Package ‘singIST’

January 31, 2026

Title comparative single-cell transcriptomics between disease models
and a human condition

Version 0.99.85

Description Provides with toolkits to implement a full singIST analysis with pseudobulked Seurat ob-
jects of disease models and human data.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), BiocStyle, knitr, qpdf, utils,
ReppAlgos, glmGamPoi, methods, sp

Config/testthat/edition 3

Imports msigdb, GSEABase, checkmate, stats, asmbPLS, BiocParallel,
stringr, FactoMineR, Seurat, SeuratObject, biomaRt, data.table,
purrr, SingleCellExperiment, SummarizedExperiment, scran,
scuttle, missMDA, S4Vectors

VignetteBuilder knitr
Depends R (>=4.6.0)
LazyData false

biocViews SingleCell, Classification, Transcriptomics
URL https://github.com/DataScienceRD-Almirall/singIST

BugReports https://github.com/DataScienceRD-Almirall/singIST/issues
git_url https://git.bioconductor.org/packages/singIST

git_branch devel

git_last commit 8d9d6ba

git_last_commit_date 2026-01-07

Repository Bioconductor 3.23

Date/Publication 2026-01-30

https://github.com/DataScienceRD-Almirall/singIST
https://github.com/DataScienceRD-Almirall/singIST/issues

2 Contents

Author Aitor Moruno-Cuenca [aut, cre] (ORCID:

<https://orcid.org/0009-0009-8133-2552>),

Dr. Sergio Picart-Armada [rev] (ORCID:
<https://orcid.org/0000-0002-6426-8204>),

Dr. Alexandre Perera-Lluna [ths] (ORCID:
<https://orcid.org/0000-0001-6427-851X>),

Dr. Francesc Fernandez-Albert [ths] (ORCID:
<https://orcid.org/0000-0001-5561-0701>)

Maintainer Aitor Moruno-Cuenca <morunoaitor@gmail . com>

Contents
add_missing_psb_rows L e 3
asmbPLSDA.cvkev L 4
asmbPLSDA.cv.oo 5
biological_link_function 7
celltype_mapping e 8
celltype_recap i e e e e e e e 9
check_fit model 10
check_hyperparameters oL 10
check_mapping_organism 11
check_pathway e 12
check_superpathway L e 13
check_superpathway_input L 14
CIP_GIP. e 15
CIP_GIP_test e 16
clean_mfa_data e 17
create_fit_model e 18
create_hyperparameters o u e e e e e e e e e e e e 19
create_mapping_OrganiSImottt e 20
create_pathway 21
create_superpathway Lo e 22
create_superpathway_input L. 23
derive_contributions L. 25
derive_SCOTES v o o e e e e 26
diff_expressed 27
fitOptimal e 28
fit_mfa_imputer e e e 30
gene_contrib L. e e e e e 31
helpers 32
matrixToBlock 43
multiple_check 44
multiple_fitOptimal 45
multiple_singISTrecapitulations 46
orthology_mapping e 47
permut_asmbplsda 48

permut_asmbplsda_kevo oL 49

https://orcid.org/0009-0009-8133-2552
https://orcid.org/0000-0002-6426-8204
https://orcid.org/0000-0001-6427-851X
https://orcid.org/0000-0001-5561-0701

add_missing_psb_rows 3

predict_mfa_imputer e e 50
pullGeneSet 51
render_multiple_outputs L. 52
restore_removed_columnso e e e 52
Results_comparison_measure it e e 53
setGeneSetsCelltype 54
singlSTrecapitulations L 55
singIST_treat e 56
superpathway_recap L e 57
update_group_SiZeS e e e e e e e e e e e e e 58
wilcox CIP_GIP e 58
Index 60

add_missing_psb_rows Ensure all celltype—sample combinations are present in the pseudob-
ulkmatrix

Description

Ensure all celltype—sample combinations are present in the pseudobulkmatrix

Usage

add_missing_psb_rows(mat, celltypes, sample_ids)

Arguments
mat A numeric matrix with rownames in the form “celltype_sample”.
celltypes Character vector of the celltypes you intend to include (in the exact order of
object@superpathway_info@celltypes).
sample_ids Character vector of all sample identifiers (in the order of rownames (object@pseudobulk_lognorm)
split by “_").
Value

A numeric matrix with length(celltypes) * length(sample_ids) rows, in the canonical paste(celltypes,

sample_ids, sep = "_") order, where newly added rows are filled with NA_real_.

4 asmbPLSDA.cv.kcv

asmbPLSDA. cv.kcv K-fold x Repeated Cross-Validation for asmbPLS-DA

Description

Implements stratified K-fold cross-validation with repetitions, mirroring the structure of asmbPLSDA.cv. loo
but using K k and ncv instead of LOO.

Usage
asmbPLSDA. cv.kcv(
X.matrix,
Y.matrix,
PLS_term = 2,
X.dim,
quantile.comb. table,
k = 4,
ncv = 10,
outcome.type = c("binary”, "multiclass"),
Method = NULL,
measure = "B_accuracy"”,

parallel = FALSE,
expected.measure.increase = 0.005,
center = TRUE,

scale = TRUE,
maxiter = 100
)
Arguments
X.matrix Predictor matrix (nxp)
Y.matrix Response one-hot matrix (nxq)
PLS_term Integer: maximum number of PLS components
X.dim Vector: feature counts per block

quantile.comb. table
Matrix (Cxlength(X.dim)): quantile combinations

k Integer: number of CV k (K)

ncv Integer: number of ncv

outcome. type "binary" or "multiclass"

Method Prediction method

measure "B_accuracy","accuracy","precision","recall","F1"
parallel Logical: TRUE to parallelize per-fold

expected.measure. increase
Numeric: min performance gain to add PLS

asmbPLSDA .cv.loo

center Logical: center predictors

scale Logical: scale predictors

maxiter Integer: max iterations for asmbPLSDA. fit
Value

A list with:

quantile_table_CV
Matrix (PLS_term x (blocks + metrics)) of optimal quantiles and CV metrics

optimal_nPLS Integer: selected number of PLS components

splits List of length (k*ncv) of train/validation splits

Examples

example code

file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")

load(file)

data <- example_superpathway_input

matrices <- matrixToBlock(data)

X.matrix <- matrices$block_predictor

Y.matrix <- matrices$matrix_response

X.dim <- matrices$block_dim

quantile.comb.table <- data$hyperparameters_info$quantile_comb_table
quantile.comb.table <- rbind(quantile.comb.table, c(0.1, 0.2)) # Add 2 cases
outcome.type <- data$hyperparameters_info$outcome_type
asmbPLSDA.cv.kcv(X.matrix, Y.matrix, PLS_term =1,
X.dim,quantile.comb.table,Method = NULL, measure = "B_accuracy”,
parallel = TRUE, outcome.type = outcome.type,
expected.measure.increase = 0.005, center = TRUE, scale = TRUE,
maxiter = 100)

asmbPLSDA.cv.1loo Leave-one-out Cross-validation

Description

Leave-one-out Cross-validation

Usage
asmbPLSDA.cv.loo(
X.matrix,
Y.matrix,
PLS_term = 1,
X.dim,

quantile.comb.table,

6 asmbPLSDA.cv.loo
outcome.type = c("binary”, "multiclass"),
Method = NULL,
measure = "B_accuracy”,
parallel = FALSE,
expected.measure.increase = 0.005,
center = TRUE,
scale = TRUE,
maxiter = 100
)
Arguments
X.matrix Predictor block matrix from matrixToBlock
Y.matrix Response matrix from matrixToBlock
PLS_term An integer with the number of PLS components to use passed from hyperpa-
rameter list
X.dim A list with the observed gene set size for each cell type from matrixToBlock
quantile.comb. table
A matrix with the quantile comb table passed from hyperparameters list object
outcome. type A character indicating binary or multiclass passed from hyperparameters list
object
Method A parameter passed from fitOptimal
measure A parameter passed from fitOptimal
parallel A parameter passed from fitOptimal
expected.measure.increase
A parameter passed from fitOptimal
center A parameter passed from fitOptimal
scale A parameter passed from fitOptimal
maxiter A parameter passed from fitOptimal
Value
A list containing the optimal quantiles for each PLS component and the optimal number of PLS
components.
Examples
file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")
load(file)
data <- example_superpathway_input
matrices <- matrixToBlock(data)
X.matrix <- matrices$block_predictor
Y.matrix <- matrices$matrix_response
X.dim <- matrices$block_dim
quantile.comb.table <- data$hyperparameters_info$quantile_comb_table

biological_link_function 7

outcome.type <- data$hyperparameters_info$outcome_type
asmbPLSDA.cv.loo(X.matrix, Y.matrix, PLS_term = 1, X.dim,quantile.comb.table,
Method = NULL, measure = "B_accuracy”, parallel = TRUE,

outcome.type = outcome.type, expected.measure.increase = 0.005,

center = TRUE, scale = TRUE,maxiter = 100)

biological_link_function

Biological link function

Description

Maps the organism information in mapping organism list and superpathway fit model list to obtain
the "singIST treated samples" with the simulated human. The biological link function involves the
cell type mapping, orthology mapping and fold change computation.

Usage

biological_link_function(

object,

model_object,

object_gene_identifiers = "external_gene_name”,
model_species = "hsapiens”,
FC_list = NULL,

Arguments

object
model_object

A mapping organism list with the disease model data
A superpathway fit model list with the fitted model

object_gene_identifiers

model_species
FC_list

Annotation of gene identifiers used in object. By default external_gene_name.
If NULL orthology_mapping infers the gene identifiers of object, note this may
add execution time.

Organism for which model_object has been trained. By default hsapiens.

Optional parameter with list of matrices containing Fold Changes provided by
the user. If such list is provided, logFC will not be computed via diff_expressed
and the list input will be used instead. The list length must match the num-
ber and order of human cell types modelled. Each element of the list must be
a data.frame whose columns are: "p_value" p-value of test, "avg_log2FC"
the log2FC provided, "pct.1" percent of cells where the gene is expressed in
base class, "pct.2" percent of cells where the gene is expressed in target class,
"p_val_adj" adjusted p-value. Rownames should contain the gene names. Note
that 1og2FC provided should be comparable to log2FC computed in asmbPLS-
DA model. 10g2FC should be reported as descriptive point estimates of mean
difference of log2 normalized expression values.

Other parameters to pass onto diff_expressed

8 celltype_mapping

Value

A list with; ortholog gene sets as returned by orthology_mapping; a list with the Fold Changes used;
singIST treated samples as returned by singIST_treat

Examples

file <- system.file("extdata"”, "example_mapping_organism.rda”,
package = "singIST")

load(file)

data_organism <- example_mapping_organism

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

data_model <- example_superpathway_fit_model
biological_link_function(data_organism, data_model)

celltype_mapping Cell type mapping

Description
For a given mapping organism list it updates the variable celltype_cluster so that each element
of it is updated accordingly to the mapped cell types as indicated in object$celltype_mapping.
Usage

celltype_mapping(object)

Arguments

object A mapping organism list

Value

A mapping organism list with the object$counts slot updated, for the variable celltype_cluster
with the cell types according to the mapping defined in object$celltype_mapping.

Examples

file <- system.file("extdata"”, "example_mapping_organism.rda”,
package = "singIST")

load(file)

data <- example_mapping_organism

new_object <- celltype_mapping(data)
new_object$counts$celltype_cluster

celltype_recap 9

celltype_recap Derive cell type recapitulation

Description

Derive cell type recapitulation

Usage

celltype_recap(model_object, data_original, data_singIST)

Arguments

model_object A superpathway fit model list passed from singISTrecapitulations

data_original A matrix with the cell type contributions as returned by derive_contributions for
the non-singIST treated samples, passed from singlSTrecapitulations

data_singIST A matrix with the cell type contributions as returned by derive_contributions for
the singIST treated samples, passed from singlSTrecapitulations

Value

A data.frame object with the variables: pathway name, celltype with the cell type name,
recapitulation with the cell type recapitulation, and reference with the cell type reference
recapitulation

Examples

file <- system.file("extdata"”, "example_superpathway_fit_model.rda"”,
package = "singIST")

load(file)

model <- example_superpathway_fit_model

file <- system.file("extdata"”, "example_mapping_organism.rda",
package = "singIST")

load(file)

mapped <- example_mapping_organism

singIST_samples <- biological_link_function(mapped, model)$singIST_samples
original <- derive_contributions(model, singIST_samples)

derived <- derive_contributions(model, model$model_fit$predictor_block)
celltype_recap(model, original$celltype_contribution,
derived$celltype_contribution)

10 check_hyperparameters

check_fit_model Validate superpathway fit model

Description
Checks that all provided fields for a fitted asmbPLS-DA model meet the expected properties:

* superpathway_input must be a valid superpathway_input object (validated with check_superpathway_input()).
* hyperparameters_fit must be valid hyperparameters (validated with check_hyperparameters()).

¢ model_fit and model_validation must be lists.

Usage

check_fit_model(
superpathway_input,
hyperparameters_fit,
model_fit,
model_validation

)

Arguments
superpathway_input
List. A superpathway object created by create_superpathway().
hyperparameters_fit
List. A hyperparameters object created by create_hyperparameters().
model_fit List. Fitted model details.
model_validation
List. Validation metrics of the fitted model.

Value

TRUE if all checks pass; otherwise, an error is thrown.

check_hyperparameters Validate asmbPLS-DA hyperparameters

Description
Checks that all provided hyperparameters meet the expected properties:

* quantile_comb_table must be a matrix with at least one row.

* outcome_type must be "binary" or "multiclass".

e number_PLS must be an integer >= 0.

* folds_CV and repetition_CV must be integers >= 0 (or NULL).

check_mapping_organism 11

Usage

check_hyperparameters(
quantile_comb_table,
outcome_type,
number_PLS,
folds_CV,
repetition_CV

Arguments

quantile_comb_table

Matrix. Quantile (lambda) sparsity values for CV.

outcome_type Character. Either "binary" or "multiclass".

number_PLS Integer. Maximum number of PLS components.
folds_CV Integer or NULL. Number of folds for CV (default 5).
repetition_CV Integer or NULL. Number of repetitions for CV (default 10).

Value

TRUE if all checks pass; otherwise, an error is thrown.

Examples

quantile_comb_table <- base::as.matrix(RcppAlgos: :permuteGeneral(seq(@.05,
0.95, by = 0.50)))
check_hyperparameters(quantile_comb_table, "binary”, 3L, 1L, 1L)

check_mapping_organism

Validate mapping organism input

Description

Validates that all provided fields for a mapping organism meet expected properties:

organism, target_class, base_class are scalar characters.

celltype_mapping is a list with non-empty names; each entry is a character vector (length 0
allowed).

counts is a Seurat or SingleCellExperiment object with metadata columns: ’class’ and ’cell-
type_cluster’.

target_class and base_class exist in meta$class and are different (after normalization).

all clusters referenced in celltype_mapping exist in meta$celltype_cluster.

12 check_pathway

Usage

check_mapping_organism(
organism,
target_class,
base_class,
celltype_mapping,
counts

Arguments

organism Character(1). Scientific Latin name of the organism.
target_class Character(1). Name of the target class for this organism.

base_class Character(1). Name of the base class for this organism.
celltype_mapping

List. Mapping of cell types (keys) to cluster names (character vectors).

counts Seurat or SingleCellExperiment. Contains scRNA-seq counts and metadata.

Value

TRUE if all checks pass; otherwise an informative error is thrown.

Examples

Seurat example

counts <- SeuratObject::pbmc_small

colnames(slot(counts, "meta.data”))[1] <- "donor”

colnames(slot(counts, "meta.data”))[6] <- "class”

colnames(slot(counts, "meta.data"))[7] <- "celltype_cluster”
celltype_mapping <- list("T-cell” = c("T"), "Dendritic Cell” = character(@))

check_mapping_organism(”Mus musculus”, "gl1", "g2", celltype_mapping, counts)
check_pathway Validate pathway fields
Description

Checks that all provided fields for a pathway meet the expected properties.

Usage

check_pathway(standard_name, dbsource, collection, subcollection)

check_superpathway 13

Arguments

standard_name Character. Pathway standard name from MsigDB.

dbsource Character. Database source (KEGG, PID, REACTOME, BIOCARTA, WIKIPATH-
WAYS).
collection Character. MsigDB collection (c2 or m2).

subcollection Character. MsigDB subcollection (CP).

Value

TRUE if all checks pass; otherwise, an error is thrown.

Examples

check_pathway (
standard_name = "KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
dbsource = "KEGG",
collection = "c2",
subcollection = "CP"

check_superpathway Validate superpathway gene sets

Description
Checks that all provided fields for a superpathway meet the expected properties:

 pathway_info must be a valid pathway (validated with check_pathway()).
* celltypes must be a character vector with at least 2 elements.

 gene_sets_celltype must be a list (or NULL) with same length as celltypes.

Usage

check_superpathway(pathway_info, celltypes, gene_sets_celltype)

Arguments

pathway_info List. A pathway object created by create_pathway().

celltypes Character vector. Each element represents a cell type.
gene_sets_celltype

List of character vectors. Each element corresponds to gene sets for each cell
type. Can be NULL.

Value

TRUE if all checks pass; otherwise, an error is thrown.

14 check_superpathway_input

Examples

my_pathway <- create_pathway ("KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
"KEGG", "c2", "CP")
check_superpathway (my_pathway, c("T-cell”, "Dendritic Cell”), list(c("IL4",
"IL5"), c("IL13")))

check_superpathway_input
Check superpathway input for asmbPLS-DA

Description

Checks the validity of the inputs. This version assumes that superpathway_info and hyperparameters_info
are plain lists validated by check_superpathway () and check_hyperparameters().

Usage

check_superpathway_input(
superpathway_info,
hyperparameters_info,
pseudobulk_lognorm,
sample_id,
sample_class,
base_class,
target_class

Arguments

superpathway_info

A list representing a superpathway object.
hyperparameters_info

A list representing a hyperparameters object.
pseudobulk_lognorm

A pseudobulk matrix (rows: "Celltype_Sampleid", cols: genes in "HGNC" for-
mat or similar).

sample_id A character vector of sample ids.
sample_class A character vector with the class of each sample.
base_class A character scalar indicating the base class.

target_class A character scalar indicating the target class.

Value

Invisibly returns TRUE if all checks pass; otherwise errors.

CIP_GIP 15

Examples

---- Superpathway info (list) ----

my_pathway <- create_pathway ("KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
IIKEGGH’ UCZII’ IICP")

celltypes <- c("T-cell”, "Dendritic Cell")

my_superpathway <- create_superpathway(my_pathway, celltypes, list(c("IL4",
"IL5"), c("IL13")))
---- Hyperparameters info (list) ----
quantile_comb_table <- base::as.matrix(
RcppAlgos: :permuteGeneral (seq(@.05, 0.95, by = 0.50)),
ncol = length(celltypes)
)

my_hyperparameters <- create_hyperparameters(
quantile_comb_table = quantile_comb_table,
outcome_type = "binary”,
number_PLS = as.integer(3),
folds_CV = as.integer(1),
repetition_CV = as.integer(1)

---- Pseudobulk + labels ----

sample_id <- c("AD1", "AD2", "HC1", "HC2")
sample_class <- c("AD", "AD", "HC", "HC")
base_class <- "HC"

target_class <- "AD"

pseudobulk_lognorm <- matrix(
rnorm(length(celltypes) * length(sample_id)),
nrow = length(celltypes) * length(sample_id),

ncol = length(celltypes)
)
rownames (pseudobulk_lognorm) <- as.vector(t(outer(

celltypes, sample_id, function(x, y) paste(x, y, sep = "_")
)

check_superpathway_input(
superpathway_info = my_superpathway,
hyperparameters_info = my_hyperparameters,
pseudobulk_lognorm = pseudobulk_lognorm,
sample_id = sample_id,
sample_class = sample_class,
base_class = base_class,
target_class = target_class

CIP_GIP Compute Cell Importance Projection (CIP) and Gene Importance Pro-
Jjection (GIP)

16 CIP_GIP_test

Description

Computes CIP and GIP metrics from a superpathway fit model list for the target class

Usage

CIP_GIP(object)

Arguments

object A superpathway fit model list

Value

A list with the CIP and GIP metrics for all cell types. The metrics are computed for the target class.

Examples

file <- system.file("extdata"”, "example_superpathway_fit_model.rda"”,
package = "singIST")

load(file)

data <- example_superpathway_fit_model

CIP_GIP(data)

CIP_GIP_test Cell and Gene Importance Projections statistical significance

Description

Computes Cell and Gene Importance Projection observed distribution from fitted asmbPLSDA, and
its associated null distributions by permuting the block of predictor matrices. Returns a pvalue of
the Mann-Whitney Wilcoxon between the observed and null distribution for each CIP and GIP.

Usage
CIP_GIP_test(
object,
npermut = 100,

maxiter = 100,
type = c("jackknife”, "subsampling"),
nsubsampling = 100,

clean_mfa_data

Arguments

object
npermut

maxiter

type

nsubsampling

Value

17

A superpathway fit model list
Number of permutations on response block matrices

An integer indicating the maximum number of iterations. If NULL the default is
100.

Either jackknife or subsampling. If jackknife then the CIP and GIP ob-
served distribution is generated by a jackknife procedure. If subsampling the
CIP and GIP observed distribution is generated by subsampling the number of
samples without replacement, each subsample is guaranteed to contain at least
2 samples per class. If a LOOCV was performed or one has small sample size it
is recommended to select jackknife, otherwise select subsampling.

Number of subsamples to generate CIP and GIP observed distributions. By
default 100.

Other parameters to be passed onto wilcox_CIP_GIP

A list containing; observed distributions of CIP and GIP (variability_param); its associated null dis-
tributions generated by permutations (NULL_CIP_GIP); the unadjusted pvalue of Mann-Whitney
Wilcoxon for CIP distribution (CIP_pvalue); and for GIP distribution (GIP_pvalue).

Examples

file <- system.file("extdata"”, "example_superpathway_fit_model.rda”,
package = "singIST")

load(file)

data <- example_superpathway_fit_model
CIP_GIP_test(data, npermut = 3, type = "jackknife")

clean_mfa_data

Clean a predictor matrix for multiblock MFA

Description

Converts non-finite values to NA, removes any column that is 100% NA or has zero variance, and
returns a logical mask of kept columns.

Usage

clean_mfa_data(X)

Arguments

X

A numeric matrix or data.frame of predictors (samples x features).

18 create_fit_model

Value
A list with components:
X_clean Cleaned matrix (only kept columns).

keep_cols Logical vector, TRUE for columns kept.

removed Integer indices of removed columns.

Examples

clean_mfa_data(matrix(matrix(c(0,0,0,NA, 1,2), ncol = 2, nrow = 3)))

create_fit_model Create superpathway fit model object

Description

Creates a simple list representing a fitted asmbPLS-DA model, after validating its components.

Usage

create_fit_model(
superpathway_input,
hyperparameters_fit,
model_fit,
model_validation

Arguments
superpathway_input
List. A superpathway object created by create_superpathway().

hyperparameters_fit
List. A hyperparameters object created by create_hyperparameters().

model_fit List. Fitted model details.
model_validation
List. Validation metrics of the fitted model.

Value

A list with elements: superpathway_input, hyperparameters_fit, model_fit, model_validation.

create_hyperparameters 19

Examples

my_pathway <- create_pathway(”"KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
IIKEGGH s Hc2H , IICPII)

celltypes <- c("T-cell”, "Dendritic Cell")

my_superpathway <- create_superpathway(my_pathway, celltypes,
list(c("IL4", "IL5"), c("IL13")))

my_hyperparameters <- create_hyperparameters(matrix(1:4, nrow = 2), "binary”,
3L, 5L, 10L)

#' # ---- Pseudobulk + labels ----
sample_id <- c("AD1", "AD2", "HC1", "HC2")
sample_class <- c("AD", "AD", "HC", "HC")
base_class <- "HC"

target_class <- "AD"

pseudobulk_lognorm <- matrix(
rnorm(length(celltypes) * length(sample_id)),
nrow = length(celltypes) * length(sample_id),
ncol = length(celltypes)

)
rownames (pseudobulk_lognorm) <- as.vector(t(outer(

celltypes, sample_id, function(x, y) paste(x, y, sep = "_")
)

my_superpathway_input <- create_superpathway_input(
superpathway_info = my_superpathway,
hyperparameters_info = my_hyperparameters,
pseudobulk_lognorm = pseudobulk_lognorm,
sample_id = sample_id,
sample_class = sample_class,
base_class = base_class,
target_class = target_class
)
my_fit <- create_fit_model(my_superpathway_input, my_hyperparameters,
list(model = "fit"), list(accuracy = 0.95))

create_hyperparameters
Create asmbPLS-DA hyperparameters object

Description

Creates a simple list representing hyperparameters for asmbPLS-DA, after validating them.

20 create_mapping_organism

Usage

create_hyperparameters(
quantile_comb_table,
outcome_type,
number_PLS,
folds_CV = 5L,
repetition_CV = 10L

Arguments
quantile_comb_table
Matrix. Quantile (lambda) sparsity values for CV.
outcome_type Character. Either "binary" or "multiclass".
number_PLS Integer. Maximum number of PLS components.
folds_CV Integer or NULL. Number of folds for CV (default 5).
repetition_CV Integer or NULL. Number of repetitions for CV (default 10).

Value

A list with elements: quantile_comb_table, outcome_type, number_PLS, folds_CV, repetition_CV.

Examples

quantile_comb_table <- base::as.matrix(RcppAlgos: :permuteGeneral (seq(@.05,
0.95, by = 0.50)))

my_hyperparameters <- create_hyperparameters(quantile_comb_table, "binary”,3L,
1L, 1L)
print(my_hyperparameters)

create_mapping_organism
Create mapping organism object

Description

Creates a simple S3 object (list with class "mapping.organism") after validating its components.

Usage

create_mapping_organism(
organism,
target_class,
base_class,
celltype_mapping,
counts

create_pathway 21

Arguments

organism Character(1). Scientific Latin name of the organism.
target_class Character(1). Name of the target class for this organism.

base_class Character(1). Name of the base class for this organism.

celltype_mapping
List. Mapping of cell types to clusters (character vectors).

counts Seurat or SingleCellExperiment object with the scRNA-seq LogNormalized
counts. This object should contain variables in slot (SeuratObject, meta.data)
slotor slot(SingleCellExperimentObject, metadata); class indicating the
class the sample belongs to; celltype_cluster indicating the cell type cluster
(either character or numeric); donor indicating the sample ID.

Value

A list of class "mapping.organism” with elements:

* organism

* target_class

* base_class

* celltype_mapping

e counts

Examples

counts <- SeuratObject::pbmc_small

colnames(slot(counts, "meta.data”))[1] <- "donor"

colnames(slot(counts, "meta.data”))[6] <- "class”

colnames(slot(counts, "meta.data"))[7] <- "celltype_cluster”
celltype_mapping <- list("T-cell” = c("T"), "Dendritic Cell” = character(0))

obj <- create_mapping_organism("Mus musculus”, "gl1", "g2", celltype_mapping,
counts)
create_pathway Create pathway object
Description

Creates a simple list representing a pathway, after validating its fields.

Usage

create_pathway(standard_name, dbsource, collection, subcollection)

22 create_superpathway

Arguments

standard_name Character. Pathway standard name from MsigDB.

dbsource Character. Database source (KEGG, PID, REACTOME, BIOCARTA, WIKIPATH-
WAYS).
collection Character. MsigDB collection (c2 or m2).

subcollection Character. MsigDB subcollection (CP).

Value

A list with elements: standard_name, dbsource, collection, subcollection.

Examples

my_pathway <- create_pathway(
standard_name = "KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
dbsource = "KEGG",
collection = "c2",
subcollection = "CP"

)
print(my_pathway)

create_superpathway Create superpathway gene sets object

Description

Creates a simple list representing a superpathway, after validating its fields.

Usage

create_superpathway(pathway_info, celltypes, gene_sets_celltype)

Arguments

pathway_info List. A pathway object created by create_pathway().

celltypes Character vector. Each element represents a cell type.

gene_sets_celltype

List of character vectors. Each element corresponds to gene sets for each cell
type. Can be NULL.

Value

A list with elements: pathway_info, celltypes, gene_sets_celltype.

create_superpathway_input 23

Examples

my_pathway <- create_pathway ("KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
"KEGG", "c2", "CP")

my_superpathway <- create_superpathway(my_pathway, c("T-cell”,

"Dendritic Cell™), list(c("IL4", "IL5"), c("IL13")))
print(my_superpathway)

create_superpathway_input
Create superpathway input for asmbPLS-DA

Description

Creates a plain list containing the fields for superpathway input object and validates the content
with check_superpathway_input.

Usage

create_superpathway_input(
superpathway_info,
hyperparameters_info,
pseudobulk_lognorm,
sample_id,
sample_class,
base_class,
target_class

Arguments

superpathway_info
A list representing a superpathway object (formerly superpathway. gene. sets).

hyperparameters_info
A list representing a hyperparameters object (formerly hyperparameters).

pseudobulk_lognorm
A pseudobulk matrix.

sample_id A character vector of sample ids.
sample_class A character vector with the class of each sample.
base_class A character scalar indicating the base class.

target_class A character scalar indicating the target class.

24 create_superpathway_input

Value
A list with elements:

* superpathway_info

* hyperparameters_info
* pseudobulk_lognorm

e sample_id

e sample_class

* base_class

e target_class

Examples

---- Superpathway info (list) ----

my_pathway <- create_pathway("KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
IIKEGGII’ IIC2II’ IICPII)

celltypes <- c("T-cell”, "Dendritic Cell")

my_superpathway <- create_superpathway(my_pathway, celltypes, list(c("IL4",
"IL5"), c("IL13")))
---- Hyperparameters info (list) ----
quantile_comb_table <- base::as.matrix(
RcppAlgos: :permuteGeneral (seq(0.05, 0.95, by = 0.50)),
ncol = length(celltypes)
)

my_hyperparameters <- create_hyperparameters(
quantile_comb_table = quantile_comb_table,
outcome_type = "binary”,
number_PLS = as.integer(3),
folds_CV = as.integer(1),
repetition_CV = as.integer(1)

---- Pseudobulk + labels ----

sample_id <- c("AD1", "AD2", "HC1", "HC2")
sample_class <- c("AD", "AD", "HC", "HC")
base_class <- "HC"

target_class <- "AD"

pseudobulk_lognorm <- matrix(
rnorm(length(celltypes) * length(sample_id)),
nrow = length(celltypes) * length(sample_id),
ncol = length(celltypes)

)
rownames (pseudobulk_lognorm) <- as.vector(t(outer(

celltypes, sample_id, function(x, y) paste(x, y, sep = "_")
)))

my_superpathway_input <- create_superpathway_input(

derive_contributions 25

superpathway_info = my_superpathway,
hyperparameters_info = my_hyperparameters,
pseudobulk_lognorm = pseudobulk_lognorm,
sample_id = sample_id,

sample_class = sample_class,

base_class = base_class,

target_class = target_class

derive_contributions Derive superpathway score, cell type contribution and gene contribu-
tion

Description

Computes the superpathway score, its cell type contribution and gene contribution for a block of
predictor matrices for its later use to compute recapitulations

Usage

derive_contributions(model_object, data)

Arguments

model_object A superpathway fit model list with the fitted asmbPLSDA

data A matrix with the block of predictor matrices to compute score and contributions
from

Value

A list with the superpathway score for each sample, cell type and gene contributions to the former

Examples

file <- system.file("extdata"”, "example_mapping_organism.rda”,
package = "singIST")

load(file)

mapped <- example_mapping_organism

file <- system.file("extdata”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

model <- example_superpathway_fit_model

singIST_samples <- biological_link_function(mapped,
model)$singIST_samples

derive_contributions(model, singIST_samples)

26 derive_scores

derive_scores Compute predictor scores

Description

Computes scores from the predictor to later derive the superpathway’s score, cell type contribution
and gene contributions, for the target class

Usage

derive_scores(object, data, sample)

Arguments
object A superpathway fit model list passed from derive_contributions
data Block of predictor matrices to compute scores from
sample Current sample from data to compute scores

Value

A list containing the needed parameters to compute superpathway’s score, cell type contributions
and needed scores to compute gene contributions

Examples

file <- system.file("extdata”, "example_mapping_organism.rda",
package = "singIST")

load(file)

mapped <- example_mapping_organism

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

model <- example_superpathway_fit_model

singIST_samples <- biological_link_function(mapped,
model)$singIST_samples

Derive the scores for sample 2

derive_scores(model, singIST_samples, 2)

diff_expressed 27

diff_expressed Compute differentially expressed genes with FindMarkers/findMarkers
and descriptive point estimates of log2FC

Description

Computes differentially expressed genes with Seurat: : FindMarkers, for Seurat objects, or scran: : findMarkers,
for SingleCellExperiment objects, for the conditions indicated. Note that Seurat: : FindMarkers

will compute Wilcoxon Signed Rank Test by default, while scran: : findMarkers will perform t-

test by default instead. The reported logFC values are difference of means of log-normalized expres-

sion values with Seurat: : AggregateExpressionor SingleCellExperiment: :aggregateAcrossCells.

This logFC is consistent with the human log2FC computation by asmbPLS-DA.

Usage

diff_expressed(
object,
condition_1 cQ,
condition_2 = c(),
logfc.treshold = 0.25,

assay = "RNA",
)
Arguments

object A mapping organism list. If a Seurat object was provided, then Idents(object)
assigned to variables with the conditions being tested is expected.

condition_1 A vector with the elements of the first factor to perform the hypothesis test. By
default the mapped cell types condition_1 = names(object$celltype_mapping)

condition_2 A vector with the elements of the second factor to perform the hypothesis test

with. By default the class of the organism condition_2 = c(object$target_class), object$base_c]

logfc.treshold Sets the minimum FindMarkers log-fold change (1ogFC) cutoff for identifying
differentially expressed genes (DEGs). By default logfc.treshold = @. 25.

assay Specific assay being used for analysis. By default assay = RNA.

Other parameters to pass onto Seurat: :FindMarkers() or scran: : findMarkers.

Value

A list where each element is a data.frame for a cell type containing: p_val p-value of test, avg_log2FC
descriptive point estimate of logFC, pct. 1 percentage of cells where the gene is detected in the base
class, pct. 2 percentage of cells where the gene is detected in the target class, p_val_adj FDR.

28 fitOptimal

Examples

Set the identities

file <- system.file("extdata”, "example_mapping_organism.rda",
package = "singIST")

load(file)

data_organism <- example_mapping_organism

data <- celltype_mapping(data_organism)

data$counts$test <- paste@(data$counts$celltype_cluster, "_",
data$counts$class)

SeuratObject::Idents(data$counts) <- "test”
diff_expressed(data)

fitOptimal Cross validation and fit of asmbPLSDA

Description

Performs Cross Validation of the provided superpathway input, fits the optimal model and com-
putes its validation metrics. The Cross Validation can either be Leave One-Out Cross Validation
(LOOCYV) or K-Fold Cross Validation (KCV). A LOOCYV is performed if the number of folds was
set to 1 or if the number of samples per class is less than 3 for any class. A K-Fold Cross Validation
(KCV) is performed if the number of folds is greater or equal than 3 and the number of samples
per class is always greater than the number of folds. If the number of samples is low for some
of the classes LOOCYV is recommended. If KCV is performed, missing values are automatically
imputed in the K-CV process. The training set is imputed via missMDA::imputeMFA(), and an
FactoMineR::MFA() is trained on the imputed training set from which we extract the mean of each
gene and the estimated loadings. We then estimate the validation set by projecting the samples onto
MFA space of the training set. Gene whose variance is 0 are excluded from the imputation, if a
gene has null variance and full of 0 values, the NA were imputed to 0.

Usage
fitOptimal(
object,
parallel = FALSE,
measure = "B_accuracy”,

Method = NULL,
expected_measure_increase = 0.005,
maxiter = 100,
global_significance_full = FALSE,
CIP.GIP_significance_full = FALSE,
npermut = 100,

nbObsPermut = NULL,

type = "jackknife”,

nsubsampling = 100,

fitOptimal

Arguments

object
parallel

measure

Method

29

A superpathway input list to fit optimal asmbPLSDA.

A boolean indicating whether to parallelize (TRUE) for LOOCYV on quantile com-
bination or not (FALSE). Note this option is only available for LOOCYV and not
KCV. Default is FALSE.

Accuracy measure to be used to select optimal asmbPLSDA model. Default is
F1 measure. Options are: F1, accuracy, B_accuracy, precision and recall.

Decision rule used for prediction. For binary outcome fixed_cutoff (default),
Euclidean_distance_X, and Mahalanobis_distance_X. For categorical ot-

come with more than 2 levels, the methods include Max_Y (default), Euclidean_distance_X,
Mahalanobis_distance_X, Euclidean_distance_Y, and PCA_Mahalanobis_distance_Y.
If NULL the default method is used for the respective outcome binary.

expected_measure_increase

maxiter

A double indicating the measure you expect to decrease by percent after includ-
ing one more PLS component, this will affect the selection of optimal number
of PLS components. If NULL the default is 0.005 (0.5%).

An integer indicating the maximum number of iterations. If NULL the default is
100.

global_significance_full

A boolean indicating whether to return a list with information of each permuta-
tion for the global significance test of asmbPLSDA. By default FALSE. Note that
if the number of permutations that is set is large, storing this information can be
a burden on memory.

CIP.GIP_significance_full

npermut

nbObsPermut

type

nsubsampling

A boolean indicating whether to return a list with the observed and null dis-
tributions of CIP and GIP or only the pvalue and adjusted pvalue. By default
FALSE. Note that if the number of permutations that is set is large, storing this
information can be a burden on memory.

Number of permutations for the tests. By default 100. Parameter passed onto
permut_asmbplsda and CIP_GIP_test.

An integer indicating the number of samples to permute in each permutation.
By default NULL. If NULL the number of samples to permute at each permuta-
tion is randomly chosen (for each permutation). Parameter passed onto per-
mut_asmbplsda.

Either jackknife or subsampling. If jackknife then the CIP and GIP ob-
served distribution is generated by a jackknife procedure. If subsampling the
CIP and GIP observed distribution is generated by subsampling the number of
samples without replacement, each subsample is guaranteed to contain at least
2 samples per class. If a LOOCV was performed or one has small sample size
it is recommended to select jackknife, otherwise select subsampling. Passed
onto CIP_GIP_test.

Number of subsamples to generate CIP and GIP observed distributions. By
default 100. Passed onto CIP_GIP_test.

Other parameters to be passed onto wilcox_CIP_GIP, wilcox test of GIP statis-
tical tests

30 fit_mfa_imputer

Value

A superpathway fit model list object with; a superpathway input list object used for CV and model
fit; a hyperparameters list object with the hyperparameters used to fit the optimal model (includes
optimal quantiles and PLS components from the CV step); a list with the fitted model information
including: predictor and response matrices, observed gene sets, from matrixToBlock, and asmb-
PLSDA output; a list with the validaton metrics of fitted model.

Examples

fitOptimal with jackknife for CIP/GIP statistics and 10 permutations
for the global significance test of the optimal model

file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")

load(file)

data <- example_superpathway_input

fitOptimal(data, npermut = 10, type = "jackknife")

fitOptimal with subsampling for CIP/GIP statistics with

10 subsamples and 50 permutations for the global significance test of the
optimal model

fitOptimal(data, npermut = 50, type = "subsampling”,

nsubsampling = 10)

fit_mfa_imputer Fit a multiblock-MFA imputer on training data

Description
Runs a full EM-based imputeMFA() on the training set then fits a pure MFA to extract the final
means and loadings.

Usage

fit_mfa_imputer(X_train, group, ncp = 2, method = "Regularized")

Arguments
X_train Numeric matrix (train samples x features), may contain NAs.
group Integer vector of block sizes (must sum to ncol (X_train)).
ncp Number of MFA components to use for imputation (default 2).
method Method for imputeMFA(): "Regularized” or "EM".

Value

A list with components:

imputed Matrix X_train with NAs filled.
mu Numeric vector of column means (length = ncol).

loadings Numeric matrix of loadings (ncol x ncp).

gene_contrib 31

Examples

fit_mfa_imputer(matrix(c(NA,runif(19)), nrow = 5, ncol = 4), c(2,2))

gene_contrib Derive gene contribution to cell type recapitulation

Description

Derive gene contribution to cell type recapitulation

Usage

gene_contrib(model_object, data_original, data_singIST, cell_reference)

Arguments

model_object A superpathway fit model list passed from singISTrecapitulations

data_original A matrix with the gene contributions to superpathway’s score as returned by de-
rive_contributions for the non-singIST treated samples, passed from singISTre-
capitulations

data_singIST A matrix with the gene contributions to superpathway’s score as returned by
derive_contributions for the singIST treated samples, passed from singISTreca-
pitulations

cell_reference A matrix with the cell type recapitulations as returned by celltype_recap

Value

A data. frame object with the variables: pathway name, celltype name, gene name, contribution
gene contribution to cell type recapitulation

Examples

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

model <- example_superpathway_fit_model

file <- system.file("extdata"”, "example_mapping_organism.rda",
package = "singIST")

load(file)

mapped <- example_mapping_organism

singIST_samples <- biological_link_function(mapped, model)$singIST_samples
original <- derive_contributions(model, singIST_samples)

derived <- derive_contributions(model, model$model_fit$predictor_block)

Derive cell type reference

cell <- celltype_recap(model, original$celltype_contribution,
derived$celltype_contribution)

32 helpers

Compute gene contributions
gene_contrib(model, original$gene_contribution, derived$gene_contribution,
cell)

helpers Update block of predictor matrices in matrixToBlock()

Description

Fill up matrix with the corresponding expression values
get_measure_index () returns the index associated to each performance measure

Splits the predictor and response matrices into training and validation sets for leave-one-out cross-
validation.

Function to train and validate asmbPLSDA excluding one observation parallelized for each quantile
combination provided

Computes the prediction accuracy for different quantile combinations by fitting the asmbPLSDA
model and making predictions.

Performs leave-one-out cross-validation (LOO-CV) in parallel.

Computes the performance measure selected between the training LOOCV samples and the valida-
tion LOOCYV samples for all the quantile combination

For an optimal quantile combination and PLS component it computes its performance metrics be-
tween the training and validation sets

Selects the optimal number of PLS according to the performance measure

Iterates over all quantiles to generate the fitted asmbPLSDA for each and its associated predicted
values

Creates a structured list to store permutation results.

Performs random permutations of the response matrix.
Calculates correlation, percentage change, and RV coefficient.
Selects sample indices for training and validation.

Fits the asmbPLS-DA model using permuted data.

Computes the p-value for the observed CV error against the null distribution of errors generated
from permutation testing.

Calculates the 95% confidence interval for the null distribution of permutation errors.
Perform the jackknife resampling procedure for CIP/GIP calculations.

Perform the subsampling procedure for CIP/GIP calculations.

Generate null distributions of CIP and GIP using permutations.

Permute the X matrix to generate a null distribution.

Compute p-values by applying the Mann-Whitney test.

helpers 33

This helper function performs either Leave-One-Out Cross Validation (LOOCYV) or K-Fold Cross
Validation (KCV) on the given dataset and returns the optimal hyperparameters based on the speci-
fied accuracy measure.

This helper function computes various validation metrics, including global significance, CIP/GIP
significance, and adjusted p-values for the fitted model based on cross-validation results.

For a given gene set it identifies the annotation of the genes, it does so if the genes have more than
50% match with a given annotation. Annotation must be either Ensembl, Entrez or Gene Symbols.
Retrieves one to one orthologs between from_species and to_species of orthology_mapping
Applies the biological link function conditions onto a predictor block matrix. The resulting gene
expression of the predictor block are the cases defined in the biological link function.

Centers and scales each column of the predictor block matrices. The centering and scaling is ac-
cording to the centroid and variance estimated in fit_asmb.

Given a block and the dimensions of all blocks it returns the indices of the genes belonging to that
block within the predictor block matrix

Performs loading deflation for a given predictor block and PLS component

Usage

update_block(
celltype,
observed_gene_sets,
block_predictor = block_predictor,
matrix = matrix

)
get_measure_index(measure)
get_train_val_sets(X.matrix, Y.matrix, validation_index)

guantile_computation(
3,
results_CV_summary_n,
F_matrix_validation_bind,

X.matrix,

Y.matrix,

PLS_term = 1,

X.dim,

quantile.comb. table,

outcome.type = c("binary”, "multiclass"),
quantile_table_CV,

K,

n_quantile_comb,

Method = NULL,

measure = "B_accuracy”,
expected.measure.increase = 0.005,
center = TRUE,

34

evaluate_quantile_combinations(

scale = TRUE,
maxiter = 100

J,
results_CV_summary_n,

F_matrix_validation_bind,
E_matrix_training,
F_matrix_training,
E_matrix_validation,
F_matrix_validation,
quantile_table_CV,
i,

X.dim,
quantile.comb.table,
outcome. type,
center,

scale,

maxiter,

Method

execute_parallel_cv(

)

K,

results_CV_summary_n,
F_matrix_validation_bind,
X.matrix,

Y.matrix,

PLS_term,

X.dim,
quantile.comb.table,
outcome. type,
quantile_table_CV,
Method,

measure,
expected.measure. increase,
center,

scale,

maxiter,

BPPARAM = BiocParallel: :bpparam()

performance_measures(

n_quantile_comb,
results_CV_summary_n,
F_matrix_validation_bind,
outcome. type,

helpers

helpers

measure_selected

compute_final_measures(
K,
X.matrix,
Y.matrix,
i,
X.dim,
quantile_table_CV,
outcome. type,
center,
scale,
maxiter,
Method

select_optimal_PLS(
PLS_term,
quantile_table_CV,
X.dim,
measure_selected,
expected.measure.increase

execute_sequential_cv(
K,
n_quantile_comb,
results_CV_summary_n,
F_matrix_validation_bind,
X.matrix,
Y.matrix,
PLS_term,
X.dim,
quantile.comb. table,
outcome. type,
quantile_table_CV,
measure,
expected.measure.increase,
center,
scale,
maxiter,
Method

initialize_results(npermut, q)

permute_Y_matrix(Y.matrix, nr, nbObsPermut, j)

36

compute_permutation_stats(res, Y.matrix, Ypermut, j, q, nr)
select_samples(object, nr, Nc)
fit_permuted_model(object, X_train, Y_train, maxiter)

evaluate_performance(
res,
Modelpermut,
X_train,
X_val,
Y.matrix,
S,
measure,
3,
nr,
Method,
object

compute_pvalue(null_errors, CV_error)
compute_IC95(m)
jackknife_CIP_GIP(object, X.matrix, Y.matrix, K, maxiter, X.dim)

subsampling_CIP_GIP(
object,
X.matrix,
Y.matrix,
K,
M,
nsubsampling,
maxiter,
X.dim

generate_null_distributions(
object,
X.matrix,
Y.matrix,
npermut,
K,
X.dim,
maxiter

helpers

helpers

permute_X_matrix(X.matrix, K, X.dim)
calculate_pvalues(variability, null_dist, test_func, ...)

perform_cv(
object,
model_block_matrices,
nFC,
measure,
parallel,
expected_measure_increase,
maxiter,
Method

compute_validation_metrics(
output,
optimal_hyperparameters,
model_block_matrices,
npermut,
nbObsPermut,
maxiter,
global_significance_full,
CIP.GIP_significance_full,
type,
nsubsampling,
measure,
Method

detect_gene_type(gene_set, mart)
retrieve_one2one_orthologs(
annotation,
gene_set,
mart,
from_species,
to_species
FCtoExpression(model_object, b, samples, predictor_block, FC)
center_scale(data, fit_asmb)

get_indices(j, X.dim)

deflate_prediction(data, PLS, delta_cbind, fit_asmb)

37

38 helpers

Arguments

celltype Cell types modelled
observed_gene_sets

Gene sets observed from your dataset
block_predictor

Block of predictor matrices to update

matrix To iteratively update with block_predictor values

measure The accuracy measure used for validation. Default is "F1".
X.matrix Predictor matrix.

Y.matrix Response matrix.

validation_index
Index of the validation sample.

Jj Block to return indices for

e Other parameters of test_func
results_CV_summary_n

Passed from asmbPLSDA.cv.loo
F_matrix_validation_bind

Passed from asmbPLSDA.cv.loo

PLS_term Passed from asmbPLSDA.cv.loo

X.dim Vector with number of genes of each block
quantile.comb.table
Passed from asmbPLSDA .cv.loo

outcome. type Passed from asmbPLSDA .cv.loo
quantile_table_CV
Passed from asmbPLSDA.cv.loo

K Number of samples.

n_quantile_comb
Passed from asmbPLSDA.cv.loo

Method The decision rule for prediction (e.g., "fixed_cutoff", "Euclidean_distance_X",
etc.).

expected.measure.increase
Passed from asmbPLSDA.cv.loo

center Passed from asmbPLSDA.cv.loo
scale Passed from asmbPLSDA.cv.loo
maxiter The maximum number of iterations for validation tests. Default is 100.

E_matrix_training

Training predictor matrix.
F_matrix_training

Training response matrix.
E_matrix_validation

Validation predictor matrix.

helpers

39

F_matrix_validation

i
BPPARAM

Validation response matrix
Passed from asmbPLSDA.cv.loo

A BiocParallel: :bpparam() with parallelization options

measure_selected

npermut

q

nr
nbObsPermut
res

Ypermut
object

Nc

X_train
Y_train
Modelpermut
X_val

s
null_errors
CV_error

m

M
nsubsampling
variability
null_dist

test_func

Passed from asmbPLSDA .cv.loo

The number of permutations for significance testing.

Number of classes.

Number of samples

The number of samples to permute in each permutation. Default is NULL.
List of results to store statistics

Permuted response matrix.

A superpathway input list containing the data to be used for the cross-validation.
Number of samples to drop at each permutation.

Training predictor blocks

Training response matrix.

Permuted asmbPLSDA model

Validation predictor blocks

Validation samples

A vector of errors from the null distribution (permuted errors).
The observed cross-validation error.

A vector of errors from the null distribution (permuted errors).
Number of classes.

The number of subsamples for CIP/GIP testing. Default is 100.
A list of CIP or GIP values for observed distributions.

A list of CIP or GIP values for null distributions.

The test function to use (typically Wilcoxon).

model_block_matrices

nFC

parallel

A list containing the model block matrices (predictor and response matrices).

The number of folds for K-fold cross-validation. If nFC == 1, LOOCYV is per-
formed.

A logical value indicating whether parallel computation should be used.

expected_measure_increase

output

Expected decrease in measure per additional PLS component. Default is 0.005.

The superpathway fit model list that contains the fitted model and validation
information.

optimal_hyperparameters

The optimal hyperparameters obtained from cross-validation.

global_significance_full

Boolean flag indicating whether to return full global significance results.

40 helpers

CIP.GIP_significance_full
Boolean flag indicating whether to return full CIP/GIP significance results.

type The procedure type for generating CIP/GIP distributions. Can be "jackknife" or
"subsampling".

gene_set A parameter passed from orthology_mapping

mart A parameter passed from orthology_mapping

annotation A parameter passed from orthology_mapping, it indicates the annotation of the

gene set provided
from_species A parameter passed from orthology_mapping
to_species A parameter passed from orthology_mapping
model_object A superpathway fit model list
b A parameter passed from singIST_treat. The index of current iteration block.

samples A parameter passed from singIST_treat. The samples to modify its gene expres-
sion from predictor_block

predictor_block
A parameter passed from singIST_treat. The predictor block of matrices from
asmbPLSDA to modify its gene expression.

FC A parameter passed from singIST_treat. A data.frame with the Fold Changes,
for a cell type, of each gene.

data Matrix of predictor block to deflate

fit_asmb asmbPLSDA fitted model

PLS Numeric value indicating the PLS component

delta_cbind Gene contributions (loadings) used to deflate the blocks

Value
A list containing the training and validation sets:

E_matrix_validation

Validation predictor matrix
F_matrix_validation

Validation response matrix
E_matrix_training

Training predictor matrix
F_matrix_training

Training response matrix

A numeric vector containing predicted values for validation samples.

A list containing updated results_CV_summary_n and F_matrix_validation_bind matrices.
A vector with the performance measure of each quantile combination

Optimal quantile table for each PLS with all its performance measures

An integer with the optimal number of PLS

helpers 41

A list with the true class of each LOOCV sample and its predicted class for each quantile combina-
tion

A list containing initialized data frames for permutation statistics.

A permuted response matrix.

Updated result list with permutation statistics.

A vector of selected sample indices.

The fitted asmbPLS-DA model.

Res list including the performance measure of the permuted model

The computed p-value.

A numeric vector containing the lower and upper bounds of the 95% confidence interval.
A list with the observed CIP and GIP distributions.

A list with the observed CIP and GIP distributions.

A list with the null CIP and GIP distributions.

A permuted X matrix.

A data frame of p-values.

A list containing the optimal hyperparameters and associated quantile table.

The updated superpathway.fit.model object with the computed validation metrics.
The identified gene annotation or NULL if it was not identified

A data. table object with the Ensembl identifiers of gene set for from_species and to_species with
only one to one orthologs

The predictor block matrix updated with the FC translation
The object data centered and scaled.
A vector with the indices of the predictor block matrix for the requestes block

The data matrix loading deflated

Examples

measure <- "F1"

get_measure_index(measure)

X <- matrix(rnorm(10@), nrow = 10, ncol = 10)

Y <- matrix(sample(@:1, 10, replace = TRUE), ncol = 1)

result <- get_train_val_sets(X, Y, validation_index = 2)

str(result)

E_train <- matrix(rnorm(100), nrow = 10, ncol = 10)

F_train <- matrix(sample(@:1, 10, replace = TRUE), ncol = 1)

E_valid <- matrix(rnorm(1@), nrow = 1, ncol = 10)

F_valid <- matrix(1, nrow = 1, ncol = 1)

quantile_table <- matrix(runif(2), nrow = 1, ncol = 2)

quantile_table_CV <- matrix(runif(7), nrow = 1, ncol = 7)

results_CV_summary_n <- matrix(@, nrow = 1, ncol = 2)

F_matrix_validation_bind <- matrix(@, nrow = 1, ncol = 2)

result <- evaluate_quantile_combinations(j=1, E_matrix_training = E_train,
F_matrix_training = F_train,

helpers

E_matrix_validation = E_valid,
F_matrix_validation = F_valid,
F_matrix_validation_bind =
F_matrix_validation_bind,
results_CV_summary_n =
results_CV_summary_n,
quantile_table_CV=quantile_table_CV,
i =1, X.dim = c(5,5),
quantile.comb.table =quantile_table,
outcome.type = "binary”,
center = TRUE,
scale = TRUE, maxiter = 100,
Method = NULL)
print(result)
set.seed(123)
K<-5
X <= matrix(rnorm(50), nrow = 5, ncol = 10)
Y <- matrix(sample(@:1, 5, replace = TRUE), ncol = 1)
quantile_comb_table <- matrix(runif(10), nrow = 2, ncol = 10)
results_CV_summary_n <- matrix(@, nrow = 2, ncol = K)
F_matrix_validation_bind <- matrix(@, nrow = 2, ncol = K)
Parallelization options
library(BiocParallel)
register(SnowParam(workers = 2, exportglobals = FALSE, progressbar = TRUE),
default = TRUE)
output <- execute_parallel_cv(K, results_CV_summary_n,
F_matrix_validation_bind, X, Y, PLS_term =1,
X.dim = c(5,5),
quantile.comb.table = quantile_comb_table,

outcome.type = "binary”,
quantile_table_CV = quantile_comb_table,
measure = "B_accuracy”,

expected.measure.increase = 0.005,
center = TRUE, scale = TRUE, maxiter = 100,
Method = NULL)
register(SerialParam(), default = TRUE) # disable parallelization
str(output)
initialize_results(100, 3)
permute_Y_matrix(matrix(rnorm(100), 10, 10), nr = 10, nbObsPermut = 3, j = 2)
res <- initialize_results(100, 3)
compute_permutation_stats(res, matrix(rnorm(100), 10, 10),
matrix(rnorm(100), 10, 10), j =2, q = 3, nr = 10)
null_errors <- c(0.3, 0.4, 0.35, 0.33)
CV_error <- 0.32
compute_pvalue(null_errors, CV_error)
null_errors <- c(0.3, 0.4, 0.35, 0.33)
compute_IC95(null_errors)

library(biomaRt)

gene_set <- c("IL13", "IL4", "IL5", "IL21")
mart <- biomaRt::useMart(biomart = "ensembl”,
dataset = "hsapiens_gene_ensembl")

detect_gene_type(gene_set, mart)
annotation <- "external_gene_name"”

matrixToBlock 43

gene_set <- c("IL13", "IL4", "IL5")

mart <- biomaRt::useMart(biomart = "ensembl”, dataset = paste@("hsapiens”,
"_gene_ensembl"”))

retrieve_one2one_orthologs(annotation, gene_set, mart, "hsapiens”,
"mmusculus”)

X.dim <- c(30,40,60)

j <=2

get_indices(j, X.dim)

matrixToBlock Build predictor and response blocks with superpathway input

Description

Builds the predictor block and matrix response for its fit in asmbPLS-DA

Usage

matrixToBlock(object)

Arguments

object A superpathway input list object

Value

A list containing the predictor block, response matrix, dimension of each block and observed gene
sets with respect to gene_sets_celltype for the original pseudobulk_lognorm matrix, for its use in
asmbPLS-DA fit

Examples

file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")

load(file)

data <- example_superpathway_input

matrixToBlock(data)

44 multiple_check

multiple_check Check if parameter format is consistent

Description

For the wrapper functions multiple_fitOptimal and multiple_singISTrecapitulations one must pass
multiple parameters. To check for the consistency of such parameters we use this function with
the logic; if the parameter passed is NULL or its length is 1, it is assumed that the desired list of
parameters is the repetition of such; if the parameter passed is a vector whose length is the number
of objects that the wrappers iterate on, then the function returns a list whose elements are each of
the vector elements; otherwise if the parameters are a vector whose length does not match with the
number of objects to iterate on then the function stops

Usage

multiple_check(parameter, objectlLength)

Arguments

parameter The parameters passed from either multiple_fitOptimal or multiple_singISTrecapitulations

objectLength The number of objects that the wrapper functions iterate on

Value

A list with the repetition of the parameter

Examples

NULL parameter case

parameter <- NULL

objectLength <- 10
multiple_check(parameter, objectLength)

Parameter equal for all elements
parameter <- FALSE

objectLength <- 5
multiple_check(parameter, objectLength)

Parameter differing for all elements
parameter <- c(1, 6, 7, 8, 9)
objectLength <- 5
multiple_check(parameter, objectLength)

multiple_fitOptimal 45

multiple_fitOptimal Multiple Cross validation and fit of asmbPLSDA

Description

Use fitOptimal for multiple superpathway input list objects. This wrapper is useful if one wants to
assess multiple superpathways for analyses and needs to train its respective optimal models.

Usage

multiple_fitOptimal(
object = list(),
parallel = c(FALSE),
measure = c("B_accuracy"),
expected_measure_increase = c(0.005),
maxiter = c(100),
global_significance_full = c(FALSE),
CIP.GIP_significance_full = c(FALSE),
npermut = c(100),
nbObsPermut = c(NULL),
type = c("jackknife"),
nsubsampling = c(100),
Method = c(NULL),

Arguments
object A list whose elements are superpathway input lists objects to use fitOptimal
parallel A vector whose elements are parallel parameters for each object as requested
by fitOptimal
measure A vector whose elements are measure parameters for each object as requested
by fitOptimal

expected_measure_increase
A vector whose elements are expected_measure_increase parameters for each
object as requested by fitOptimal

maxiter A vector whose elements are maxiter parameters for each object as requested
by fitOptimal

global_significance_full
A vector whose elements are global_significance_full parameters for each
object as requested by fitOptimal

CIP.GIP_significance_full
A vector whose elements are CIP.GIP_significance_full parameters for each
object as requested by fitOptimal

46 multiple_singISTrecapitulations
npermut A vector whose elements are npermut parameters for each object as requested
by fitOptimal
nbObsPermut A vector whose elements are nbObsPermut parameters for each object as re-
quested by fitOptimal
type A vector whose elements are type parameters for each object as requested by
fitOptimal
nsubsampling A vector whose elements are nsubsampling parameters for each object as re-
quested by fitOptimal
Method A vector whose elements are Method parameters for each object as requested by
fitOptimal
Other parameters to be passed onto fitOptimal
Value

A list of superpathway fit model list

Examples

file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")

load(file)

data <- example_superpathway_input

models <- list(data, data)

Example with different options

multiple_model <- multiple_fitOptimal(models, type = c(”jackknife”,
"subsampling”), nsubsampling = c(NULL, 1@), npermut = c(10,15))

multiple_singISTrecapitulations
Compute singlST recapitulations for multiple superpathways

Description

Use singISTrecapitulations for multiple superpathway fit model list against the same mapping or-
ganism list. This wrapper is useful if one wants to assess multiple superpathways against the same
mapping organism list.

Usage

multiple_singISTrecapitulations(
object,
model_object = list(),
model_species = list("hsapiens”),

orthology_mapping 47

Arguments
object A mapping organism list
model_object A list whose elements are superpathway fit model list

model_species A list of characters indicating the organism of each model_object element. By
default 1ist("hsapiens™) which assumes the same organism across all ele-
ments of model_object parameter

Other parameters to pass onto biological_link_function

Value

A list with the row binded data. frame for each superpathway assessed for the superpathway and
cell type recapitulations, and gene contributions to the former.

Examples

file <- system.file("extdata"”, "example_superpathway_input.rda”,
package = "singIST")

load(file)

data_model <- example_superpathway_input

models <- list(data_model, data_model)

Example with different options

multiple_model <- multiple_fitOptimal(models, type = c("”jackknife",
"subsampling”), nsubsampling = c(NULL, 10), npermut = c(10,15))
file <- system.file("extdata"”, "example_mapping_organism.rda",
package = "singIST")

load(file)

data_organism <- example_mapping_organism
multiple_singISTrecapitulations(data_organism, multiple_model,

model_species = list("hsapiens”, "hsapiens”))
orthology_mapping Orthology mapping
Description

Performs the one-to-one orthology mapping between the mapped disease model list to the reference
(human) organism of the superpathway fit model list.

Usage

orthology_mapping(
object,
model_object,
from_species,
to_species = "mmusculus”,
annotation_to_species = "external_gene_name"

48 permut_asmbplsda

Arguments
object A mapping organism list
model_object A superpathway fit model list

from_species A character indicating the reference organism for which the parameter model_fit
has information from.

to_species A character indicating the mapped organism for which the parameter object
has information from. By default mmusculus.

annotation_to_species
A character indicating the gene identifier annotation used for the to_species.
Note this should match with the gene names in object$counts. By default
external_gene_name. If NULL the annotation_to_species is inferred with
detect_gene_type, note this might take time.

Value

A list with the gene sets per cell type with the one-to-one orthology

Examples

Case without stating the gene annotation of the mapping.organisms object
note this will take longer to execute

file <- system.file("extdata"”, "example_mapping_organism.rda",
package = "singIST")

load(file)

data_organism <- example_mapping_organism

file <- system.file("extdata"”, "example_superpathway_fit_model.rda"”,
package = "singIST")

load(file)

data_model <- example_superpathway_fit_model
orthology_mapping(data_organism, data_model, "hsapiens”,
annotation_to_species = NULL)

Case assuming the gene annotation of the mapping.organism object is
by default "external_gene_name” this is faster
orthology_mapping(data_organism, data_model, "hsapiens"”)

permut_asmbplsda Permutation test for asmbPLSDA global significance for LOO

Description

Performs permutation testing for asmbPLS-DA to evaluate model validity.

permut_asmbplsda_kcv 49

Usage

permut_asmbplsda(
object,
npermut = 100,
nbObsPermut = NULL,
Nc =1,
CV_error,
measure = "B_accuracy”,
Method = NULL,
maxiter = 100

)
Arguments
object A superpathway fit model list.
npermut Number of permutations (default: 100).

nbObsPermut Number of samples to permute per iteration (default: NULL).

Nc Number of samples dropped per permutation (default: 1).
CV_error Cross-validation error of the fitted model.
measure Accuracy measure ("F1", "accuracy”, "B_accuracy”, "precision”, "recall”,
default: "B_accuracy”).
Method Decision rule for prediction (default: NULL).
maxiter Maximum iterations (default: 100).
Value

A list with permutation statistics, p-value, and confidence intervals.

Examples

file <- system.file("extdata”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

data <- example_superpathway_fit_model

permut_asmbplsda(data, npermut = 5, Nc = 1,

CV_error = 1)

permut_asmbplsda_kcv Permutation test for asmbPLS-DA global significance (LOO or KCV)

Description

If splits=NULL, runs LOOCV-based permutation. Otherwise treats splits as a list of train/validate
splits (e.g. from make_splits_R()) and does a fixed splits K-foldxrepeats permutation test.

50 predict_mfa_imputer

Usage

permut_asmbplsda_kcv(
object,
npermut = 100,
splits = NULL,

measure = "B_accuracy”,
nbObsPermut = NULL,
Nc =1,

Method = NULL,
maxiter = 100,
CV_error = NULL,

)
Arguments
object A superpathway fit model list
npermut Number of permutations (default: 100)
splits Optional list of splits; if NULL uses LOOCYV branch
measure Accuracy measure ("F1", "accuracy”, "B_accuracy”, "precision”, "recall”,

default: "B_accuracy”).

nbObsPermut Number of samples to permute per iteration (default: NULL).

Nc Number of samples dropped per permutation (default: 1 if LOOCYV).
Method Decision rule for prediction (default: NULL).

maxiter Maximum iterations (default: 100).

CV_error Error obtained from optimal model CV process

Other args passed to LOOCYV or to evaluate_performance

Value

A list with null distribution, p-value, and (for KCV) splits

predict_mfa_imputer Impute new samples using a fitted MFA imputer

Description

Projects each new sample into the latent space learned on training, then reconstructs its missing
entries.

Usage

predict_mfa_imputer(X_new, mu, loadings)

pullGeneSet 51

Arguments
X_new Numeric matrix (new samples x same features), may contain NAs.
mu Numeric vector of column means (as returned by fit_mfa_imputer).
loadings Numeric matrix of loadings (columns = components).

Value

Matrix X_new with NAs replaced by reconstructed values.

pullGeneSet Pull Gene Set from MsigDB

Description

Retrieves the gene set associated with a pathway or superpathway from MsigDB.

Usage
pullGeneSet(object, gse = NULL, ...)
Arguments
object List. A pathway (from create_pathway()) or superpathway (from create_superpathway()).
gse Gene Set Collection from MsigDB. If NULL, loads default (human, ENTREZ
+ SYM IDs).
Additional arguments passed to msigdb::subsetCollection().
Value

A character vector with gene IDs for the specified pathway.

Examples

my_pathway <- create_pathway ("KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
"KEGG", "c2", "CP")
pullGeneSet(my_pathway)

52 restore_removed_columns

render_multiple_outputs
Render multiple singISTrecapitulation outputs

Description

Render output of multiple_singISTrecapitulations for multiple disease models and superpathways,
the output is friendly for visualizing the results

Usage

render_multiple_outputs(objects = list())

Arguments

objects A list as retuned by multiple_singISTrecapitulations

Value

A list with the row binded data. frame for each superpathway assessed for the superpathway and
cell type recapitulations, gene contributions to the former, and fold changes. These row binds are
performed for all disease models and superpathways.

restore_removed_columns

Restore columns removed during MFA cleaning into the imputed ma-
trix

Description

After cleaning and imputing a subset of predictors (removing any columns with zero variance or
100% missing), this function re-inserts those removed columns in their original order. For each
re-inserted column, original non-missing values are kept and entries that were originally missing
are set to zero.

Usage

restore_removed_columns(X_imp_clean, X_raw, keep_cols)

Arguments
X_imp_clean Numeric matrix (n_samples x p_cleaned) of imputed values for the columns that
were kept.
X_raw Numeric matrix or data.frame (n_samples x p_oril) of ginathe original predictor
data before cleaning.
keep_cols Logical vector of length p_original, where TRUE indicates the column was kept

for imputation and FALSE indicates it was removed.

Results_comparison_measure 53

Value

A numeric matrix (n_samples x p_original) with all original columns in their original order. Columns
where keep_cols == TRUE contain the values from X_imp_clean. Columns where keep_cols ==
FALSE contain the original non-NA values, and any entries that were originally NA are set to zero.

Results_comparison_measure

Compute performance metrics of predicted asmbPLSDA

Description

Compute performance metrics of predicted asmbPLSDA

Usage
Results_comparison_measure(
Y_predict,
Y_true,
outcome.type = c("binary”, "multiclass")
)
Arguments
Y_predict Predicted matrix from asmbPLSDA
Y_true True class used to fit asmbPLSDA

outcome. type Outcome type either "binary” or "multiclass”

Value

A vector with accuracy, balanced accuracy, precision, recall and F1 metric

Examples

Results_comparison_measure(c(1,0,1,0,1), c(0,0,1,1,1),
outcome.type = "binary")

54 setGeneSetsCelltype

setGeneSetsCelltype Set gene sets per cell type in a superpathway

Description

Updates the gene_sets_celltype element of a superpathway object, ensuring validity:

* The number of gene sets must match the number of cell types.

Usage
setGeneSetsCelltype(object, value = NULL, ...)
Arguments
object List. A superpathway object created by create_superpathway(), or a pathway
object created by create_pathway().
value List. A list of genes to incorporate in each cell type slot. By default NULL, only
use if genes are to be introduced manually.
other parameters to pass onto pullGeneSet().
Value

The updated superpathway object (list).

Examples

my_pathway <- create_pathway(
standard_name = "KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION",
dbsource = "KEGG",
collection = "c2",
subcollection = "CP"

)

my_superpathway <- create_superpathway(my_pathway, c("T-cell”,
"Dendritic Cell"”), list())

my_superpathway <- setGeneSetsCelltype(my_superpathway, list(c("IL2"),
c("IL4")))

singISTrecapitulations 55

singISTrecapitulations
Compute singlST recapitulations

Description

This method provides with all singIST recapitulations; superpathway recapitulations; cell type re-
capitulations; gene contributions to cell type recapitulations. The procedure encompasses the ex-
ecution of the biological link function, the derivation of the predictor scores (superpathway, cell
type and gene scores), and their use to compute the predicted recapitulations as a fraction of the
reference recapitulation.

Usage
singISTrecapitulations(object, model_object, ...)
Arguments
object A mapping organism list for which to calculate the recapitulations against the

fitted superpathway model
model_object A superpathway fit model list used to calculate the recapitulations
Other parameters to pass onto biological_link_function

Value

A list with; a data. frame object with the superpathway recapitulation, containing variables pathway
name, recapitulation, p_val with the global significance test of the fitted model as provided
in model_object, and target_organism with the target class of the disease model as provided
in model_object; a data.frame with the cell type recapitulation, containing variables pathway
name, celltype, recapitulation, orthology with the percentage of observed one-to-one orthol-
ogy coverage

« if all cell types have the same gene set this value is constant -, and target_organism; a
data.frame object with the gene contributions to cell type recapitulation, containing vari-
ables pathway, celltype, gene name, contribution indicating the gene contribution to cell
type recapitulation, and target_organism; orthologs a data.frame with the one-to-one
orthology mapping for each cell type gene set.

Examples

file <- system.file("extdata”, "example_mapping_organism.rda",
package = "singIST")

load(file)

data_organism <- example_mapping_organism

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

data_model <- example_superpathway_fit_model
singISTrecapitulations(data_organism, data_model)

56 singIST_treat

singIST_treat Derive singIST treated samples

Description

Derive singIST treated samples

Usage

singIST_treat(object, model_object, orthologs, logFC)

Arguments

object A mapping organism list passed from biological_link_function.
model_object A superpathway fit model list passed from biological_link_function

orthologs A list of data. table objects, as returned by orthology_mapping with the one-
to-one orthologs of each gene set per cell type

logFC A list of data. frame objects, as returned by diff_expressed with the logFC for
each gene and cell type.

Value

A list object with the singIST treated samples predictor block matrix and a list of Fold Changes for
each cell type used to compute the singIST treated samples.

Examples

Orthology mapping

file <- system.file("extdata"”, "example_mapping_organism.rda",
package = "singIST")

load(file)

data_organism <- example_mapping_organism

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

data_model <- example_superpathway_fit_model

orthologs <- orthology_mapping(data_organism, data_model, "hsapiens”)
Set the identities

Cell type mapping

data <- celltype_mapping(data_organism)

data$counts$test <- paste@(data$counts$celltype_cluster,

"_", data$counts$class)

SeuratObject::Idents(data$counts) <- "test”

logFC <- diff_expressed(data)

singIST_treat(data_organism, data_model, orthologs, logFC)

superpathway_recap 57

superpathway_recap Derive superpathway recapitulation

Description

Derive superpathway recapitulation

Usage

superpathway_recap(model_object, data_original, data_singIST)

Arguments

model_object A superpathway fit model list passed from singISTrecapitulations

data_original A matrix with the superpathway’s score as returned by derive_contributions for
the non-singIST treated samples, passed from singISTrecapitulations

data_singIST A matrix with the superpathway’s score as returned by derive_contributions for
the singIST treated samples, passed from singISTrecapitulations

Value

An objectdata. frame with the variables: pathway name as indicated in model_object, recapitulation
with the superpathway recapitulation

Examples

file <- system.file("extdata"”, "example_superpathway_fit_model.rda",
package = "singIST")

load(file)

model <- example_superpathway_fit_model

file <- system.file("extdata"”, "example_mapping_organism.rda”,
package = "singIST")

load(file)

mapped <- example_mapping_organism

singIST_samples <- biological_link_function(mapped,
model)$singIST_samples

original <- derive_contributions(model, singIST_samples)

derived <- derive_contributions(model,model$model_fit$predictor_block)
superpathway_recap(model, original$superpathway_score,
derived$superpathway_score)

58 wilcox_CIP_GIP

update_group_sizes Update block-size vector after cleaning

Description
Given an original vector of block lengths and a mask of kept columns, recomputes the new block
lengths.

Usage

update_group_sizes(group_orig, keep_cols)

Arguments
group_orig Integer vector of original block sizes (sum group_orig = ncol before cleaning).
keep_cols Logical vector of length sum(group_orig), TRUE for columns retained.

Value

Integer vector of same length as group_orig with updated block sizes.

Examples

update_group_sizes(c(2,3), c(TRUE, TRUE, FALSE, TRUE, TRUE))

wilcox_CIP_GIP Mann-Whitney Wilcoxon test p-value

Description

Mann-Whitney Wilcoxon test p-value

Usage
wilcox_CIP_GIP(ref_distr, null_distr, ...)
Arguments
ref_distr A vector with the reference distribution
null_distr A vector with the null distribution
Other parameters to be passed onto wilcox.test
Value

A pvalue with the Mann-Whitney Wilcoxon test with the "greater" as the alternative hypothesis

wilcox_CIP_GIP

Examples

ref_distr <- rnorm(100, mean = 30, sd
null_distr <- rnorm(100, mean = @, sd
wilcox_CIP_GIP(ref_distr, null_distr)

2)
»

59

Index

add_missing_psb_rows, 3 execute_parallel_cv (helpers), 32
asmbPLSDA.cv.kcv, 4 execute_sequential_cv (helpers), 32
asmbPLSDA.cv.1oo0, 5, 38, 39
FCtoExpression (helpers), 32
biological_link_function, 7,47, 55, 56 fit_mfa_imputer, 30
fit_permuted_model (helpers), 32

calculate_pvalues (helpers), 32 fitoptimal, 28, 45, 46

celltype_mapping, 8
celltype_recap, 9, 31 gene_contrib, 31

center_scale (helpers), 32 generate_null_distributions (helpers),
check_fit_model, 10 32

check_hyperparameters, 10
check_mapping_organism, 11
check_pathway, 12
check_superpathway, 13

get_indices (helpers), 32
get_measure_index (helpers), 32
get_train_val_sets (helpers), 32

check_superpathway_input, 14, 23 helpers, 32

CIP_GIP, 15

CIP_GIP_test, 16, 29 initialize_results (helpers), 32
clean_mfa_data, 17

compute_final_measures (helpers), 32 jackknife_CIP_GIP (helpers), 32
compute_IC95 (helpers), 32

compute_permutation_stats (helpers), 32 matrixToBlock, 43

compute_pvalue (helpers), 32 multiple_check, 44
compute_validation_metrics (helpers), 32 multiple_fitOptimal, 44, 45
create_fit_model, 18 multiple_singISTrecapitulations, 44, 46,
create_hyperparameters, 19 52
create_mapping_organism, 20

create_pathway, 21 orthology_mapping, 7, 8, 33, 40, 47, 56

create_superpathway, 22

create_superpathway_input, 23 perform_cv (helpers), 32

performance_measures (helpers), 32

deflate_prediction (helpers), 32 permut_asmbplsda, 29, 48
derive_contributions, 9, 25, 26, 31, 57 permut_asmbplsda_kcv, 49
derive_scores, 26 permute_X_matrix (helpers), 32
detect_gene_type, 48 permute_Y_matrix (helpers), 32
detect_gene_type (helpers), 32 predict_mfa_imputer, 50
diff_expressed, 7, 27, 56 pullGeneSet, 51
evaluate_performance (helpers), 32 quantile_computation (helpers), 32
evaluate_quantile_combinations

(helpers), 32 render_multiple_outputs, 52

60

INDEX

restore_removed_columns, 52
Results_comparison_measure, 53
retrieve_one2one_orthologs (helpers), 32

select_optimal_PLS (helpers), 32
select_samples (helpers), 32
setGeneSetsCelltype, 54
singIST_treat, 8, 40, 56
singISTrecapitulations, 9, 31, 46, 55, 57
subsampling_CIP_GIP (helpers), 32
superpathway_recap, 57

update_block (helpers), 32
update_group_sizes, 58

wilcox_CIP_GIP, 17, 29, 58

61

	add_missing_psb_rows
	asmbPLSDA.cv.kcv
	asmbPLSDA.cv.loo
	biological_link_function
	celltype_mapping
	celltype_recap
	check_fit_model
	check_hyperparameters
	check_mapping_organism
	check_pathway
	check_superpathway
	check_superpathway_input
	CIP_GIP
	CIP_GIP_test
	clean_mfa_data
	create_fit_model
	create_hyperparameters
	create_mapping_organism
	create_pathway
	create_superpathway
	create_superpathway_input
	derive_contributions
	derive_scores
	diff_expressed
	fitOptimal
	fit_mfa_imputer
	gene_contrib
	helpers
	matrixToBlock
	multiple_check
	multiple_fitOptimal
	multiple_singISTrecapitulations
	orthology_mapping
	permut_asmbplsda
	permut_asmbplsda_kcv
	predict_mfa_imputer
	pullGeneSet
	render_multiple_outputs
	restore_removed_columns
	Results_comparison_measure
	setGeneSetsCelltype
	singISTrecapitulations
	singIST_treat
	superpathway_recap
	update_group_sizes
	wilcox_CIP_GIP
	Index

