fastbw, 178, 179, 190, 196, 197, 274, 276
Function, 11, 179, 198, 200
gendata, 179
Hazard, 179
latex, 179, 180, 182, 193, 198
lrm, 137, 161, 176, 178, 182, 183, 194, 196,

198, 273, 274, 277
lsp, 176, 178
matrx, 178
Mean, 179
naprint, 180
naresid, 180

nomogram, 180, 191, 192, 198, 223, 278
ols, 38, 115, 178, 200, 215, 278
pentrace, 179, 274, 276
plot, 179, 180, 182, 183, 190, 198, 200, 217,

219, 223, 273
plot.anova, 118, 179, 198, 223
plot.lrm.partial, 274
plot.summary, 187, 223
plot.xmean.ordinaly, 270
pol, 178, 201
predict, 179, 198, 276
print, 179
psm, 178, 179
Quantile, 179, 191, 192
rcs, 176, 178, 182, 201
resid, 274
residuals, 179
rm.impute, 167, 179
robcov, 179, 198
scored, 178
sensuc, 179
specs, 179, 198
strat, 178, 190, 201
summary, 179, 187, 198
survest, 180
Survival, 179, 191, 192
survplot, 180, 223
validate, 180, 189, 190, 201, 278
vif, 180
which.influence, 179, 221

functions in Hmisc library
[.factor, 52, 65, 197
%in%, 76, 194, 197
%nin%, 76
all.is.numeric, 46
approxExtrap, 46
areg.boot, 154, 156
aregImpute, 113–115
attach, 99
ballocation, 129
binconf, 123, 128
bootkm, 126
bpower, 129, 130, 283
bpower.sim, 129, 130
bpplot, 67, 126, 223, 226
bsamsize, 129, 130
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bystats, 123
bystats2, 123
Cbind, 238
character.table, 241, 249
ciapower, 129
cleanup.import, 53, 65, 73, 78, 108
code.levels, 56
combine.levels, 89, 92, 209
comment, 46, 83
contents, 46, 63
cpower, 129, 131
Cs, 32, 38, 43
csv.get, 46
cumcategory, 123, 125
cut2, 89, 91, 151, 210, 237, 277
datadensity, 223, 233
dataRep, 46, 202
describe, 62, 67, 69, 73, 86, 105, 123, 198,

269
do, 268, 269, 274
Dotplot, 119, 236, 237
drawPlot, 46
ecdf, 67, 126, 223, 230, 233
eip, 46
event.chart, 46
event.history, 46
find.matches, 89
fit.mult.impute, 115
format.df, 46
Function, 158
Function.areg.boot, 179
Function.transcan, 179
gbayes, 129
getHdata, 46, 73
Gompertz2, 132
gs.slide, 261, 263
hdquantile, 46
hist.data.frame, 67, 223, 269
histbackback, 46, 209
histSpike, 223
hoeffd, 123
impute, 74, 112, 155, 198, 272
impute.transcan, 113
is.imputed, 113, 155, 272
is.special.miss, 56
key, 230

labcurve, 131, 133, 161, 205, 223, 226
Label, 56
label, 25, 55, 64, 88, 105, 272
Lag, 46, 101
latex, 44, 46, 144, 150, 179, 180, 193, 198,

270, 273
ldBands, 46
llist, 88, 89, 117, 239
Load, 46, 82
Lognorm2, 132
logrank, 132
mApply, 94
mem, 46
mgp.axis.labels, 46
minor.tick, 241, 255
monotone, 156
mtitle, 241, 253
naclus, 38, 67
naplot, 38, 67
nomiss, 35, 230
panel.bpplot, 229, 230
panel.plsmo, 230
plot.rmboot, 166
plot.summary.formula, 223, 270
plot.summary.formula.response, 239
plotCorrPrecision, 46
plsmo, 223, 226, 230
popower, 129, 130
posamsize, 129
prlatex, 273, 274
prn, 46, 277
ps.slide, 261, 263, 268
pstamp, 46, 241, 269, 273
putKey, 46
putKeyEmpty, 46
Quantile2, 132
rcorr, 123, 136
rcorr.cens, 123, 126, 136
rcorrp.cens, 123, 126
recode, 89, 106
reorder.factor, 119
reShape, 89, 97–100, 143, 238
rm.boot, 163
rMultinom, 46
samplesize.bin, 129
sas.codes, 56
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sas.get, 38, 55, 56, 61, 62, 74, 197, 269
sasxport.get, 46, 110
Save, 46, 82
scat1d, 223, 233, 276
score.binary, 89, 106, 269
sedit, 89
setps, 263
setTrellis, 46, 232
show.pch, 241, 249
smean.cl.boot, 109, 120, 123, 125, 207, 236
smean.cl.normal, 117, 123, 125
smean.sd, 109, 123, 125
smean.sdl, 123, 125
smedian.hilow, 109, 123, 125, 236
somers2, 136, 276
spearman, 284
spearman.test, 136
spearman2, 137
spower, 129, 132, 133
spss.get, 46
src, 9, 267, 283
stata.get, 46
store, 78, 80, 81, 274, 284
stores, 81
subset, 46, 77
summarize, 88, 117, 123, 125, 236, 238
summary, 158
summary.areg.boot, 158
summary.formula, 88, 109, 123, 125, 144,

150, 223, 239, 270
symbol.freq, 67, 151, 223
sys, 5, 6
table of all functions, 46
tex, 46
transcan, 272
trellis.strip.blank, 46, 231
units, 105
upData, 46, 53, 64, 78, 109
val.prob, 180
varclus, 67, 271
Weibull2, 132
win.slide, 261, 263, 268
with, 75
xYplot, 161, 209, 234, 236, 237, 239

functions, generating S code, 132, 158, 177, 179,
191, 198, 200

generalized additive model, 154
generating data, 179
generic functions, 3, 179, 180, 219
gnuclient, 69
gnuclientw, 9
grand mean, 86, 226
graph sheet, 10, 261
graphical device, see device
graphical parameters, 213, 241, 244, 247, 253
graphical user interface, 7
graphics region, 243
graphics, interactive, 200, 213, 222
graphics, publication quality, 263, 264
graphviz, 20
groups, 229
GUI, 6, 7, 84, 213

hazard function, 179
hazard ratio, 132, 177, 178
help, 10, 18, 25, 26, 30, 83, 135
help topics, 28
Hevea, 151
hierarchy, 106
histogram, 46, 223, 229, 233

2-dimensional, 151
history file, 9, 10
Hmisc, 177, 198
Hoeffding’s D, 123
HTML, 151
Huber covariance estimator, see robust estimates,

179

ID, 75
identify, 220
identifying observations, 75, 222
if, 268, 282
importing data, 38, 53–55, 64, 66, 73, 108, 139,

269
imputation, 25, 74, 112–114, 155, 180, 198, 272

adjusting variances for, 114, 115
influential observations, 179, 221
Insightful, 4
inspecting data, 67, 223, 233, 269, 270
installing add–on libraries, 51
integer, 53
interaction, 175, 177, 181, 183, 186, 187, 201
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intervals, 91, 220, 229, 277
invoking S, 4

JED, 23
join, 89, 93, 95

Kaplan–Meier estimate, 126, 144
kernel density, 223
knots, 176, 179
Kruskal–Wallis, 137

lab, 253, 255
label, 25, 55, 63, 64, 78, 88, 91, 105
labeling curves, 226
lag, 46, 101
las, 253
lattice, 227, 235
layout, 232
legend, 222, 223, 226, 241
length, 39, 42
level, 78
levels, 39, 41, 42, 63–65, 80, 85, 92, 103, 105, 197,

272
levels, empty, 52, 65, 197
library, 44, 202
life expectancy, 148
line types, 226, 247
linear correlation coefficient, 123, 136, 284
linear model, 135, 164, 177, 215, 220, 259, 278
linear spline, 176, 178
linearity, 177, 190, 198
lines, 214, 222, 241
Linux, 18, 19
list, 3, 36–38, 42, 44, 64, 88, 110, 195, 221
listing file, see .lst
log–log plot, 190
log–rank test, 131, 132, 135
logarithmic scale, 187, 260
logical operators, 32
logical values, 31, 267, 268
logistic model, 1, 120, 135, 137, 176, 177, 181,

189, 194, 273, 274, 277
looping, 88
lty, 247
lwd, 247, 249

Macintosh, 4

make, 280
Mann–Whitney, 137
mar, 244
margin, 243, 244
marginal summary, 86, 144, 223, 226
margins, 214, 244
match merging, 93, 95
math operators, 7
MathSoft, 234
Matrix, 44
matrix, 25, 34, 35, 42, 97, 178, 201

finding rows containing NAs, 35
redimensioning, 40
selecting columns, 35

matrix of plots, 251, 269
Mayura Draw, 20
mean, 74, 179
memory usage, 74, 75, 82
merge, 89, 93, 94, 98
metadata, 63
Metafile Companion, 213
methods, 3, 27, 40, 179, 180, 218, 219
mfcol, 251
mfg, 251
mfrow, 133, 243, 251, 273
mgp, 253
Microsoft

Excel, 6, 53
Explorer, 21, 84
Office, 264
Office Binder, 6
PowerPoint, 19, 213, 261, 263
Windows, 6, 18, 51, 84, 135, 214, 261, 263,

267
metafile, 261, 263

Word, 6, 9, 19, 22, 150, 213, 261, 263
MikTEX, 20
missing values, see NA
mkh, 247, 249
mode, 39
model formula, 175
model specification, 175
modeling, 1
modeling language, 175
Monte Carlo simulation, 115
mouse, 200, 214, 222, 223
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multivariate response, 144, 148, 229

NA, 25, 32, 34, 35, 38, 67, 74, 91, 112, 115, 123,
180–182

patterns, 32, 67
na.rm, 123, 144, 186
names, 25, 27, 34, 39, 42, 64, 75, 88, 104, 241
new, 251, 256, 258
nomogram, 180, 191, 192, 198, 278
non–monotonic function, 113, 137, 153, 154, 200
nonlinearity, 177
nonparametric, 136, 166
nonparametric regression, see smoother
Notepad, 9
NoteTab, 21
NULL, 78

object browser, 213
object explorer, 6, 7, 78, 84
object orientation, 3, 27
objects, 25, 72

temporary, 80
odds ratio, 130, 177, 178, 187, 276
odds/hazard ratio plot, 177
oma, 244, 246
optimism, 154, 189
options, 169
ordinal predictor, 178, 198
ordinal regression, 135, 137, 155, 177, 273, 274,

277
ordinal response, 130, 135, 137, 273, 274, 277
output, see .lst, see writing output files
output routing, 10
overfitting, 189

pager, 69
pairwise correlations, 123, 136
parallel coordinate plot, 229
parametric survival model, 177
partial F–test, 172
pbc, 73
pch, 243, 247
penalized estimation, 177, 179, 274

differential, 177, 274
Perl, 281
PFE, 9, 22, 69

plot region, 243
plots, automatic titling, 88
points, 214, 241
pointsize, 262
polynomial, 178, 201
polytomous response, 155
POSIX, 62
POSIXct, 62
postscript, 264
power, 120, 129, 132
power curves, 131
predicted values, 99, 179, 186, 191, 192, 198
print, 179
printing, 260, 268

customized, 66
probability functions, 126
profile, 163, 164
profiling, provider, 117
programming, 267, 282
project, 4, 267
proportional hazards, 190, 192
proportional odds model, 130, 135, 137, 155, 177
prostate, 73, 194
pstoedit, 264

quantile, 74, 123, 125, 126, 179, 191, 192
groups, 91

quitting, 6
quoting, 43

R, 4
R-help, 3
RAM, 19
random numbers, 125, 126, 136, 146, 165
ranking Wald χ2 statistics, 118
ranks, confidence limits for, 117
Ratfor, 52
recode, 3, 103–106, 197, 269, 272
recursive partitioning, 155
remote objects, 82, 84
repeated measurements, 97, 99, 163
repetitive operations, 88
report window, 10, 11
reproducible analysis, 280
reproducible report, 282
reshaping data, 97, 99, 100
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residual plot, 177
residuals, 158, 164, 169, 179, 219, 274
restricted cubic spline, see cubic spline
Ripley, Brian, 3
robust estimates, 179
ROC area, 144, 146
row percents, 143
row.names, 38, 39, 42, 75, 91
rpart, 155
rtf, 10
rug plot, 208, 209, 223, 233, 276

S, 1
S analysis functions, 18
S-news, 3
sample size, 129
SAS, 3, 11, 25, 33, 38, 41, 55, 60–62, 74, 110, 280

formats, 55
labels, 55
length, 55
procedures, 11, 18

sas.get (Helpfile), 56
saving output, see writing output files
sbf, 7
scales, 233
scales, multiple, 257, 258
scatterplot, 220, 223

alternatives to, 237
scatterplot matrix, 229
scorecarding, 117
scr, 10
script, 10, 265
sdd file, 54, 73
search list, 43, 71, 74, 78, 109
sensitivity analysis, 178, 179
seqential F–test, 172
serial data, 93, 94, 97, 99, 163
shaded panels, getting rid of, 230
shingle, 210
shortcut, 6, 267
shrinkage, 177, 274
simulation, 115, 120, 129, 130, 132, 133, 136, 144,

165, 200, 234, 236
confidence limits, 130

single, 53
singularity, 197

size of character, see cex
size of object, 72
skip, 232
smoother, 154, 158, 166, 208, 209, 214, 215, 222,

226, 230
Somers’ D, 136
sort, 27
sorting, 85
Spearman correlation, 123, 135–137, 271, 284
special missing values, 55, 61, 74
split, 233
srt, 257
stamp plot, 241, 269
start in directory, 6
starting S, 4
statistical models, 135, 169, 175
statistical summaries, 123
Statlib, 44
stopping rule, 196
storage mode, 53
stratification, 85, 89, 123, 190, 201, 223, 226, 229,

233, 277
multi–way, 86, 144, 147

subscript, 33, 37, 42, 97, 104
subset, 33, 39, 42, 76, 77, 82, 96, 142, 196, 197,

221, 266
superpose, 234
superposition, 229
Surv, 177
survival curves, 126, 180
survival distribution, 132
survival function, 179
survival probabilities, 126, 132, 144, 180, 191, 192
switch, 282
symbolic expressions, 108
symbols, 151, 241, 243, 247, 256
system commands, 5

T, 27, 29, 32
table making, 141, 144, 270
temporary directory, 81
tensor spline, 177, 182
test, statistical

F for variances, 135
χ2, 135
t, 135, 138
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analysis of variance, 135
binomial, 135
correlation, 135
Cox, see Cox model/test
Fisher’s exact, 135
Kolmogorov–Smirnov, 135
Kruskal–Wallis, 135
log–rank, see log–rank test
Mantel–Haenszel, 135
McNemar, 135
Spearman, see Spearman correlation, 136,

137
Wilcoxon, 135–137

TeXmacs, 22
text, 241, 244
tick marks, 214, 241, 253, 255
TIFF, 264
time, 52, 92
titanic, 51, 151, 226, 230
titanic2, 51
title, 241
transformation, 158, 176, 178, 182, 198, 201
transport file, 66
trellis, 44, 93, 117, 143, 213, 227, 229, 230, 233,

236–239, 263
composing multi-graph layout, 233
options, 232, 233
strip background, 231, 232

true, 27, 29
Type III sum of squares, 174, 181
types of sums of squares, 172
typesetting, see LATEX, 179, 193, 198

UltraEdit, 9, 21
unique, 221
units of measurement, 63, 105
UNIX, 18, 52, 56, 69, 214, 241, 260–262, 265–267,

280
use.names, 75
user-written functions, 11, 14, 283
usr, 247, 249, 257

validation, 177, 180, 189, 190, 201, 278
variable clustering, 271
variable selection, 179, 190, 196, 201, 202
variable types, 74

variables
accessing, 71
adding, 78
changing, 64, 109
recoding, see recode

variables, processing several, 88
variance inflation factor, 180
variance of sample median, 116
variance stabilization, 154, 158
vector, 2, 25, 30, 42
vectors, differing lengths, 31
VIF, 180

Wald test, 177, 179, 182, 197
web server, 4
wget, 73
Wilcoxon, 137
win.graph, 260
windows metafile, 20, 213, 263, 264
WinEdt, 21
workspace, 85
writing output files, 10, 11, 65, 67

Xedit, 9
Xemacs, 9, 20
Xmouse, 20
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