| Rfuzzycoco-package | Rfuzzycoco: Provides an R Interface to the 'FuzzyCoCo' C++ Library and Extends It |
| compute_optimal_quantile_fuzzy_set_positions | computes the optimal fuzzy set positions based on the distribution of the data |
| evaluate.fuzzycoco_fit | evaluate the fuzzy system from a fit on some given data |
| evaluate_fuzzy_system | evaluate the fuzzy system from a fit on some given data |
| example_iris36 | model parameters and data for the IRIS36 classification example |
| example_iris_binary_categorical | model parameters and data for the IRIS36 classification example |
| example_mtcars | model parameters and data for the mtcars regression example |
| fit.fuzzycoco_model | fit the FuzzyCoco model using the formula interface |
| fit_to_df | a one-row overview of a fuzzy system with the usage of variables, the fitness, number of generations and optionally a metric |
| fit_xy.fuzzycoco_model | fit the FuzzyCoco model using the dataframe interface |
| fs_rules_to_df | format the fuzzy rules as a data frame |
| fs_used_vars_to_df | extract the usage of the variables by a fuzzy system |
| fuzzycoco | creates a model for the Fuzzy Coco algorithm |
| fuzzycoco_fit_df_hybrid | lowest-level implementation of the fitting of a fuzzy coco model using the *hybrid engine* |
| fuzzy_coco_parsnip | parsnip model function |
| fuzzy_coco_systematic_fit | systematic search |
| params | utility to build the Fuzzy Coco parameters data structure |
| predict.fuzzycoco_fit | predict the outcome on some input data using a fitted model |
| predict_fuzzy_system | predict the outcome of a fuzzy system on some input data |
| Rfuzzycoco | Rfuzzycoco: Provides an R Interface to the 'FuzzyCoCo' C++ Library and Extends It |
| stop_engine_if_stalling | an utility function to easily generate a stop function that stops when the convergence is stalling |
| stop_engine_on_first_of | an utility function to easily generate the commonly used 'until' parameter, as used by 'fuzzycoco_fit_df_hybrid()' |