Bioconductor exercises 1

Working with Affymetrix data: estrogen, a 2x2 factorial design example

June 2004
Robert Gentleman, Wolfgang Huber

1.) Preliminaries. To go through this exercise, you need to have installed R, the packages Biobase, affy,
hgu95av2.db, hgu95av2cdf and vsn.

library ("affy")

library
library

"estrogen")
"VSH")

(
(
(
(

library ("genefilter")

2.) Load the data.

a.

Find the directory where the example cel files are. The directory path should end in
.../R/library/estrogen/extdata

system.file ("extdata", package="estrogen")
## [1] "/tmp/Rtmpl7wilI/Rinst34363429a53146/estrogen/extdata"

datadir <- function (x)
file.path(system.file ("extdata", package="estrogen"), x)

The function system. f£ile here is used to find the subdirectory extdata of the estrogen package
on your computer’s harddisk. To use your own data, set datadir to the appropriate path instead.
The file estrogen.txt contains information on the samples that were hybridized onto the arrays.
Look at it in a text editor. Again, to use your own data, you need to preprare a similar file with the
appropriate information on your arrays and samples. To load it into a phenoData object

pd <- read.AnnotatedDataFrame (datadir ("estrogen.txt"),

header = TRUE, sep = "", row.names = 1)

pData (pd)

## estrogen time.h
## lowlO-1.cel absent 10
## lowl0-2.cel absent 10
## highl0-1.cel present 10
## highl0-2.cel present 10
## lowd8-1.cel absent 48
## lowd8-2.cel absent 48
## high48-1.cel present 48
## high48-2.cel present 48

phenoData objects are where the Bioconductor stores information about samples, for example, treat-
ment conditions in a cell line experiment or clinical or histopathological characteristics of tissue biop-
sies. The header option lets the read.phenoData function know that the first line in the file
contains column headings, and the row.names option indicates that the first column of the file con-
tains the row names.

. Load the data from the CEL files as well as the phenotypic data into an Af fyBat ch object.

a <- ReadAffy(filenames = datadir (rownames (pData (pd))),
phenoData = pd,
verbose = TRUE)

a

## Warning: replacing previous import ’AnnotationDbi::tail’ by ’utils:

when loading ’"hgu95av2cdf’
## Warning: replacing previous import ’AnnotationDbi::head’ by ’utils
when loading ’"hgu95av2cdf’

ttail’

: thead’
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low10-1.cel bad.cel

Figure 1: see Exercise 4.

##

## AffyBatch object

## size of arrays=640x640 features (22 kb)
## cdf=HG_U95Av2 (12625 affyids)

## number of samples=8

## number of genes=12625

## annotation=hgu95av2

## notes=

3.) Normalization. Now we can use the function vsnrma to normalize the data and calculate expression
values.

x <— wvsnrma (a)

X

##
##
##
##
##
##
##
##
##
##
##
##
4
##

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 8 samples

element names: exprs
protocolData
sampleNames: lowlO-1l.cel lowlO0O-2.cel ... high48-2.cel (8 total)

varLabels: ScanDate
varMetadata: labelDescription
phenoData
sampleNames: lowlO-1l.cel lowlO-2.cel ... high48-2.cel (8 total)

varLabels: estrogen time.h

varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData (object)'
Annotation: hgu95av2

4.) Looking at the CEL file images. The image function allows us to look at the spatial distribution of the
intensities on a chip. This can be useful for quality control. Fortunately, all of the 8 celfiles that we have
just loaded do not show any remarkable spatial artifacts (see Fig. 1).
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Histogram of log2(intensity(al, 4]))
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Figure 2: see Exercise 5.

But we have another example:

Note that in these images, row 1 is at the bottom, and row 640 at the top.

5.) Histograms. Another way to visualize what is going on on a chip is to look at the histogram of its intensity

distribution. Because of the large dynamical range (O(10%)), it is useful to look at the log-transformed
values (see Fig. 2):

6.) Boxplot. To compare the intensity distribution across several chips, we can look at the boxplots, both of

the raw intensities a and the normalized probe set values x (see Fig. 3):

In the commands above, note the different syntax: a is an object of type Af fyBatch, and the boxplot
function has been programmed to know automatically what to do with it. exprs (x) is an object of type
matrix. What happens if you do boxplot (x) or boxplot (exprs (x))?

class (x)

## [1] "ExpressionSet"
## attr(, "package")
## [1] "Biobase"

class (exprs (x) )

## [1] "matrix" "array"

7.) Scatterplot. The scatterplot is a visualization that is useful for assessing the variation (or reproducibility,

depending on how you look at it) between chips. We can look at all probes, the perfect match probes only,
the mismatch probes only, and of course also at the normalized, probe-set-summarized data: (see Fig. 4):

Why are the arrays that were made at ¢ = 48h much brighter than those at ¢ = 10h? Look at histograms and
scatterplots of the probe intensities from chips at 10h and at48h to see whether you can find any evidence
of saturation, changes in experimental protocol, or other quality problems. Distinguish between probes
that are supposed to represent genes (you can access these e.g. through the functions pm () ) and control
probes.

8.) Heatmap. Select the 50 genes with the highest variation (standard deviation) across chips. (see Fig. 5):
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Figure 3: see Exercise 6.

rsd <- rowSds (exprs (x))
sel <- order (rsd, decreasing=TRUE) [1:50]

9.) ANOVA. Now we can start analysing our data for biological effects. We set up a linear model with main
effects for the level of estrogen (est rogen) and the time (t ime . h). Both are factors with 2 levels.

lm.coef <- function (v)
Im(y ~ estrogen x time.h) Scoefficients
eff <- esApply(x, 1, 1lm.coef)
For each gene, we obtain the fitted coefficients for main effects and interaction:
dim(eff)

#4# [1] 4 12625
rownames (eff)

## [1] " (Intercept)" "estrogenpresent" "time.h"
## [4] "estrogenpresent:time.h"

affyids <- colnames (eff)

Let’s bring up the mapping from the vendor’s probe set identifier to gene names.
library (hgu95av2.db)

## Loading required package: AnnotationDbi

## Loading required package: stats4

## Loading required package: IRanges

## Loading required package: S4Vectors

##
## Attaching package: ’'S4Vectors’

## The following object is masked from ’package:utils’
##
## findMatches
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Figure 4: see Exercise 7.

## The following objects are masked from ’package:base’:
#i#

## I, expand.grid, unname

## Loading required package: org.Hs.eg.db

##

##

ls ("package:hgu95av2.db")

## [1] "hgu9bav2" "hgu95av2.db" "hgu95av2ACCNUM"

## [4] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"
## [7] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"

## [10] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID" "hgu95av2ENZYME"

## [13] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME" "hgu95av2GOo"

## [16] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2MAP"
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"hgu95av2MAPCOUNTS" "hgu95av20MIM" "hgu95av20RGANISM"
"hgu95av20RGPKG" "hgu95av2PATH" "hgu95av2PATH2PROBE"
"hgu95av2PFAM" "hgu95av2PMID" "hgu95av2PMID2PROBE"
"hgu95av2PROSITE" "hgu95av2REFSEQ" "hgu95av2SYMBOL"
"hgu95av2UNIPROT" "hgu95av2_dbInfo" "hgu95av2_dbconn"
"hgu9bav2_dbfile" "hgu9bav2_dbschema"

37686_s_at
1884 s_at
36134 _at
39337_at
40412_at

40117 _at
38368 _at
38116_at
AFFX-HUMRGI
38827 _at
AFFX-BioC-5_z
AFFX-BioB-M _:
AFFX-BioB-5_a
846_s_at
32001_s_at
41400_at
33821_at
40195_at

947 at
38551_at
32034 _at
32174 _at
39755_at
AFFX-CreX-3_z
AFFX-BioDn-3_

w10-2.cel
h10-2.cel

w48-2.cel
w48-1.cel
h48-2.cel
h48-1.cel
w10-1.cel
h10-1.cel

Figure 5: see Exercise 8.
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Let’s now first look at the estrogen main effect, and print the top 3 genes with largest effect in one direction,
as well as in the other direction. Then, look at the estrogen:time interaction.

hist (eff[2,], breaks=100, col="blue", main="estrogen main effect")
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estrogen main effect
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lowest <- sort(eff[2,], decreasing=FALSE) [1:3]
mget (names (lowest), hgu95av2GENENAME)

#4# $°37294_at”

## [1] "BTG anti-proliferation factor 1"
#4

## $°846_s_at"

## [1] "BCL2 antagonist/killer 1"

#4

## $°36617_at”

## [1] "inhibitor of DNA binding 1"

highest <- sort(eff[2,], decreasing=TRUE) [1:3]
mget (names (highest), hgu95av2GENENAME)

#4# $°910_at"

## [1] "thymidine kinase 1"
##

## $°31798_at"

## [1] "trefoil factor 1"

##
## $°1884_s_at"
## [1] "proliferating cell nuclear antigen"

hist (eff[4,], breaks=100, col="blue", main="estrogen:time interaction")
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estrogen:time interaction
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highia <- sort (eff[4,], decreasing=TRUE) [1:3]

mget (names (highia), hgu95av2GENENAME)

## $°1651_at”
## [1] "ubiquitin conjugating enzyme E2 C"

#4

## $°40412_at®

## [1] "PTTGl regulator of sister chromatid separation, securin"
#4

## $°1945_at"
## [1] "cyclin B1"



