Identify differential APA usage from RNA-seq
alignments

Elena Grassi
Department of Molecular Biotechnologies and Health Sciences,
MBC, University of Turin, Italy

roar version 1.47.0 (Last revision 2014-09-24)

Abstract

This vignette describes how to use the Bioconductor package roar to
detect preferential usage of shorter isoforms via alternative poly-adenylation
from RNA-seq data. The approach is based on Fisher test to detect dis-
equilibriums in the number of reads falling over the 3’'UTRs when com-
paring two biological conditions. The name roar means “ratio of a ratio™
counts and fragments lengths are used to calculate the prevalence of the
short isoform over the long one in both conditions, therefore the ratio of
these ratios represents the relative “shortening” (or lengthening) in one
condition with respect to the other. As input, roar uses alignments files
for the two conditions and coordinates of the 3’UTRs with alternative
polyadenylation sites. Here, the method is demonstrated on the data
from the package RNAseqData. HNRNPC.bam.chrlj. To cite this soft-
ware, please refer to citation("roar").

Contents

1__Introductionl
|2 Input data

[1 Alternative polyadenylation annotations|

[3__Analysis steps|
[3-1 Creating a RoarDataset object]

3.2 Obtaining counts|,
3.3 Computing roar|. e
8.4 Computing p-values|
3.0 Obtaining results| o 0L,

[3.6 MultipleAPA analyses|

3. enes with overlapping 3)

NN

N O OU U s e W

4 Appendix 8

[4.1 m/M calculations| Lo 8

1 Introduction

The alternative polyadenylation mechanism at the basis of the existence of short
and long isoforms of the same gene is reviewed in Elkon et al [2]. For the
relevance of this phenomenon to development and cancer see [6], [5] [4].

2 Input data

A roar analysis starts from some alignments, obtained via standard RNAseq
experiments and data processing. It is possible to build a RoarDataset object
giving its constructor two lists of bam files obtained from samples of the two
conditions to be compared or to use another constructor that takes directly two
lists of GAlignments.

2.1 Alternative polyadenylation annotations

The other information needed to build a RoarDataset object are 3'UTRs coor-
dinates (with canonical and alternative polyadenylation sites) for the genes that
one wants to analyze - these could be given using a gtf file or a GRanges object.

The gtf file should have an attribute (metadata column for the GRanges
object) called “gene id” that ends with “ PRE” or “ POST” to address re-
spectively the short and the long isoforms.

An element in the annotation is considered “PRE” (i.e. common to the short
and long isoform of the transcript) if its gene id ends with “ PRE”. If it ends
with “ POST” it is considered the portion present only in the long isoform. The
prefix of gene id should be a unique identifier for the gene and each identifier
has to be associated with only one “ PRE” and one “ POST”, leading to two
genomic regions associated to each gene id.

The gtf can also contain an attribute (metadata column for the GRanges
object) that represents the lengths of PRE and POST portions on the tran-
scriptome. If this is omitted the lengths on the genome are used instead (this
will results in somewhat inaccurate length corrections for genes with either the
PRE or the POST portion comprising an intron). Note that right now every
gtf entry (or none of them) should have it.

In the package we added a file (examples/apa.gtf) that follows these direc-
tives: it is build upon the hgl9 human genome release using PolyA DB ([I])
version 2 to obtain coordinates of alternative polyadenylation (from now on ad-
dressed as APA) sites. Every gene with at least one APA site is considered; their
longest transcript is used to get the “classical” polyadenylation syte (canonical
end of the longest transcript stored in UCSC) and the most proximal (with re-
spect to the TSS, that is the farther to the canonical end of the transcript; but
preferring sites still in the 3’UTR) reported APA site found in PolyA DB is

used to define the end of the short isoform. Therefore we define the “PRE” por-
tion as the stretch of DNA starting from the beginning of the exon containing
(or proximal to) the APA site and ending at the site position, while the POST
portion starts there and ends at the canonical transcript end. Using only the
nearest exon to the APA site and not the entire transcript to define the short
isoform avoids spurious signals deriving from other alternative splicing events.

To summarize the package requirements are: every entry in the gtf should
have an attribute called “gene id” formed by a prefix representing unique gene
identifiers and a suffix. The suffix defines if the given coordinates refer to the
portion of this gene common between the short and the long isoform (“ PRE”)
or to the portion pertaining only to the long isoform (“ POST”). Every gene
identifier must appear two (and only two) times in the gtf, one with the suffix
“ PRE” and one with “ POST”. An example of how PRE and POST are
defined is reported in Figure[I]

Scale 500 hgt9
chr21 37,665,700 | 37,665,800 | 37,665,900 | 37,666,000 | 37, s:s’vwoo\c 37,666,200 | 37,666,300 | 37,666,400 | 37,666,500 | 37,666,600 |
gGen

DOPEY2

DOPEY2_PRE

Figure 1: An example of PRE/POST portions definition

3 Analysis steps

The suggestion is to use one of the two wrapper scripts (roar Wrapper or roar-
Wrapper _chrBychr) or at least follow their tracks. The principal steps of the
analysis are performed by different methods that receive a RoarDataset object
as an argument and returns it with the needed step performed. It is also possi-
ble to call directly the methods to get the results (eg. totalResults), in this way
all the preceding steps will be performed automatically.

Loading and handling alignments data require a lot of memory: if you have
small datasets (up until 2.5Gb, 58.5 million reads with a length of 50 bp) 4
Gb of RAM will be more than sufficient (peak memory usage, gotten via the ps
command with the keyword rss, when comparing two samples of 2.5Gb: 1.3Gb)
and you can use the roarWrapper script. For bigger datasets (eg. 20Gb, 413
million reads with a length of 101bp) you will have to split your alignments in
small chunks: roarWrapper chrBychr works on single chromosomes.

Please note than when working in this way FPKM values returned by fpkm-
Results will be different from those obtained with the analysis performed using a
single RoarDataset on the whole alignments - in this case you can extract counts
with countResults and knit together real FPKM values afterwards, if you need
them (roarWrapper chrBychr does this).

In the following sections we will show an example of this package usage on
the RNAseqData. HNRNPC.bam.chrl4 package data and the annotation given
in the package itself.

3.1 Creating a RoarDataset object

The analysis begins by creating a RoarDataset object that holds the alignment
data (4 HNRNPC ko samples and 3 control samples) and the annotation re-
garding 3’UTRs coordinates.

library(roar)

library(rtracklayer)

library(RNAseqData.HNRNPC.bam.chri14)

gtf <- system.file("examples", "apa.gtf", package="roar")

HNRNPC ko data

bamTreatment <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[seq(5,8)]
control (HeLa wt)

bamControl <- RNAseqData.HNRNPC.bam.chr14_ BAMFILES[seq(1,3)]
rds <- RoarDatasetFromFiles(bamTreatment, bamControl, gtf)

V VVVVVVYVYV

3.2 Obtaining counts

This is the first step in the Roar analysis: it counts reads overlapping with the
PRE/POST portions defined in the given gtf/GRanges annotation. Reads of
the given bam are accounted for with the following rules:

1. reads that align on only one of the given features are assigned to that
feature, even if the overlap is not complete

2. reads that align on both a PRE and a POST feature of the same gene
(spanning reads) are assigned to the POST one, considering that they
have clearly been obtained from the longer isoform

If the alignments were derived from a strand-aware protocol it is possible to
consider strandness when counting reads using the stranded=TRUE argument;
in this case we use FALSE as long as we don’t want to consider strandness.

> rds <- countPrePost(rds, FALSE)

3.3 Computing roar

This is the second step in the Roar analysis: it computes the ratio of preva-
lence of the short and long isoforms for every gene in the treatment and con-
trol condition (m/M) and their ratio, roar, that indicates if there is a relative
shortening-lengthening in a condition versus the other one (the choice of call-
ing them “treatment” and “control” is simply a convention and reflects the fact
that to calculate the roar the m/M of the treatment condition is used as the
numerator). For details about the m/M calculations see section

A roar > 1 for a given gene means that in the treatment condition that gene
has an higher ratio of short vs long isoforms with respect to the control condition
(and the opposite for roar < 1). Negative or NA m/M or roar occurs in not
definite situations, such as counts equal to zero for PRE or POST portions. If

for one of the conditions there is more than one sample, like in this example
that has four and three samples for the two conditions, then calculations are
performed on average counts.

> rds <- computeRoars (rds)

3.4 Computing p-values

This is the third step in the Roar analyses: it applies a Fisher test comparing
counts falling on the PRE and POST portion in the treatment and control
conditions for every gene. If there are multiple samples for a condition every
combination of comparisons between the samples lists is considered - for example
in this case we have four and three samples, therefore it will calculate 12 p-values.

> rds <- computePvals (rds)

Computing all samples pairing is not the preferrable choice when a paired
experimental design exists: in this case only the correct pairs between control
and treatment samples should be compared with the Fisher test; then their
p-values can be combined following the Fisher method ([3]) because we have
different independent tests on the same null hypothesis. For these situations
there is an alternative way to obtain the p-values: computePairedPuvals, which
require the user to specify as arguments not only the RoarDataset object but
also two vectors containining the ordered samples for treatment and control -
see the related man page for details.

3.5 Obtaining results

There are various functions aimed at extracting results from a RoarDataset; the
first one is totalResults:

> results <- totalResults(rds)

It returns a dataframe with gene id as rownames and several columns: “mM _treatment”,
“mM _control”, “roar”, “pval” and a number of columns called “pvalue X Y”
(when there are multiple samples for at least one condition, X refers to the
treatment samples and Y to the control ones). The first two columns have
the value of the ratio showing the relative abundance of the short isoform with
respect to the long one in the treatment (or control) condition, the third one
represents the roar and it’s bigger than one when the shorter isoform is relatively
more expressed in the treatment condition (and the other way around when it’s
smaller than one). The pval column stores the results of the Fisher tests when
both conditions have a single sample, while the multiplication of all the possible
combinations p-values for un-paired multiple samples analysis or the combined
p-values following the Fisher method if computePairedPuvals has been used.

In this case for example there will be columns “pvalue_1 1”7 up to “pvalue_4 3™

the first number represents the number of the considered sample for the treat-
ment condition, while the second for the control one (the samples are considered
in the same order given in the lists passed to the RoarDataset constructors).

All other functions are simply helper functions: fpkmResults adds columns
"treatmentValue" and "controlValue" representing the level of expression of the
relative gene in the two conditions, while countResults puts in that columns the
number of reads that were counted on the PRE portion of genes.

standardFilter get a parameter with a cutoff for the FPKM value and selects
only genes with an expression higher than that and without any NA /Inf value
for m/M or roar (deriving from not definite situations with counts equal to zero).
pvalueFilter further selects only genes with a Fisher test pvalue smaller than the
given cutoff in the single sample case, while if more than one sample has been
given for one condition it adds a column named "nUnderCutoff" that stores the
number of p-values that are smaller than the given cutoff. It is worth noting
that all the p-values are nominal with this method, while pvalueCorrectFilter
applies an user requested multiple correction procedure (after FPKM filtering)
for single sample or paired (that is when computePairedPvals has been used)
analyses and filters with the given cutoff on these corrected value (for un-paired
multiple samples design this does exactly the same as pvalueFilter).

For example in our case we can see how many genes have a pvalue under
0.05 in every comparisons in this way:

> results_filtered <- pvalueFilter(rds, fpkmCutoff=-Inf,
+ pvalCutoff=0.05)
> nrow(results_filtered[results_filtered$nUnderCutoff==12,])

[1] 2

Note that for FPKM we used -Inf as a cutoff because in this case we didn’t want
to filter out genes considering their expression values (and because we used only
partial alignments deriving from a single chromosome, thus the usual FPKM
cutoff are not directly applicable).

Another thing to point out is that the FPKM values derive from the total
reads falling over the genes given in the annotation, therefore when doing the
analysis “stepwise” (eg. with roarWrapper chrByChr) their values will be dif-
ferent than those obtained performing the analysis all together. countResults
could be used in this situations to save single steps counts and then calculate
“whole” FPKM values.

3.6 MultipleAPA analyses

In order to allow users to efficiently study polyadenylation for gene harbour-
ing more than one alternative polyadenylation site with a single analysis we
have developed the RoarDatasetMultipleAPA class. A MultipleAPA analysis
computes several roar values and p-values for each gene: one for every possible
combinations of APA-canonical end of a gene (i.e. the end of its last exon).

This is more efficient than performing several different “standard” roar analyses
choosing the PRE and POST portions corresponding to different APAs because
reads overlaps are computed only once.

The gtf or Granges used for this kind af analyses are different from the ones
described previously: they should containing a suitable annotation of alternative
APA sites and gene exonic structure. Minimal requirements are: attributes
(metadata columns for Granges) called "gene", "apa" and "type." APA should
be single bases falling over one of the given genes and need to have the metadata
column "type" equal to "apa" and the "apa" column with unambiguous ids and
the corresponding gene id pasted together with an underscore. The "gene"
metadata columns for these entries should not be initialized. All the studied
gene exons need to be reported, in this case the metadata column "gene" should
contain the gene id (the same one reported for each gene APAs) while "type"
should be set to "gene" and "apa" to NA. All apa entries assigned to a gene
should have coordinates that falls inside it and every gene that appears should
contain at least one APA.

Annotation files that follow these rules can be found at https://github.
com/vodkatad/roar/wiki/Identify-differential-APA-usage-from-RNA-seg-alignments|
From the user point of view the steps needed to perform a multipleAPA analysis
are exactly the same of the standard one, the only difference lies in the output
of methods that report results as long as in this case we have more than a single
roar value for each gene. The details are reported in the corresponding man

pages.

3.7 Genes with overlapping 3’UTRs

When two genes overlap reads that align on the shared coordinates could not be
assigned to either of them in a straightforward way - in the single APA analyses
we discard those reads while for technical reasons in the multiple APA analyses
we perform the alignment separately for genes on the plus and minus strand,
thus the reads that overlap genes on different strands will be counted for all of
them, while those on genes on the same strand will be correctly discarded. In
order to overcome this problem in the multiple APA analyses it is possible to filter
the gtf or Granges annotation used before creating the RoarDatasetMultiple A PA
object removing all genes with overlapping portions.

Note that for the single APA analyses roar alignment procedure could detect
overlaps only between the given PRE and POST portions and therefore possible
overlaps with other portions of genes are not considered - again it is possible to
filter the used annotations beforehand.

https://github.com/vodkatad/roar/wiki/Identify-differential-APA-usage-from-RNA-seq-alignments
https://github.com/vodkatad/roar/wiki/Identify-differential-APA-usage-from-RNA-seq-alignments

4 Appendix

4.1 m/M calculations

To correctly evaluate the quantities ratios of the short and long isoforms counts
of the reads falling over the two transcript portions (as previously defined: PRE
is the portion common between the two isoforms, while POST is the one present
only in the longer transcript) should be accounted for considering the fact that
those falling over PRE could have been obtained from both isoforms while the
others falling on POST derive exclusively from the longer one; another more
trivial question that has to be addressed is that reads fall with larger frequencies
on longer stretches of RNA.

We can say that the total number of reads falling over a transcript in its
entirety (N) derives from the relative abundance of the two isoforms and their
potential of generating reads; that is: N = ey, M + €,,m where m is the quan-
tity of the short isoform, M of the long one and e identifies their efficiency in
generating reads.

Assuming the equiprobability of reads distribution (that is each nucleotide
has the same probability of finding itself in a read) the efficiency in generating
reads of the two isoforms is related to their lengths (with the addition of a con-
stant of proportionality k):

em = k(lpre + lposT)

em = k(lprE)

Defining [prp as the length of the PRE portion and Ippogsr as the length of
the POST we can now obtain the number of reads falling on the two portions
as:

— lPRE
#TPRE = EMM(lPRE"FlPOST) T €mm

and:
_ l
#TPOST = EMM(IPRgfliTOST)

These two equations reflect the fact that all the reads deriving from the
short isoform (e,,m) fall on the PRE portion while the ones deriving from the
long one are distributed over the PRE and POST portions depending on their
lengths.

We can now setup a system of equations aimed at obtaining the m/M value
in terms of the numbers of reads falling over the two portions and their lengths.

— lPRE
#rprp = epM(———LEE) 4 c,m
We start from: B (lPREl'IthPSOTST) m
#reost = emM (2005 0)

Then with simple algebraic steps the system can be solved yielding the for-
mula to obtain m/M using only read counts and lengths:

m/M:m_l

lprE#TPOST

As a simple emblematic case suppose that the PRE and POST portions have
the same lengths and that the short and long isoforms are in perfect equilibrium
(i.e. they are present in a cell in equal numbers). In this situation we will find
on the PRE portion two times the number of reads falling on the POST one
because half of them will derive from the long isoforms and the other half from
the short ones. In this case the equation correcly gives us an m/M equal to 1.

In the previous discussion we have ignored reads falling across the PRE/POST
boundaries. As long as they can derive only from the long isoform it is reason-
able to assign them to #rpogsr.

Portion lengths should be corrected to keep in consideration read lengths
and the just cited assignment to POST of the spanning reads, therefore:

l =1
PRE = lPRE

Upost = lpost + readLength — 1

Normally we should have added readLength to both the lengths but in this
case we do not expect reads to fall after the POST portion (that is the end of
transcripts) and thus we only have to correct for the spanning reads. We do not
subtract the same value from [prg as long as in theory we could expect reads
to fall at its 5’ (i.e. reads falling across that exon and the previous one or those
from still unspliced transcripts).

These corrected lengths are those used for the m/M calculations.

References

[1] Y. Cheng, R. M. Miura, and B. Tian. Prediction of mRNA polyadenylation
sites by support vector machine. Bioinformatics, 22(19):2320-2325, October
2006.

[2] Ran Elkon, Alejandro P. Ugalde, and Reuven Agami. Alternative cleav-
age and polyadenylation: extent, regulation and function. Nature Reviews
Genetics, 14(7):496-506, June 2013.

[3] R.A. Fisher. Statistical methods for research workers. Edinburgh Oliver &
Boyd, 1925.

4]

5]

(6]

Zhe Ji, Ju Y. Lee, Zhenhua Pan, Bingjun Jiang, and Bin Tian. Progressive
lengthening of 3’ untranslated regions of mRNAs by alternative polyadeny-
lation during mouse embryonic development. Proceedings of the National
Academy of Sciences of the United States of America, 106(17):7028-7033,
April 2009.

Christine Mayr and David P. Bartel. Widespread shortening of 3’'UTRs by
alternative cleavage and polyadenylation activates oncogenes in cancer cells.
Cell, 138(4):673-684, August 2009.

Rickard Sandberg, Joel R. Neilson, Arup Sarma, Phillip A. Sharp, and
Christopher B. Burge. Proliferating Cells Express mRNAs with Short-
ened 3’ Untranslated Regions and Fewer MicroRNA Target Sites. Science,
320(5883):1643-1647, June 2008.

10

	Introduction
	Input data
	Alternative polyadenylation annotations

	Analysis steps
	Creating a RoarDataset object
	Obtaining counts
	Computing roar
	Computing p-values
	Obtaining results
	MultipleAPA analyses
	Genes with overlapping 3'UTRs

	Appendix
	m/M calculations

