
KeBABS —
An R Package for Kernel Based Analysis of

Biological Sequences

Johannes Palme2 and Ulrich Bodenhofer1,2

1 School of Informatics, Communication and Media
University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg, Austria

2 previously with: Institute of Bioinformatics, Johannes Kepler University
Altenberger Str. 69, 4040 Linz, Austria

Version 1.45.0, September 19, 2025

User Manual / Package Vignette

Link to package on GitHub: https://github.com/UBod/kebabs

https://github.com/UBod/kebabs


2

Scope and Purpose of this Document

This document is the user manual for the R package kebabs. It is meant as an introduction to
the KeBABS functionality which should make the user acquainted with the basic functions of the
package both on a conceptual level as well as from the usage perspective. This means that the
document will neither go into full details for the described functions nor can it be considered a
complete description of all package functions. As an additional source of information, the help
pages including examples are available.

Please also consider that this manual is not an introduction to R nor an introduction to ma-
chine learning in general or to support vector machine-based learning. The document provides the
information in a form that also allows less experienced users to use the package. However, if you
do not have any knowledge of these subjects, please read introductory literature first.
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Authorship and Contributions

Except for the header files khash.h and ksort.h, three small stub files for Bioconductor packages
and four files for the dense version of LIBSVM this package was written entirely by Johannes
Palme as part of his master thesis in the Bioinformatics master program at the Johannes Kepler
University in Linz, Austria, under the supervision of Ulrich Bodenhofer. The author wants to
express his sincere gratitude to Ulrich Bodenhofer for numerous lively discussions throughout
the development of the package. The two header files mentioned above provide a fast hash table
implementation and sorting algorithms implemented in pure C code and are part of the open-
source C-library klib [AttractiveChaos, 2011]. The R code for prediction profile plots partly uses
a similar functionality in the package procoil as inspiration [Bodenhofer, 2011].

Starting with kebabs version 1.2.0 the dense implementation of the LIBSVM support vector
machine is included in the kebabs package. This is now the reliable way for training and predic-
tion via kernel matrices. Up to this version only the SVMs in package kernlab supported kernel
matrices. The two files svm.cpp and svm.h were taken from the dense distribution of LIBSVM.
In addition the interface files Rsvm.c and svm.R were used from package e1071 and adapted to
the dense LIBSVM. The author expresses his appreciation for the excellent work of Chih-Chung
Chang and Chih-Jen Lin and the contributions from R pacakge e1071 written by David Meyer.

The datasets delivered with the package come from two sources:

TFBS - transcription factor binding site data: This data set is based on supplementary data
provided with the publication "Discriminative prediction of mammalian enhancers from
DNA sequence by Lee et al. [2011].

CCoil - protein sequences for coiled coil proteins : This dataset is part of the data collection
for package procoil1.

KeBABS relies heavily on functionality provided by other R packages, especially the packages

Biostrings for storing and manipulating biological sequences

e1071, Liblinear and kernlab for SVM implementations used in binary and multiclass
classification and regression scenarios

Special thanks go to the persons who have contributed to these packages, the C library klib
or any of the data mentioned above.

1http://www.bioinf.jku.at/software/procoil/data.html

http://www.bioinf.jku.at/software/procoil/data.html
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6 1 Introduction

1 Introduction

The kebabs package provides functionality for kernel based analysis of biological sequences
(DNA, RNA and amino acid sequences) via Support Vector Machine (SVM) based methods.
Sequence kernels define similarity measures between sequences which can be used in various
machine learning methods. The package provides four important kernels for sequence analysis in
a very flexible and efficient implementation and extends their standard position-independent func-
tionality in a novel way to take the position of patterns in the sequences into account. Following
kernels are available in KeBABS:

Spectrum kernel [Leslie et al., 2002]

Mismatch kernel [Leslie et al., 2003]

Gappy pair kernel [Kuksa et al., 2008]

Motif kernel [Ben-Hur and Brutlag, 2003]

All of the kernels except the mismatch kernel support position-independent and position-
dependent similarity measures. Because of the flexibility of the kernel formulation other kernels
like the weighted degree kernel [Rätsch and Sonnenburg, 2004] or the shifted weighted degree
kernel with constant weighting of positions [Rätsch et al., 2005] are included as special cases. The
kernels also exist in an annotation-specific version which uses annotation information placed along
the sequence. The package allows for the generation of a kernel matrix or an explicit representa-
tion for all available kernels which can be used with methods implemented in other R packages.

KeBABS focuses on SVM-based methods and provides a framework that simplifies the usage
of existing SVM implementations in other R packages. In the current version of the package
the SVMs in the R packages kernlab [Karatzoglou et al., 2004], e1071 [Chang and Lin, 2011]
and LiblineaR [Fan et al., 2008] from the "The Comprehensive R Archive Network" (CRAN)2

are supported. Binary and multi-class classification as well as regression tasks can be used with
the SVMs in these packages in a unified way without having to deal with the different functions,
parameters and formats of the selected SVM. The package provides cross validation, grid search
and model selection functions as support for choosing hyperparameters . Grouped cross validation,
a form of cross validation which respects group membership is also available.

Another emphasis of this package is the biological interpretability of the machine learning
results. This aspect is reflected in the computation of feature weights for all SVMs and prediction
profiles which show the contribution of individual sequence positions to the prediction result and
give an indication about the relevance of sequence sections for the learning result.

The flexible and efficient kernels and the supporting SVM related functionality in KeBABS
together with the supported SVMs, especially the very fast linear SVMs in package LiblineaR,
provide a fast, versatile and easy-to-use sequence analysis framework combined with improved
biological interpretation possibilities of learning results through feature weights and prediction
profiles.

2http://cran.r-project.org

http://cran.r-project.org
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2 Installation

2.1 Installation via Bioconductor

The R package kebabs (current version: 1.45.0) is part of the Bioconductor Project3. To install
the package from this repository, please enter the following commands into your R session:

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")

BiocManager::install("kebabs")

2.2 Manual installation from source

The above described install method is the standard way of installing the package. If you e.g. want
to compile the C/C++ code included in the package with special compile flags, manual installation
of the package from source might be necessary. This is done in the following way:

install packages on which kebabs depends via Bioconductor with

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install(c("Rcpp", "S4Vectors", "XVector", "Biostrings", "SparseM",

"kernlab", "e1071","LiblineaR"))

open the Bioconductor page of the package4 in your web browser, download the source
package kebabs_1.45.0.tar.gz and save the source package on your hard disk.

open a shell/terminal/command prompt window and change to the directory where the
source package kebabs_1.45.0.tar.gz is stored. Then install the package with:

R CMD install kebabs_1.45.0.tar.gz

3 Getting Started

To load the package, enter the following in your R session:

library(kebabs)

When the package is loaded several messages are displayed indicating that some objects are
masked. This does not cause any problem for kebabs .Once the R session returns to the R com-
mand prompt ">" after loading the package, kebabs is ready for use.

The package includes this user manual which can be viewed in the R session with

3http://www.bioconductor.org/
4http://www.bioconductor.org/packages/release/bioc/html/kebabs.html

http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/bioc/html/kebabs.html
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vignette("kebabs")

Help pages can be accessed with

help(kebabs)

In the following example, we perform SVM-based binary classification for prediction of EP300
bound enhancers from DNA sequence. From a set of sequences derived from ChIP-seq EP300
binding sites and a set of negative sequences sampled from the same genome we train a model
which allows us to predict enhancers for new sequences. In this example a small subset of a much
larger dataset is used for demonstration purpose.

An analysis in kebabs usually starts with sequence data for DNA, RNA or amino acid se-
quences. In the following examples, we use DNA sequences which are included in the kebabs
package to demonstrate package functionality. In kebabs biological sequences are represented in
one of the classes DNAStringSet, RNAStringSet or AAStringSet as defined by the Biostrings
package. Sequences in this format can be created from character vectors containing the sequence
data or through reading sequences from a FASTA file with the functions readDNAStringSet,
readRNAStringSet, of readAAStringSet from package Biostrings. In the first example, we
load sample sequences provided with the kebabs package with

data(TFBS)

The dataset contains 500 DNA sequence fragments with lengths between 277 and 2328 bases from
the mouse genome mm9 used to study transcription factor binding for the EP300/ CREBBP bind-
ing proteins and a label vector which indicates whether the protein binds to a sequence fragment
or not. The dataset is a sampled subset of the mouse enhancer forebrain data from Lee et al. [2011]
based on a ChIP-seq study of Visel et al. [2009]. Let us look at the sequences stored under the
name enhancerFB, the number of sequences in the sequence set and the minimal and maximal
length of the contained sequences

enhancerFB

## DNAStringSet object of length 500:
## width seq names
## [1] 827 ACTAAACAACATCAATC...TAGGCAAAATCCTGACA chr19.21240050.21...
## [2] 678 GAATATAGACCCTTGGT...AAGTTATATTAATTTAT chr2.144463827.14...
## [3] 878 CACCCACATGGTGGCTC...TCCCCACTGTATCACTC chr7.38525408.385...
## [4] 927 TGCCGTAGTGTGCCAGC...TGATTCTCCTGGATCAA chr4.90747075.907...
## [5] 953 CTTCATATACCTATTAA...CCTAATTTAAAAAGGGG chr4.9148679.9149631
## ... ... ...
## [496] 478 ACGAGAATGAGGGAAAG...GTCTGCCTTCCGAGTGA chr8.45499713.455...
## [497] 1552 AGGGGACTGGAAGAAAG...TCTCTTCTAAGCGAGCA chr8.94657200.946...
## [498] 503 GATGAACGTAAAATGCA...TAATGACTCCCTTCTGA chr17.73900306.73...
## [499] 1577 ACCCCTCTGAGACCAAG...GTAGGTCTGTATTCCTG chr9.90587075.905...
## [500] 778 CACTGTCATAACTTGCT...GTAGAGTAGCTGCTCTC chr17.48680137.48...
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length(enhancerFB)

## [1] 500

The length distribution of the sequences in the dataset can be shown with

hist(width(enhancerFB), breaks=30, xlab="Sequence Length",
main="Distribution of Sequence Lengths", col="lightblue")
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To look at individual sequences from this set or parts of them, e.g. for sample number 3, we
can use

showAnnotatedSeq(enhancerFB, sel=3)

##
## Sequence chr7.38525408.38526285 of class DNAStringSet
##
## no annotation available
##
## 0 1 2 3 4
## 1 1 1 1 1
## [1] CACCCACATGGTGGCTCTCAACCATGTATAACTCCAGTTTTCAGGAGATT
## [51] TGATGCCTTCTTCTGGCCTCTGCAGGCATTGCACACATGTGATGCAGACA
## [101] TACATGCAGACAAAATGCCTATACAAATATAATAATAACAACAACAGCTT
## [151] TTAAATGACAAAGAAAGAAAGCAAATGGCCAAGATGTTAGGGGTGGCCAG
## [201] CCTCCTGTTTCCACCAGTAACCCTTCCTGCCCACGCCTCCCAATCACAGA
## [251] ACAATAGCTTCTATCCCACATTGCACTGACATGACCTCCATCCTGATGAG
## [301] AGTCTTCCTTCCCCACATGCAAAGTTCAAACAAGTAACTGTGGGGACTCT
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## [351] ATGAAACATGGGTGTTTGCTGCACGTCAGTAACAACAGCCATCCCTCCCC
## [401] AGTATGAACAGAGGGATGCTTAACACCACATGAGACAGGATGCAGAAGTC
## [451] ACAGATCAGCCACTCTGATGTTGACCTGTTGCAATACAGAAAGCAGGACT
## 0 1 2 3 4
## 1 1 1 1 1
## [501] CCCCCAGAGTTCACGCATGCATACGATATTTAAGATGTCAGTCAGCTCTA
## [551] CGTTTTGCAATATCTTGCAATCAAGCAGTGAGCTGGTGGGGAAAAGCCAC
## [601] CCTCTTTTATATACTCTGAGGCTGTCAGTTTCACCCTGGGGCGTGCATCA
## [651] GAAACCTCGGGGTGGGGGCGGTGGCTAGTTCACACACAGGCCAGATCACC
## [701] AGAGGCCCCACGAGTCTGACTGCAGAAGCATGTGAATTTGCATTTCTAAC
## [751] CAGTTGCCATGTGACCTCTGCCCCCCTCTAACCAGGTTACCACTTGGAAA
## [801] ATCATCCCTTGTGTTCTTCTCAGGACCCTGCCACTGTATGGACAGAGACC
## [851] CGCTCCTCTGCTCCCCACTGTATCACTC

The label vector is named yFB and describes the interaction of the DNA sequence fragment
and the binding factor considered in the underlying experiment. It contains a "1" for all positive
samples to which the transcription factor binds and a "-1" for all negative samples for which no
binding occurs. We look at the first few elements of the label vector with

head(yFB)

## [1] 1 -1 -1 1 -1 -1

and see that transcription factor binding occurs for the first and fourth sequence. With

table(yFB)

## yFB
## -1 1
## 259 241

we check the balancedness of the dataset and find that the dataset is balanced, i.e. that it contains
approximately the same amount of positive and negative samples. Unbalanced data can have a
strong impact on performance for SVM-based learning, therefore the user should always be aware
of unbalanced data. Now being familiar with the data in the dataset we can start with sequence
analysis.

To train a model we split the data set into a part used to train the model — the training set —
and a part to predict the binding behavior from the model — the test set. For the training set we
randomly select 70% of the sequences. The remaining sequences become the test set.

numSamples <- length(enhancerFB)
trainingFraction <- 0.7
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
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The vectors train and test now contain the sample indices for the training set and test set
samples. The elements in train are unordered because sample just picks elements randomly
from the given set.

In the next step, we select a kernel for the analysis. The sequences are character strings which
are converted to numerical data representing similarity values with the help of sequence kernels.
These similarity values are used to train a model via SVMs. In this example, the spectrum kernel
is used. This kernel is described in detail in Section 4.1.1. First we define a kernel object with

specK2 <- spectrumKernel(k=2)

which describes the type of kernel and the used setting of the kernel parameters. A spectrum kernel
with k = 2 considers substrings of length 2 in the sequences for the similarity consideration.

Now everything is available to train a model from the sequences in the training set with the
KeBABS function kbsvm. In its simplest form, the function expects the training set, the labels for
the training samples, the kernel object and the SVM together with SVM parameters. The meaning
of most other parameters will be introduced later in this manual. In this example, we perform clas-
sification using the C-SVM from package e1071 with a value 15 for the cost hyperparameter. The
kebabs SVM name is C-svc which stands for "C support vector classification". The hyperparam-
eter name cost is the unified kebabs name for the cost parameter called C in package kernlab
and cost in the packages e1071 and LiblineaR. The function kbsvm returns the trained model.

model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,
pkg="e1071", svm="C-svc", cost=15)

Because of the large number of possible parameters in kbsvm the parameter names are in-
cluded for each parameter in the function.

Now we have trained a linear model that separates the sequences for which transcription fac-
tor binding occurs from sequences without binding. The model parameters and all information
necessary for prediction is stored in the model object. A description of the KeBABS model object
is given in section 6. Once the model is trained, it can be used to predict whether EP300 binding
occurs for new sequences in the test set with

pred <- predict(model, enhancerFB[test])
head(pred)

## [1] "1" "1" "1" "1" "1" "1"

head(yFB[test])

## [1] -1 -1 1 -1 -1 1

The vector pred contains the predictions for the samples in the test set. The true values for the
test set are shown in the last output above. With the knowledge of the true labels for the test set
we can check the quality of our predictions, i.e. the performance of the model for the sequences
in the test set, with
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evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 47 32
## -1 16 55
##
## Accuracy: 68.000% (102 of 150)
## Balanced accuracy: 68.911% (47 of 63 and 55 of 87)
## Matthews CC: 0.374
##
## Sensitivity: 74.603% (47 of 63)
## Specificity: 63.218% (55 of 87)
## Precision: 59.494% (47 of 79)

The accuracy shows the percentage of the samples in the test set that were predicted correctly.
For balanced datasets, the accuracy is the main performance criterion. For unbalanced datasets,
the balanced accuracy or the Matthews Correlation Coefficient [Gorodkin, 2004] might be more
appropriate. The confusion matrix in the top part of the output shows the predictions as rows and
the correct labels as columns. The values on the diagonal are the correct predictions for the two
classes for which prediction and true label matches.

For comparison, we now run the same training with the gappy pair kernel which uses pairs of
substrings of length k separated by an arbitrary substring with a length up to m. For details on this
kernel see Section 4.1.3.

gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],

kernel=gappyK1M3, pkg="e1071", svm="C-svc",
cost=15)

pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 54 18
## -1 9 69
##
## Accuracy: 82.000% (123 of 150)
## Balanced accuracy: 82.512% (54 of 63 and 69 of 87)
## Matthews CC: 0.642
##
## Sensitivity: 85.714% (54 of 63)
## Specificity: 79.310% (69 of 87)
## Precision: 75.000% (54 of 72)

If we want to switch to the C-SVM implementation in a different package, e.g. LiblineaR,
only the package parameter is changed. KeBABS internally converts the data structures and pa-
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rameters to the package specific format before calling the SVM implementation in the selected
package.

gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],

kernel=gappyK1M3, pkg="LiblineaR", svm="C-svc",
cost=15)

pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 53 18
## -1 10 69
##
## Accuracy: 81.333% (122 of 150)
## Balanced accuracy: 81.719% (53 of 63 and 69 of 87)
## Matthews CC: 0.627
##
## Sensitivity: 84.127% (53 of 63)
## Specificity: 79.310% (69 of 87)
## Precision: 74.648% (53 of 71)

The accuracy is nearly identical, but the confusion matrix has changed. This example shows
that completely identical results cannot be expected from the same SVM in different packages.
The results between kernlab and e1071 are usually identical because the implementation is very
similar.

We use now a different SVM, the L1 regularized L2 loss SVM from LiblineaR.

gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],

kernel=gappyK1M3, pkg="LiblineaR", svm="l1rl2l-svc",
cost=5)

pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 51 16
## -1 12 71
##
## Accuracy: 81.333% (122 of 150)
## Balanced accuracy: 81.281% (51 of 63 and 71 of 87)
## Matthews CC: 0.621
##
## Sensitivity: 80.952% (51 of 63)
## Specificity: 81.609% (71 of 87)
## Precision: 76.119% (51 of 67)



14 4 Sequence Kernels

We have changed the value of the hyperparameter cost as we switched to a different SVM. Hy-
perparameter values are dependent on the actual SVM formulation and the best performing values
can be quite different between SVMs. Cross validation and grid search functions described in
Section 7 help to select good hyperparameter values. A description of the available SVMs in each
package and the hyperparameters of each SVM can be found on the help page for the function
kbsvm which is shown with

?kbsvm

Please do not get irritated when looking at the large number of parameters in the help page for
this function. As we have seen in this example only a small subset of the parameters is needed for
simple training. The other parameters are meant to tune the training behavior for specific situations
or for more advanced usage scenarios. Most of them will be introduced in later sections in this
manual and you will become familiar with them quickly as you start using the package.

The next two sections describe the available sequence kernels in KeBABS and the basic data
representations in detail. Starting with Section 6 important aspects of SVM based learning will be
presented.

4 Sequence Kernels

The sequence kernels defined in this package are targeting biological sequences and represent
different similarity measures between two sequences. All of the kernels in this package split the
sequence into patterns. These patterns are also called features in the context of machine learning.
The difference between the kernels lies primarily in the way in which this splitting occurs.

Described in a more general form the sequence kernels extract the sequence characteristics
related to the features defined by the kernel and compute a similarity value between two sequences
from their feature characteristics. In more specific mathematical terminology the kernel maps
the sequences into a high dimensional vector space where the individual feature values are the
coordinates in this vector space. The kernel value is computed through the dot product of the
feature vectors representing the two sequences in high dimensional space.

The sequence kernels in KeBABS come in several flavors:

position-independent which means that the location of a pattern in the sequence is irrelevant
for determination of the similarity value, just its occurrence has an influence. This is
the“traditional” type of kernel used for sequences.

position-dependent which in addition to the occurrence also take the position into account. This
version again is split into two different variants:

position-specific kernels which only consider patterns when they are located at the same
position in the two sequences

distance-weighted kernels for which the contribution of a pattern is defined by the weighted
distance (measured in positions) of the pattern in the two sequences



4 Sequence Kernels 15

Through the introduction of a parameterized distance weighting function a flexible blending
between the two extremes of exact position evaluation in the position-specific kernel and
complete position independency in the position-independent kernel is possible.

annotation-specific kernels which use annotation information in addition to the patterns in the se-
quence. The annotation consists of a character string with the same length as the sequence
which is aligned to the sequence and delivers for each pattern in the sequence a correspond-
ing pattern in the annotation. For the annotation specific kernel, the feature consists of the
concatenation of sequence pattern and annotation pattern. This means that annotation infor-
mation is used together with the sequence information in the similarity consideration. One
typical example is the splitting of gene sequences into intron and exon parts. The annotation
specific kernel is available position-independent only.

All KeBABS kernels except the mismatch kernel support all flavors. For the mismatch kernel
only the position-independent version without annotation is implemented.

First the position-independent kernel variants are described. The position-dependent variants
are presented in Section 4.2. The annotation-specific kernel variant is covered in Section 4.3. The
next sections describe the characteristics and the kernel parameters of the different kernels. The
generation of a kernel matrix for a specific kernel is described in Section 5.1. A description of the
generation of the explicit representation is given in Section 5.2.

4.1 Position-Independent Sequence Kernels

For the position-independent kernel the contribution of a single feature is dependent on the num-
ber of occurrences of the feature in the two sequences but independent from their location. The
unnormalized kernel for position-independent sequence kernels can generally be described as

k(x, y) =
∑
m∈M

N(m,x) ·N(m, y) (1)

where x and y are two sequences, m is one pattern of the feature space M which contains all
possible patterns and N(m,x) is the number of occurrences of pattern m in sequence x. |M| is
the size of this feature space.

A formal definition of N(m,x) which opens up the way to position-dependent kernels is given
by

N(m,x) =

length(x)∑
p=1

1(m,x, p) (2)

where 1(m,x, p) is a kernel specific indicator function with a value of 1 if the pattern m
matches the sequence x at position p.

Then the feature mapping φ is defined as
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φ(x) = ((N(m,x)))m∈M (3)

i.e., for position-independent kernels, the feature vector contains the counts for the different
patterns found in the sequence as vector elements.

Through kernel normalization, feature vectors are scaled to the unit sphere and the similarity
value represents the cosine similarity which is just the cosine of the angle between feature vectors
in the high-dimensional space. The kernel normalization is performed according to

k′(x, y) =
k(x, y)√

k(x, x) · k(y, y)
(4)

4.1.1 Spectrum Kernel

For the spectrum kernel [Leslie et al., 2002] with kernel parameter k, the features are all substrings
of fixed length k. The feature space is defined through all possible substrings of length k for
the given alphabet A. If |A| is the number of characters in the character set, the feature space
dimension is |M| = |A|k.

For DNA-sequences with the exact alphabet A = {A,C,G,T} or RNA-sequences with the
exact alphabet A = {A,C,G,U} the alphabet size |A| is 4, for amino acid sequences with the
exact alphabet it is 21. In addition to the 20 standard amino acids also the 21st amino acid Se-
lenocystein with the abbreviation U or Sec is included in the alphabet, as it occurs throughout all
kingdoms and also in 25 human proteins. The feature space grows exponentially with k.

Usually kebabs only considers the k-mers that actually occur in sequences to keep perfor-
mance and memory needs as low as possible, but please be aware that both the runtime and mem-
ory usage increase for kernel processing as k becomes larger because of the drastically increasing
number of features. This effect becomes more prominent for larger alphabet sizes. For amino
acids with k = 5 the feature space size is already 4,084,101.

The spectrum kernel walks along the sequence position by position and counts the number
of occurrences of each k-mer in the sequence. The kernel first determines the N(m,x) for all
k-mers m in the sequences x and y and then computes the kernel value of the unnormalized kernel
according to the formula which is the dot product of the two feature vectors for the sequences x
and y. Through applying kernel normalization according to equation (4), the normalized kernel
value is computed from the unnormalized kernel values .

As already shown in Section 3, a kernel object for the spectrum kernel is created with

specK2 <- spectrumKernel(k=2)

This represents a normalized kernel for the spectrum kernel with k-mer length 2 because the
normalized parameter is set by default to TRUE. The kernel object for the unnormalized kernel is
created with
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specK2 <- spectrumKernel(k=2, normalized=FALSE)

When working with sequences of different lengths the normalized kernel usually leads to better
results. Kernel objects are used for training as already shown in Section 3 , invisibly for the user,
also in prediction and for explicit creation of a kernel matrix or an explicit representation.

With the kernel parameter exact set to TRUE the exact character set without ambiguous char-
acters is used for the analysis. This is the default setting. Any character found in the sequence
which is not in the character set is interpreted as invalid and leads to drop of open patterns and a
restart of the pattern search with the next sequence position. When setting this parameter to FALSE
the IUPAC character set with exact matching on each character of the character set is used. The
IUPAC character set defines characters with ambiguous meaning in addition to A, C, G and T.

The kernel parameter ignoreLower with default setting TRUE defines that lower case charac-
ters in the sequence should be ignored and treated like invalid characters described above. When
the parameter is set to FALSE the kernel becomes case insensitive and treats lower case charac-
ters like upper-case characters. The classes DNAStringSet, RNAStringSet and AAStringSet
derived from XStringSet do not store lowercase characters but convert them to uppercase au-
tomatically on creation. Lowercase characters can be stored in the BioVector derived classes
DNAVector, RNAVector and AAVector. These classes are structured similar to the XStringSet
derived classes and they are treated identically in KeBABSṪhe BioVector derived classes should
be used only when lowercase characters are needed, e.g. for representing repeat regions, or in
context with string kernels from package kernlab. In all other situations sequence data should be
represented through XStringSet derived classes.

With the kernel parameter presence set to TRUE, only the presence of a pattern in the sequence
is relevant for the similarity consideration not the actual number of occurrences.

Reverse complements of patterns are considered identical to the forward version of patterns
when the kernel parameter revComplement is set to TRUE. For example, in the case of a spectrum
kernel with k=3, the k-mer ACG and its reverse complement CGT are treated as one feature. The
parameter can be helpful when analyzing interaction with double stranded DNA.

The parameter r allows exponentiation of the kernel value. Only values larger than 0 are
allowed. This parameter can only be different from 1 when computing kernel matrices explicitly
but not as part of a regular SVM training or when generating an explicit representation with this
kernel. Please be aware that only integer values ensure positive definiteness of the resulting kernel
matrix.

When similarity values of multiple kernels are combined to define a new similarity measure we
speak of a mixture kernel. In the mixed spectrum kernel k-mers with multiple k-mer lengths are
taken into account for the similarity value. Within KeBABS similarity values are only combined
through weighted sums. The kernel parameter mixCoef is used to define the mixture coefficients
of a mixture kernel of several spectrum kernels. The parameter must be a numeric vector with k
elements. For instance, for k = 3 the spectrum kernel values for k = 1, k = 2 and k = 3 are
computed and mixed with the three elements in mixCoef as mixture coefficients. If individual
kernels components in the mixture kernel should not be included in the mixture the corresponding
element in mixCoef is set to zero.
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4.1.2 Mismatch Kernel

The mismatch kernel [Leslie et al., 2003] is similar to the spectrum kernel. The kernel parameter
k has the same meaning in the mismatch kernel as in the spectrum kernel. The mismatch kernel
also extracts substrings of fixed length k. The kernel parameter m defines the maximum number of
mismatches that are allowed for each k-mer. For example with k = 2 and m = 1 the occurrence
of substring TA found in the sequence matches to the features AA, CA, GA, TA, TC, TG, TT with
not more than one mismatch and therefore increases the feature count for these seven features.
The feature space and the feature space dimension with |M| = |A|k is identical to the spectum
kernel. The parameter m has no impact on feature space size.

A kernel object for the normalized mismatch kernel with k = 3 and m = 1 is created in the
following way:

mismK3M1 <- mismatchKernel(k=3, m=1)

Apart from the new kernel parameter m, the parameters k, r, normalized, exact, ignoreLower
and presence of the mismatch match kernel have the same functionality as described in Section
4.1.1 for the spectrum kernel. The position-dependent kernel variants, the annotation-specific
variant and the mixture kernel are not supported for the mismatch kernel.

4.1.3 Gappy Pair Kernel

The gappy pair kernel [Kuksa et al., 2008, Mahrenholz et al., 2011] looks for pairs of k-mers
separated by several wildcard positions in between for which matching occurs for every alphabet
character. For this kernel the kernel parameter m has a different meaning than in the mismatch
kernel. It defines the maximum number of wildcard positions. A single feature of the gappy pair
kernel is structured in the following way

kmer1︸ ︷︷ ︸
k

. . . . . . .︸ ︷︷ ︸
0≤i≤m

kmer2︸ ︷︷ ︸
k

An irrelevant position i can contain any character from the character set. In the feature names
the irrelevant positions are marked as dots. For example, for the sequence CAGAT the gappy pair
kernel with k = 1 and m = 2 finds pairs of monomers with zero to two irrelevant positions in
between. i.e. it finds the features CA, C.G, C..A, AG, A.A, A..T, GA, G.T and AT. The gappy pair
kernel object for k = 1 and m = 2 with normalization is created with:

gappyK1M2 <- gappyPairKernel(k=1, m=2)

The feature space for the gappy pair kernel is |M| = (m + 1)|A|2k. It is considerably larger
than that of the spectrum or mismatch kernel with same values for k. Through the factor 2 in the
exponent the dimensionality grows much faster with increasing k. For amino acids with k = 2
and m = 10 the feature space size is already larger than 2 million features. The feature space
size grows exponentially with k and linearly with m, which means that through the parameter m the
complexity of the kernel can be adjusted better than for other sequence kernels.

The other kernel parameters are identical to the spectrum kernel as described in section 4.1.1.



4 Sequence Kernels 19

4.1.4 Motif Kernel

The motif kernel [Ben-Hur and Brutlag, 2003] is created from a pre-defined motif list. With this
kernel the sequence analysis can be restricted to a user-defined set of features. The kernel also
gives greater flexibility concerning the definition of individual features.

A single motif is described similar to a regular expression through a sequence of following
elements:

single character from the character set, e.g. C for DNA sequences, which matches only this
character

the wildcard character ’.’ that matches any character of the character set

the definition of a substitution group, which is a list of single characters from the character
set enclosed in square brackets - e.g. [CT] which matches any of the listed characters, in this
example C or T. With a leading caret character in the list the meaning is inverted, i.e. with
[̂ CT] only the not listed characters A and G would be matched for the exact DNA character
set.

The motif collection must be defined as character vector which is passed to the constructor of
the motif kernel object as in the following example for a normalized motif kernel:

motifCollection1 <- c("A[CG]T","C.G","C..G.T","G[^A][AT]",
"GT.A[CA].[CT]G")

motif1 <- motifKernel(motifCollection1)

The feature space size of the motif kernel corresponds to the number of motifs in the motif
collection. Here a motif kernel with a small collection of motifs is defined just to show some of the
possibilities for pattern definition. In realistic scenarios the motif collection is usually much larger
and could contain up to several hundred thousand motifs. Often motif collections are created from
a subset of entries in a motif database.

Apart from kernel parameters revComplement and mixCoef which are not available for the
motif kernel, the other kernel parameters are identical to the spectrum kernel as described in Sec-
tion 4.1.1. The motif kernel can also be used to run sequence analysis with a subset of the features
of a spectrum or gappy pair kernel.

Hint: For a normalized motif kernel with a feature subset of a normalized spectrum / gappy
pair kernel the explicit representation will not be identical to the subset of an explicit representation
for the normalized spectrum / gappy pair kernel because the motif kernel is not aware of the other
k-mers which are used in the spectrum / gappy pair kernel additionally for normalization.

4.2 Position-Dependent Kernels

Position-dependent kernels take the position into account where a pattern occurs in two sequences.
To ensure that positions in both sequences are comparable some kind of alignment is required for
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all kinds of position-dependent kernels as prerequisite. In the simplest form, the kernel only con-
siders patterns which are found at the same position for the similarity measure. This kernel is
named as position-specific kernel. Patterns occur in two sequences at exactly the same position
only if the sequences are evolutionary or functionally related and when no position-changing mu-
tation occurred. Once a single insert or deletion happens, the pattern sequence with the same
patterns at identical positions is disturbed. A more flexible approach is to define a neighborhood
of a pattern in which to look for the same pattern on the other sequence. This neighborhood is
defined in KeBABS through introduction of a parameterized distance weighting function. The fol-
lowing two subsections describe both kernel variants. More detailed information on the modeling
of position dependency can be found in Bodenhofer et al. [2009].

4.2.1 Position-Specific Kernel

For the position-specific kernel, only patterns which occur at the same position in both sequences
are relevant. The feature mapping φ(x) for a sequence x of length L for this kernel is defined as

φ(x) = ((1(m,x, 1), ....,1(m,x,L)))m∈M (5)

The feature vector is a binary vector containing for the part associated with one position a one
for all patterns that occurs at this position position and zero otherwise. For the spectrum kernel
and the mismatch kernel a single pattern occurs at each position, for the gappy pair kernel and
the motif kernel multiple patterns could be relevant at a single position. The feature space of
the position-specific version of a kernel is |Mpos| = Lm · |Mnopos| where Lm is the maximum
sequence length in the sequence set and |Mnopos| is the feature space size of the corresponding
position-independent kernel. Because of the high dimensionality of the feature space of position-
specific kernels, an explicit representation is not supported for this kernel variant.

The kernel can be expressed with the kernel specific indicator function 1(m,x, p) as

k(x, y) =
∑
m∈M

L∑
p=1

1(m,x, p) · 1(m, y, p) (6)

with L being the minimum length of the sequences x and y. The unnormalized kernel version
just counts the occurrences where the same pattern at a position is found in both sequences.

The spectrum kernel, the gappy pair kernel, and the motif kernel can be used in the position-
specific variant. For creating position-specific kernels, the parameter distWeight is set to 1 as in
the following example of a position-specific, unnormalized gappy pair kernel:

gappyK1M2ps <- gappyPairKernel(k=1, m=2, distWeight=1,
normalized=FALSE)

The reason for using the parameter distWeight with position-specific kernels will become obvi-
ous in a few moments when the distance-weighted kernel is explained.
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As mentioned above, the sequences analyzed with a position-specific kernel must be aligned in
some way. Flexible alignment without changing the sequence set is possible through assignment
of an offset vector as metadata to the sequence set. This vector gives the offset from the sequence
start to position 1 for each sequence. The offset metadata is element metadata because it contains
metadata for each element of the sequence set. For example for a set of amino acid sequences
given as AAStringSet the offset vector is assigned with

seq1 <- AAStringSet(c("GACGAGGACCGA","AGTAGCGAGGT","ACGAGGTCTTT",
"GGACCGAGTCGAGG"))

positionMetadata(seq1) <- c(3, 5, 2, 10)

The offset vector must contain positive or negative integer values and must have the same length
as the sequence set. If position metadata is not assigned for a sequence set the position-specific
kernel assumes that each sequence starts as position 1. In this case, the sequences must be stored
aligned in the sequence set.

It should be mentioned that the weighted degree kernel is the mixture kernel for the position-
specific spectrum kernel. In the following example, we use a weighted degree kernel in unnormal-
ized form and create the kernel matrix with this kernel for the small sequence set given above

wdK3 <- spectrumKernel(k=3, distWeight=1, mixCoef=c(0.5,0.33,0.17),
normalized=FALSE)

km <- getKernelMatrix(wdK3, seq1)
km

## An object of class "KernelMatrix"
## [,1] [,2] [,3] [,4]
## [1,] 11.33 1.00 5.83 4.83
## [2,] 1.00 10.33 1.00 0.50
## [3,] 5.83 1.00 10.33 4.33
## [4,] 4.83 0.50 4.33 13.33

We delete the position metadata through assignment of NULL and recreate the kernel matrix
without alignment of the sequences via an offset.

positionMetadata(seq1) <- NULL
km <- getKernelMatrix(wdK3, seq1)
km

## An object of class "KernelMatrix"
## [,1] [,2] [,3] [,4]
## [1,] 11.33 1.33 0.50 3.33
## [2,] 1.33 10.33 2.33 0.50
## [3,] 0.50 2.33 10.33 1.00
## [4,] 3.33 0.50 1.00 13.33
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4.2.2 Distance-Weighted Kernel

The distance-weighted kernel is the second variant of position-dependent kernels. This kernel also
evaluates position information and alignment of the sequences is important here as well. However,
instead of just considering patterns which are located at the same position in the two sequences,
this kernel searches for pattern occurrences in the proximity. If the same pattern is found in the
neighborhood on the second sequence the contribution of this pattern depends on the distance of
the pattern on the two sequences. For flexible definition of the neighborhood characteristics a
parameterized distance weighting function is introduced. The contribution of the occurrence of a
pattern to the similarity measure is computed as weighted distance between the pattern positions.

The distance-weighted kernel is defined as

k(x, y) =
∑
m∈M

Lx∑
p=1

Ly∑
q=1

1(m,x, p) · E(p, q) · 1(m, y, q) (7)

with Lx and Ly being the length of the sequences x and y and E(p, q) the distance weighting
function for positions p and q. The position-specific kernel described in the previous subsection is
a special case of this kernel with the following distance weighting function:

Eps(p, q) =

{
1 if p = q
0 otherwise

(8)

The position-independent kernel also is a special case of this kernel with the trivial distance
weighting function Epi(p, q) = 1 for all p ∈ [1, ...., Lx], q ∈ [1, ...., Ly].

With a parameterized distance function, the neighborhood can be adjusted as needed. The
package contains three pre-defined distance weighting functions, here defined as functions of the
distance d = |p− q|

linear distance weigthing:
Elin,σ(d) = max(1− d

σ , 0)

exponential distance weigthing:
Eexp,σ(d) = exp(− d

σ )

gaussian distance weigthing:
Eexp,σ(d) = exp(− d2

σ2 )

In all three cases the parameter σ controls the proximity behavior with a strict cut off at
sigma for linear distance weighting. For small sigma close to 0, the distance-weighted kernel be-
comes the position-specific kernel, for very large values of sigma the kernel becomes the position-
independent kernel. The parameter sigma allows flexible blending between both extremes of strict
position evaluation and complete position independency for all three distance weighting functions.
Positive definiteness of the resulting kernel matrix is ensured for these functions for any parameter
values. The following plot shows the three parameterized functions with parameter value 5 for
sigma.
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curve(linWeight(x, sigma=5), from=-25, to=25, xlab="p - q", ylab="weight",
main="Predefined Distance Weighting Functions", col="green", lwd=2)

curve(expWeight(x, sigma=5), from=-25, to=25, col="blue", lwd=2, add=TRUE)
curve(gaussWeight(x, sigma=5), from=-25, to=25, col="red", lwd=2, add=TRUE)
curve(swdWeight(x), from=-25, to=25, col="orange", lwd=2, add=TRUE)
legend("topright", inset=0.03, title="Weighting Functions", c("linWeight",

"expWeight", "gaussWeight", "swdWeight"), col=c("green", "blue",
"red", "orange"), lwd=2)

text(19, 0.55, expression(paste(sigma, " = 5")))
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The shifted weighted degree kernel (SWD) [Rätsch et al., 2005] with equal position weight-
ing is a special case of the distance-weighted mixture spectrum kernel with a distance weighting
function of

ESWD(d) =
1

2 ∗ (|d|+ 1)
(9)

This weighting function is similar to exponential distance weighting for σ = 2 but has a lower
peak and larger tails. For brevity input parameter checks are omitted.

swdWeight <- function(d)
{

if (missing(d))
return(function(d) swdWeight(d))

1 / (2 * (abs(d) + 1))
}
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swdK3 <- spectrumKernel(k=3, distWeight=swdWeight(),
mixCoef=c(0.5,0.33,0.17))

We load sequence data provided with the package, assign shorter sample names for display
purpose and compute the kernel matrix for this kernel with user-defined distance weighting for
the first few sequences to save runtime for vignette generation. Position-dependent kernels are
considerably slower than their position-independent counterparts.

data(TFBS)
names(enhancerFB) <- paste("Sample", 1:length(enhancerFB), sep="_")
enhancerFB

## DNAStringSet object of length 500:
## width seq names
## [1] 827 ACTAAACAACATCAATC...TAGGCAAAATCCTGACA Sample_1
## [2] 678 GAATATAGACCCTTGGT...AAGTTATATTAATTTAT Sample_2
## [3] 878 CACCCACATGGTGGCTC...TCCCCACTGTATCACTC Sample_3
## [4] 927 TGCCGTAGTGTGCCAGC...TGATTCTCCTGGATCAA Sample_4
## [5] 953 CTTCATATACCTATTAA...CCTAATTTAAAAAGGGG Sample_5
## ... ... ...
## [496] 478 ACGAGAATGAGGGAAAG...GTCTGCCTTCCGAGTGA Sample_496
## [497] 1552 AGGGGACTGGAAGAAAG...TCTCTTCTAAGCGAGCA Sample_497
## [498] 503 GATGAACGTAAAATGCA...TAATGACTCCCTTCTGA Sample_498
## [499] 1577 ACCCCTCTGAGACCAAG...GTAGGTCTGTATTCCTG Sample_499
## [500] 778 CACTGTCATAACTTGCT...GTAGAGTAGCTGCTCTC Sample_500

kmSWD <- getKernelMatrix(swdK3, x=enhancerFB, selx=1:5)
kmSWD[1:5, 1:5]

## An object of class "KernelMatrix"
## Sample_1 Sample_2 Sample_3 Sample_4 Sample_5
## Sample_1 1.0000000 0.4907802 0.5557066 0.5391745 0.5444010
## Sample_2 0.4907802 1.0000000 0.4844622 0.4563475 0.4740511
## Sample_3 0.5557066 0.4844622 1.0000000 0.5794030 0.5548927
## Sample_4 0.5391745 0.4563475 0.5794030 1.0000000 0.5452410
## Sample_5 0.5444010 0.4740511 0.5548927 0.5452410 1.0000000

The function swdWeight was a simple example of a user-defined weighting function without
parametrization. In fact it is also contained as predefined weighting function in the package, but
was used here to show how a user defined function can be defined. Please note that the weighting
function returns itself as function if the distance parameter d is missing. If parameters are used in
a user defined weighting function it must be defined as closure for which all arguments except the
distance argument are fixed once the function is called to do the actual distance weighting. In this
way, the function can be passed when creating a kernel just fixing the parameters without actually
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passing the distance data which is not available at this time. As an example we use the following
weighting function

ESWD(d, b) = b−|d| (10)

with the base b as parameter. This example is meant to show the definition of parameterized
user-defined weighting functions and of course does not lead to anything new as it is just a scaled
version of exponential weighting.

The new weighting function is defined as

udWeight <- function(d, base=2)
{

if (missing(d))
return(function(d) udWeight(d, base=base))

return(base^(-d))
}

specudK3 <- spectrumKernel(k=3, distWeight=udWeight(base=4),
mixCoef=c(0, 0.3, 0.7))

kmud <- getKernelMatrix(specudK3, x=enhancerFB, selx=1:5)

User-defined distance functions must consider three aspects:

Definition as closure: When all parameters are passed to the function or set by default, but the
distance argument is missing, the function must return a new unnamed function with the
distance argument as single argument and all parameters set to their fixed or predefined
value.

Vectorized processing: The function must be able to process numeric vectors containing multiple
distances and return a numeric vector of weighted distances of identical length.

Positive definiteness: This means that the kernel matrix generated with this distance weight-
ing function must be positive definite. One necessary, but not sufficient, precondition
of positive definiteness is that the distance weighting function must be symmetric, i.e.
E(p, q) = E(q, p) must be fulfilled. For the example given above, the positive definite-
ness is ensured because it is only a scaled version of the package provided exponential
weighting.

For all learning methods that require positive definite kernel matrices, especially the SVMs
supported in this package the third aspect is very important. Please also note that explicit repre-
sentations are not available for the position-dependent kernel variants.



26 4 Sequence Kernels

4.3 Annotation Specific Kernel

The annotation specific kernel evaluates annotation information together with the patterns in the
sequence. For example the similarity considerations for gene sequences could be split according
to exonic and intronic parts of the sequences. This is achieved by aligning an annotation string
which contains one annotation character for each sequence position to the sequence. Each pattern
in the sequence concatenated with the corresponding pattern of the annotation characters is used
as feature. In the abovementioned example of exon/intron annotation the feature space contains
separate features for identical patterns in exon and intron regions.

The following small toy example shows how to assign exon/intron annotation to a DNA se-
quence set. A sequence set with just two sequences for very similar genes HBA1 and HBA2
from the human genome hg19 is generated. For executing this example the packages BSgenome,
BSgenome.Hsapiens.UCSC.hg19, and TxDb.Hsapiens.UCSC.hg19.knownGene need to be in-
stalled. Each gene contains three exons. Again checks on input parameters are omitted.

getGenesWithExonIntronAnnotation <- function(geneList, genomelib,
txlib)

{
library(BSgenome)
library(genomelib, character.only=TRUE)
library(txlib, character.only=TRUE)
genome <- getBSgenome(genomelib)
txdb <- eval(parse(text=txlib))
exonsByGene <- exonsBy(txdb, by ="gene")

## generate exon/intron annotation
annot <- rep("", length(geneList))
geneRanges <- GRanges()
exonsSelGenes <- exonsByGene[geneList]

if (length(exonsSelGenes) != length(geneList))
stop("some genes are not found")

for (i in 1:length(geneList))
{

exons <- unlist(exonsSelGenes[i])
exonRanges <- ranges(exons)
chr <- as.character(seqnames(exons)[1])
strand <- as.character(strand(exons)[1])
numExons <- length(width(exonRanges))

for (j in 1:numExons)
{

annot[i] <-
paste(annot[i],

paste(rep("e", width(exonRanges)[j]),
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collapse=""), sep="")

if (j < numExons)
{

annot[i] <-
paste(annot[i],

paste(rep("i", start(exonRanges)[j+1] -
end(exonRanges)[j] - 1),

collapse=""), sep="")
}

}

geneRanges <-
c(geneRanges,

GRanges(seqnames=Rle(chr),
strand=Rle(strand(strand)),
ranges=IRanges(start=start(exonRanges)[1],

end=end(exonRanges)[numExons])))
}

## retrieve gene sequences
seqs <- getSeq(genome, geneRanges)
names(seqs) <- geneList
## assign annotation
annotationMetadata(seqs, annCharset="ei") <- annot
seqs

}

## get gene sequences for HBA1 and HBA2 with exon/intron annotation
## 3039 and 3040 are the geneID values for HBA1 and HBA2
hba <- getGenesWithExonIntronAnnotation(c("3039", "3040"),

"BSgenome.Hsapiens.UCSC.hg19",
"TxDb.Hsapiens.UCSC.hg19.knownGene")

For exon/intron annotation, we defined the annotation character set with character "e" denot-
ing an exon position and "i" for an intron position. Up to 32 characters can be defined by the user
in the annotation character set. The character "-" is used to mask sequence parts that should not
be evaluated in the sequence kernel. It must not be used as regular annotation character defined
in the annotation character set because with masking a different function is assigned already. The
annotation strings are built up from the length of exons and introns for the two genes in the gene
set. Annotation strings must have identical number of characters as the sequences. With the func-
tion annotationMetadata the annotation character set and the annotation strings are assigned to
the sequence set. Individual sequences or sequence parts can be shown together with annotation
information in the following way
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annotationCharset(hba)
showAnnotatedSeq(hba, sel=1, start=1, end=400)

Annotation metadata can be deleted for the sequence set through assignment of NULL. Now
we generate an explicit representation with and without annotation. First a kernel object for the
standard and the annotation-specific version of the spectrum kernel is created. The annotation
metadata is only evaluated in the kernel when the kernel parameter annSpec is set to TRUE, i.e. for
the second kernel object which can be used for sequence analysis in the same way as the standard
spectrum kernel object.

specK2 <- spectrumKernel(k=2)
specK2a <- spectrumKernel(k=2, annSpec=TRUE)
erK2 <- getExRep(hba, specK2, sparse=FALSE)
erK2[, 1:6]
erK2a <- getExRep(hba, specK2a, sparse=FALSE)
erK2a[, 1:6]

We create a kernel matrix from the explicit representations via the function linearKernel.

km <- linearKernel(erK2)
km
kma <- linearKernel(erK2a)
kma

For the normalized sequence kernels, the similarity values have a range from 0 to 1. For 1
the sequences are considered identical for the given similarity measure defined through the kernel.
The similarity between HBA1 and HBA2 is close to 1 and the sequences are very similar related to
dimer content. For the annotation specific kernel, the similarity between the sequences HBA1 and
HBA2 decreases because the dimer content of exonic and intronic regions is considered separately.

The second example for annotation specific kernels predicts the oligomerization state of coiled
coil proteins from sequence using a heptad annotation for the amino acid sequences. The sequence
data available on the web page for the R package procoil contains amino acid sequences for
which the formation of dimers or trimers is known. We first predict the oligomerization state from
sequence alone. In a second step a heptad pattern placed along the sequence is used in addition
as annotation information. The heptad characters describe position-specificas of the amino acids
within the coiled coil structure.

The analysis is done with the gappy pair kernel, first without annotation and then using the
annotation specific version of this kernel. The coiled coil data are 477 amino acid sequences with
lengths between 8 and 123 amino acids. Roughly 80% of the sequences form dimers and only 20%
trimers, which means that the data is very unbalanced. We will see how we can better deal with
this unbalancedness. First the data is loaded, the sequences ccseq are stored in an AAStringSet,
the annotation ccannot in a character vector and the labels yCC in a factor. The annotation is
already assigned to the sequence set but to show the assignment it is deleted in the first step.
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data(CCoil)
ccseq

## AAStringSet object of length 477:
## width seq names
## [1] 57 LRELQEALEEEVLTRQS...ARNRDLEAHVRQLQERM PDB1
## [2] 50 PLDISQNLAAVNKSLSD...DKIEEILSKIYHIENEI PDB2
## [3] 50 VMESFAVQNQNIDAQGE...QLILEALQGINKRLDNL PDB3
## [4] 47 SLVQAQTNARAIAAMKN...EGTQRLAIAVQAIQDHI PDB4
## [5] 46 LAGIVQQQQQLLDVVKR...KNLQTRVTAIEKYLKDQ PDB5
## ... ... ...
## [473] 11 AMKLVEKIREE PDB473
## [474] 11 NLLILYDAIGT PDB474
## [475] 11 EAACSAFATLE PDB475
## [476] 10 LAVALHELAS PDB476
## [477] 123 KKAAEDRSKQLEDELVS...QKDEEKMEIQEIQLKEA PDB477

ccannot[1:3]

## [1] "abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga"
## [2] "abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga"
## [3] "defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd"

head(yCC)

## [1] TRIMER TRIMER TRIMER TRIMER TRIMER TRIMER
## Levels: DIMER TRIMER

yCC <- as.numeric(yCC)
## delete annotation metadata
annotationMetadata(ccseq) <- NULL
annotationMetadata(ccseq)

## NULL

gappy <- gappyPairKernel(k=1, m=10)
train <- sample(1:length(ccseq), 0.8 * length(ccseq))
test <- c(1:length(ccseq))[-train]
model <- kbsvm(ccseq[train], y=yCC[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=100)
pred <- predict(model, ccseq[test])
evaluatePrediction(pred, yCC[test], allLabels=unique(yCC))
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## 2 1
## 2 1 7
## 1 13 75
##
## Accuracy: 79.167% (76 of 96)
## Balanced accuracy: 49.303% (1 of 14 and 75 of 82)
## Matthews CC: -0.0178
##
## Sensitivity: 7.143% (1 of 14)
## Specificity: 91.463% (75 of 82)
## Precision: 12.500% (1 of 8)

The high accuracy is misleading because the larger class is distorting this value. Because of
the unbalancedness of the data the balanced accuracy is the relevant performance measure here.
Now annotation metadata is assigned to the sequence set and the same test is performed with the
annotation specific gappy pair kernel. The annotation sequences are added as metadata to the
sequence set together with the annotation character set specified as string containing all characters
that appear in the character set. The "-" character must not be used in this character set because it
is used for masking sequence parts with the annotation strings.

## assign annotation metadata
annotationMetadata(ccseq, annCharset="abcdefg") <- ccannot
annotationMetadata(ccseq)[1:5]

## [1] "abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga"
## [2] "abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga"
## [3] "defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd"
## [4] "defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga"
## [5] "abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd"

annotationCharset(ccseq)

## [1] "abcdefg"

showAnnotatedSeq(ccseq, sel=2)

##
## Sequence PDB2 of class AAStringSet
##
## Annotation character set: abcdefg
##
## 0 1 2 3 4
## 1 1 1 1 1
## [1] PLDISQNLAAVNKSLSDALQHLAQSDTYLSAIEDKIEEILSKIYHIENEI
## abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga
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gappya <- gappyPairKernel(k=1, m=10, annSpec=TRUE)
model <- kbsvm(ccseq[train], y=yCC[train], kernel=gappya,

pkg="LiblineaR", svm="C-svc", cost=100)
pred <- predict(model, ccseq[test])
evaluatePrediction(pred, yCC[test], allLabels=unique(yCC))

## 2 1
## 2 3 5
## 1 11 77
##
## Accuracy: 83.333% (80 of 96)
## Balanced accuracy: 57.666% (3 of 14 and 77 of 82)
## Matthews CC: 0.196
##
## Sensitivity: 21.429% (3 of 14)
## Specificity: 93.902% (77 of 82)
## Precision: 37.500% (3 of 8)

We see that the balanced accuracy decreases which could indicate that the annotation specific
kernel with annotation performs worse than the kernel without annotation, but we have silently
assumed that the same cost value should be used for the annotated gappy pair kernel. The com-
parison of different kernels with the same hyperparameter values is usually not adequate because
the best performing hyperparameter value might be quite different for the two kernels. Hyperpa-
rameter selection must be performed individually for each kernel. Please also note that comparing
kernels should be done based on multiple training runs on independent data or cross validation and
not from a single training run. In the following example grid search (see section 7.2) is performed
with both kernels at the same time with a kernel list and a vector of values for the cost hyper-
parameter using 5-fold cross validation for each grid point. With the parameter perfObjective
the balanced accuracy is set as objective for the parameter search. Multiple performance parame-
ters (accuracy, balanced accuracy and Matthews correlation coefficient) are recorded for each grid
point when the parameter perfParameters is set to "ALL".

## grid search with two kernels and 6 hyperparameter values
## using the balanced accuracy as performance objective
model <- kbsvm(ccseq[train], y=yCC[train],

kernel=c(gappy, gappya), pkg="LiblineaR", svm="C-svc",
cost=c(1, 10, 50, 100, 200, 500), explicit="yes", cross=5,
perfParameters="ALL", perfObjective="BACC",
showProgress=TRUE)

##
## Grid Search Progress:

##
## Kernel_1 ......
## Kernel_2 ......
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result <- modelSelResult(model)
result

##
## Grid search result object of class "ModelSelectionResult"
##
## cross : 5
## noCross : 1
## Best bal. accuracy : 0.68951191
##
## Grid Rows:
## Kernel_1 GappyPairKernel: k=1, m=10
## Kernel_2 GappyPairKernel: k=1, m=10, annSpec=TRUE
##
## Grid Columns:
## cost
## GridCol_1 1
## GridCol_2 10
## GridCol_3 50
## GridCol_4 100
## GridCol_5 200
## GridCol_6 500
##
## Grid Balanced Accuracies:
##
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
## Kernel_1 0.5770074 0.6664906 0.6299860 0.6459594 0.6366818 0.6716765
## Kernel_2 0.6290805 0.6632027 0.6895119 0.6821025 0.6833749 0.6456827
##
## Selected Grid Row:
## GappyPairKernel: k=1, m=10, annSpec=TRUE
##
## Selected Grid Column:
## cost
## GridCol_3 50

In grid search with balanced accuracy as performance objective, the annotated gappy pair
kernel shows better performance. The detailed performance information for each grid point can
be retrieved in the following way:

perfData <- performance(result)
perfData

## $ACC
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
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## Kernel_1 0.8267943 0.8268968 0.8109364 0.8215311 0.8293917 0.8215311
## Kernel_2 0.7846548 0.7899522 0.8167464 0.8081340 0.8161312 0.7924470
##
## $BACC
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
## Kernel_1 0.5770074 0.6664906 0.6299860 0.6459594 0.6366818 0.6716765
## Kernel_2 0.6290805 0.6632027 0.6895119 0.6821025 0.6833749 0.6456827
##
## $MCC
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
## Kernel_1 0.3544434 0.4082866 0.3267113 0.3583074 0.3490127 0.3948497
## Kernel_2 0.3680725 0.4014196 0.4337460 0.4332387 0.4593331 0.3795868
##
## $AUC
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
## Kernel_1 0.7859519 0.7776636 0.7861351 0.7730261 0.7794224 0.7955857
## Kernel_2 0.8558418 0.8295164 0.8384001 0.8341351 0.8249138 0.8214727

which(perfData$BACC[1, ] == max(perfData$BACC[1, ]))

## GridCol_6
## 6

which(perfData$BACC[2, ] == max(perfData$BACC[2, ]))

## GridCol_3
## 3

We see from the balanced accuracy of both kernels that the balanced accuracy of the annotated
gappy pair kernel is often higher than that of the kernel without annotation. The best performing
hyper parameter value is different for both kernels. This example also shows clearly that the
accuracy as performance measure does not help at all. Also the Matthews correlation coefficient
can be selected as performance objective for unbalanced datasets and would have delivered similar
results. The best value for MCC is observed for the annotated gappy pair kernel for the same cost
value of 30. Finally we can plot the grid performance data for one performance measure. This
is helpful especially in situations where multiple kernels and a larger number of hyperparameter
values should be compared. Then kernels and regions of good or worse performance can be
identified more easily.

plot(result, sel="BACC")

The color range in this plot is similar to heatmaps. The annotated kernel, which is K_2 in
the plot, shows higher balanced accuracy in the grid search than the gappy pair kernel without
annotation for several values of the hyperparameter.
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Through user-definable annotation the sequence kernels provide great flexibility for includ-
ing additional sequence related information in kernel processing. As shown in this example the
prediction of coiled-coil interactions in proteins as proposed in Mahrenholz et al. [2011] and de-
scribed in the vignette of the R package procoil5 can be performed with KeBABS in a faster and
more flexible way. The heptad information is assigned as sequence annotation to the amino acid
sequences. The annotation specific gappy pair kernel can be used instead of the PrOCoil kernel
with regular and irregular heptad patterns.

4.4 List of Spectrum Kernel Variants

In this section the different variants are recapitulated in an exemplary manner for the spectrum
kernel. Here only the normalized version is listed. All kernels can be used unnormalized as well.

## position-independent spectrum kernel normalized
specK2 <- spectrumKernel(k=3)
#
## annotation specific spectrum normalized
specK2a <- spectrumKernel(k=3, annSpec=TRUE)
#
## spectrum kernel with presence normalized
specK2p <- spectrumKernel(k=3, presence=TRUE)
#
## mixed spectrum normalized
specK2m <- spectrumKernel(k=3, mixCoef=c(0.5, 0.33, 0.17))
#
## position-specific spectrum normalized
specK2ps <- spectrumKernel(k=3, distWeight=1)
#

5http://www.bioconductor.org/packages/procoil/

http://www.bioconductor.org/packages/procoil/
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## mixed position-specific spectrum kernel normalized
## also called weighted degree kernel normalized
specK2wd <- spectrumKernel(k=3, dist=1,

mixCoef=c(0.5, 0.33, 0.17))
#
## distance-weighted spectrum normalized
specK2lin <- spectrumKernel(k=3, distWeight=linWeight(sigma=10))
specK2exp <- spectrumKernel(k=3, distWeight=expWeight(sigma=10))
specK2gs <- spectrumKernel(k=3, distWeight=gaussWeight(sigma=10))
#
## shifted weighted degree with equal position weighting normalized
specK2swd <- spectrumKernel(k=3, distWeight=swdWeight(),

mixCoef=c(0.5, 0.33, 0.17))
#
## distance-weighted spectrum kernel with user defined distance
## weighting
udWeight <- function(d, base=2)
{

if (!(is.numeric(base) && length(base==1)))
stop("parameter 'base' must be a single numeric value\n")

if (missing(d))
return(function(d) udWeight(d, base=base))

if (!is.numeric(d))
stop("'d' must be a numeric vector\n")

return(base^(-d))
}
specK2ud <- spectrumKernel(k=3, distWeight=udWeight(b=2))

4.5 Kernel Lists

For grid search (see section 7.2) and model selection (see section 7.3) often multiple kernels are
relevant. In such cases a list of kernel objects can be passed to kbsvm instead of a single kernel
object. Kernel lists are either created implicitly through passing a vector for a single kernel pa-
rameter to the kernel constructor or explicitly through the user by putting multiple kernel objects
into a list. In the following example we show the first variant in a grid search with hyperparameter
cost. The output shows the cross validation error for 5-fold cross validation for each combination
of kernel and hyperparameter cost.

specK25 <- spectrumKernel(k=2:5)
specK25

## [[1]]
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## Spectrum Kernel: k=2
##
## [[2]]
## Spectrum Kernel: k=3
##
## [[3]]
## Spectrum Kernel: k=4
##
## [[4]]
## Spectrum Kernel: k=5

train <- 1:100
model <- kbsvm(x=enhancerFB[train], y=yFB[train],

kernel=specK25, pkg="LiblineaR", svm="C-svc",
cost=c(1, 5, 10, 20, 50, 100), cross=5, explicit="yes",
showProgress=TRUE)

##
## Grid Search Progress:

##
## Kernel_1 ......
## Kernel_2 ......
## Kernel_3 ......
## Kernel_4 ......

modelSelResult(model)

##
## Grid search result object of class "ModelSelectionResult"
##
## cross : 5
## noCross : 1
## Smallest CV error : 0.23
##
## Grid Rows:
## Kernel_1 SpectrumKernel: k=2
## Kernel_2 SpectrumKernel: k=3
## Kernel_3 SpectrumKernel: k=4
## Kernel_4 SpectrumKernel: k=5
##
## Grid Columns:
## cost
## GridCol_1 1
## GridCol_2 5
## GridCol_3 10
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## GridCol_4 20
## GridCol_5 50
## GridCol_6 100
##
## Grid Errors:
##
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5 GridCol_6
## Kernel_1 0.41 0.35 0.37 0.33 0.35 0.33
## Kernel_2 0.37 0.30 0.30 0.27 0.30 0.39
## Kernel_3 0.30 0.33 0.28 0.27 0.29 0.26
## Kernel_4 0.29 0.23 0.25 0.25 0.25 0.26
##
## Selected Grid Row:
## SpectrumKernel: k=5
##
## Selected Grid Column:
## cost
## GridCol_2 5

A value range is supported in the spectrum kernel for the kernel parameter k and in the gappy
pair kernel for the parameters k and m. The range of k for the gappy pair kernel is limited because
of the exponential decrease of the feature space with an additional factor 2. Kernel lists can also
be created by putting multiple kernel objects into a list, for example

kernelList1 <- list(spectrumKernel(k=3), mismatchKernel(k=3, m=1),
gappyPairKernel(k=2, m=4))

or by concatenating existing kernel lists

kernelList2 <- c(spectrumKernel(k=2:4), gappyPairKernel(k=1, m=2:5))

Apart from grid search and model selection kernel lists cannot be used instead of single kernel
objects.

5 Data Representations

For SVM based learning, the training and prediction data can either be presented in the form of
a numeric kernel matrix or numeric data matrix in which the rows represent the data samples
with the features as columns. KeBABS kernels support the generation of both data structures. For
position-dependent sequence kernels, the explicit representation is not available. For the supported
packages kernlab, e1071 and LiblineaR learning via explicit representation is possible. The
learning via kernel matrix is currently only available with package kernlab.

The generation of these data structures is usually performed internally by KeBABS as part
of the kbsvm function invisible for the user. For very large datasets, the data structures can be
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precomputed once and saved to file to avoid repeated computation. For precomputing or usage in
other machine learning methods or R packages not supported by KeBABS the following sections
give a short overview about both data structures and describes how they can be created.

5.1 Kernel Matrix

The kernel matrix contains similarity values between pairs of sequences computed with the ker-
nel. One matrix element describes the similarity between the samples represented by the corre-
sponding row name and column name. Within KeBABS kernel matrices are stored in the class
KernelMatrix which is essentially a lightweight wrapper around the standard dense matrix class
matrix. KeBABS supports only dense kernel matrices. For usage in other R packages, the kernel
matrix must be converted to the format needed in the respective package. A kernel matrix can be
created in two ways. We have already seen the first of them in previous sections.

specK2 <- spectrumKernel(k=2)
km <- getKernelMatrix(specK2, x=enhancerFB)
class(km)

## [1] "KernelMatrix"
## attr(,"package")
## [1] "kebabs"

dim(km)

## [1] 500 500

km[1:3, 1:3]

## An object of class "KernelMatrix"
## Sample_1 Sample_2 Sample_3
## Sample_1 1.0000000 0.8797649 0.9450536
## Sample_2 0.8797649 1.0000000 0.9176770
## Sample_3 0.9450536 0.9176770 1.0000000

If the argument y is not specified in the call of getKernelMatrix, a quadratic and symmetrical
kernel matrix with all samples against all samples is created. For normalized sequence kernels,
the range of kernel values in the matrix is between 0 and 1, for unnormalized kernels the values
are larger than or equal to 0. A heatmap of the kernel matrix showing a few clusters is plotted with

heatmap(km, symm=TRUE)

An alternative way to generate the kernel matrix through direct invocation of the kernel matrix
function via the kernel object is shown below.
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specK2 <- spectrumKernel(k=2)
km <- specK2(x=enhancerFB)
km[1:3, 1:3]

## An object of class "KernelMatrix"
## Sample_1 Sample_2 Sample_3
## Sample_1 1.0000000 0.8797649 0.9450536
## Sample_2 0.8797649 1.0000000 0.9176770
## Sample_3 0.9450536 0.9176770 1.0000000

The kernel matrix can also be generated for a subset of the sequences without subsetting of the
sequence set through using the parameter selx. In the following example we use only 5 sequences

km <- getKernelMatrix(specK2, x=enhancerFB, selx=c(1, 4, 25, 137, 300))
km

## An object of class "KernelMatrix"
## Sample_1 Sample_4 Sample_25 Sample_137 Sample_300
## Sample_1 1.0000000 0.9598054 0.9664655 0.9761818 0.9263253
## Sample_4 0.9598054 1.0000000 0.9446113 0.9322925 0.9128547
## Sample_25 0.9664655 0.9446113 1.0000000 0.9700230 0.9244838
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## Sample_137 0.9761818 0.9322925 0.9700230 1.0000000 0.9448881
## Sample_300 0.9263253 0.9128547 0.9244838 0.9448881 1.0000000

In the following example, we create a rectangular kernel matrix with similarity values between
two sets of sequences. First we create two sets of sequences from the package provided sequence
set and then the kernel matrix

seqs1 <- enhancerFB[1:200]
seqs2 <- enhancerFB[201:500]
km <- getKernelMatrix(specK2, x=seqs1, y=seqs2)
dim(km)

## [1] 200 300

km[1:4, 1:5]

## An object of class "KernelMatrix"
## Sample_201 Sample_202 Sample_203 Sample_204 Sample_205
## Sample_1 0.9204162 0.9641722 0.9577941 0.9505347 0.9202454
## Sample_2 0.8945181 0.8964983 0.9646127 0.9334171 0.8897708
## Sample_3 0.9087309 0.9304040 0.9660947 0.9661688 0.9223802
## Sample_4 0.9097372 0.9522583 0.9887571 0.9641908 0.9108740

or the same rectangular kernel matrix via parameters selx and sely

km <- getKernelMatrix(specK2, x=enhancerFB, selx=1:200,
y=enhancerFB, sely=201:500)

dim(km)

## [1] 200 300

As mentioned above for normal training and prediction in KeBABS you do not need to com-
pute the kernel matrices explicitly because this is done automatically.

5.2 Explicit Representation

The explicit representation contains the feature counts for all features occurring in the samples.
By default, any feature from the feature space which is not present in the sample set is not listed
in the explicit representation. From the sequence set an explicit representations can be generated
in sparse or dense matrix for all position-independent kernels.
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5.2.1 Linear Explicit Representation

The explicit representation is stored in an object of class ExplicitRepresentationSparse or
ExplicitRepresentationDense. Apart from the feature counts, it also contains the kernel ob-
ject used for generating the explicit representation and a flag that indicates whether it is a linear or
quadratic explicit representation. The feature count matrix can be extracted with a standard coer-
cion to type matrix if needed. In the following example, we generate an explicit representation
for the first five package-provided sequences for the unnormalized spectrum kernel with k = 2 in
dense format.

specK2 <- spectrumKernel(k=2, normalized=FALSE)
erd <- getExRep(enhancerFB, selx=1:5, kernel=specK2, sparse=FALSE)
erd

## Dense explicit representation of class "ExplicitRepresentationDense"
##
## Quadratic : FALSE
## Used kernel :
## Spectrum Kernel: k=2, normalized=FALSE
##
## AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
## Sample_1 106 37 77 48 68 54 9 66 49 47 24 38 45 59 48 51
## Sample_2 26 23 33 37 40 57 13 79 22 46 46 36 31 63 57 68
## Sample_3 59 65 59 57 98 75 10 63 49 50 42 41 34 56 71 48
## Sample_4 69 47 70 46 80 73 17 82 56 52 58 40 28 80 61 67
## Sample_5 105 47 81 57 69 49 3 75 64 37 62 39 52 62 57 93

Because of the short k-mer length all features are present in all sequences. If k is increased to
6, the picture changes.

specK6 <- spectrumKernel(k=6, normalized=FALSE)
erd <- getExRep(enhancerFB, selx=1:5, kernel=specK6,

sparse=FALSE)
dim(erd)

## [1] 5 2243

erd[, 1:6]

## Dense explicit representation of class "ExplicitRepresentationDense"
##
## Quadratic : FALSE
## Used kernel :
## Spectrum Kernel: k=6, normalized=FALSE
##
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## AAAAAA AAAAAC AAAAAG AAAAAT AAAACA AAAACC
## Sample_1 1 0 1 1 2 0
## Sample_2 0 0 0 0 0 0
## Sample_3 0 0 0 0 0 0
## Sample_4 0 0 0 0 1 0
## Sample_5 0 1 1 0 0 1

Here we see that most features occur in only a few sequences. To save storage space, features that
are not present in any sample are removed from the dense explicit representation. In spite of this
storage improvement a sparse storage format is much more efficient in this situation. A sparse
explicit representation is created through changing parameter sparse to TRUE. Now we create
the explicit representation for all sequences both in sparse and dense format to see the space saving
of the sparse format.

specK6 <- spectrumKernel(k=6, normalized=FALSE)
erd <- getExRep(enhancerFB, kernel=specK6, sparse=FALSE)
dim(erd)

## [1] 500 4095

object.size(erd)

## 16742232 bytes

ers <- getExRep(enhancerFB, kernel=specK6, sparse=TRUE)
dim(ers)

## [1] 500 4095

object.size(ers)

## 4093480 bytes

ers[1:5, 1:6]

## Sparse explicit representation of class "ExplicitRepresentationSparse"
##
## Quadratic : FALSE
## Used kernel :
## Spectrum Kernel: k=6, normalized=FALSE
##
## 5 x 6 sparse Matrix of class "dgRMatrix"
## AAAAAA AAAAAC AAAAAG AAAAAT AAAACA AAAACC
## Sample_1 1 . 1 1 2 .
## Sample_2 . . . . . .
## Sample_3 . . . . . .
## Sample_4 . . . . 1 .
## Sample_5 . 1 1 . . 1
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The dense explicit representation is with around 16MB four times as large as the sparse ex-
plicit representation with 4MB. The factor of memory efficiency becomes more prominent when
the feature space dimension and the number of sequences increase. The sparse format can also
lead to considerable speedups in the learning. The SVMs in package kernlab do not support the
sparse format for explicit representations, the SVMs in the other packages support both variants.
KeBABS internally selects the appropriate format for the used SVM during training and predic-
tion. With the parameter explicitType in kbsvm dense or sparse processing can be enforced.

When setting the kernel flag zeroFeatures zero feature columns remain in the explicit rep-
resentation and the number of columns increases to the full feature space dimension. For sparse
explicit representations, just the names of the features which do not occur are added when the flag
is set. This could be necessary when using the explicit representation together with other software.

Please consider that for all kernels except the motif kernel the feature space dimension in-
creases drastically with increasing kernel parameter k with an especially large increase for the
gappy pair kernel. For the feature space size, the parameter m is not relevant in the mismatch ker-
nel and the increase is not as drastical for m as for k for the gappyPairKernel allowing also larger
values of m.

An explicit representation can be generated for a subset of the features in the feature space.
This subset is specified as character vector in the feature argument of the function getExplic-
itRepresentation. For normalization all features of the feature space are used. Dependent on the
setting of the flag zeroFeatures, features from this subset that do not occur in the sequences are
included in the explicit representation or not. It should be mentioned that an explicit representation
generated from a feature subset in a normalized spectrum kernel or normalized gappy pair kernel
is not identical to an explicit representation generated from the same features in a normalized mo-
tif kernel because because the feature space and therefore the normalization is different in the two
cases.

Finally a small example with clustering shows how a kernel matrix or an explicit representation
generated with a KeBABS kernel can be used in other ML methods. We compute a kernel matrix
for the 500 samples with the gappy pair kernel and use APCluster [Bodenhofer et al., 2011]. The
package implements affinity propagation clustering to find cluster structures in the data from the
similarity matrix.

library(apcluster)

##
## Attaching package: ’apcluster’

## The following object is masked from ’package:stats’:
##
## heatmap

gappyK1M4 <- gappyPairKernel(k=1, m=4)
km <- getKernelMatrix(gappyK1M4, enhancerFB)
apres <- apcluster(s=km, p=0.8)
length(apres)

## [1] 13
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With the given setting of the preference parameter p=0.8 thirteen clusters were found. The
clustering result is stored in the result object apres. We perform agglomerative clustering starting
from the previous clustering result to generate a cluster dendrogram.

aggres <- aggExCluster(km, apres)
plot(aggres)

Cluster dendrogram
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The cluster dendrogram shows that either a two or a four cluster solution are quite stable with
respect to the preference parameter. Also the explicit representation could have been used for
clustering together with one of the similarity measures defined in apcluster. The simplest case
of a linear kernel as similarity measure is identical to the clustering with the kernel matrix and
with a changed preference value we get four clusters.

exrep <- getExRep(enhancerFB, gappyK1M4, sparse=FALSE)
apres1 <- apcluster(s=linearKernel, x=exrep, p=0.1)
length(apres1)

## [1] 4

5.2.2 Quadratic Explicit Representation

Learning with a quadratic kernel, i.e. a polynomial kernel of degree 2 without offset, is based
on looking at pairs of features instead of single features. An analysis with a quadratic kernel is
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performed when the parameter featureType in kbsvm is set to "quadratic". The SVMs in
package LiblineaR are linear SVMs. These SVMs do not support non-linear kernels. To allow
the usage of the SVMs in LiblineaR for quadratic analysis a quadratic explicit representation can
be computed from the linear explicit representation. The features in the quadratic explicit repre-
sentation are computed from pairs of features of the linear explicit representation. In the feature
names of the quadratic explicit representation, the individual features of the pair are separated by
the underscore character.

Please note that symmetric feature pairs are combined into a single value to reduce the dimen-
sionality of the quadratic explicit representation. The quadratic explicit representation can be used
in training and prediction on LiblineaR in the same way as a linear explicit representation. For
the SVMs in other packages the quadratic explicit representation is not needed because the linear
explicit representation is combined with a polynomial kernel of degree 2 for quadratic processing.

All of the necessary conversions from linear to quadratic explicit representation are handled
within KeBABS automatically. If the quadratic explicit representation is needed for usage in
an external software package it can be generated from any linear explicit representation in the
following way - in this example again for only five sequences

exrep <- getExRep(x=enhancerFB, selx=1:5, gappyK1M4, sparse=FALSE)
dim(exrep)

## [1] 5 80

erquad <- getExRepQuadratic(exrep)
dim(erquad)

## [1] 5 3240

erquad[1:5, 1:5]

## Dense explicit representation of class "ExplicitRepresentationDense"
##
## Quadratic : TRUE
## Used kernel :
## gappy pair kernel: k=1, m=4
##
## AA_AA AA_A.A AA_A..A AA_A...A AA_A....A
## Sample_1 0.047622277 0.064806633 0.059723760 0.063535915 0.064171274
## Sample_2 0.004195657 0.005933555 0.004792486 0.006161768 0.006389982
## Sample_3 0.013718389 0.026963728 0.024990773 0.025319599 0.023346643
## Sample_4 0.017229898 0.020835342 0.022601049 0.021541625 0.025426180
## Sample_5 0.036195010 0.044849977 0.042899978 0.043387478 0.043874978

The number of features increases drastically in the quadratic explicit representation compared
to the linear explicit representation.
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6 Training and Prediction for Binary Classification

As already seen in the Section 3, the KeBABS training method kbsvm follows the usual SVM
training logic. In addition to sequences, the label vector and a sequence kernel the function allows
for selection of one SVM from the supported packages. SVM parameters passed to the function
are dependent on the selected SVM. They are specified in a unified format to avoid changes in
parameter names or formats when switching SVM implementations. KeBABS translates the pa-
rameter names and formats to the specific SVM which is used in the training run. Details on the
supported packages, the available SVMs and the unified SVM parameters for each SVM can be
found on the help page for kbsvm. Please be aware that identically named parameters e.g. cost do
not have the same values in different SVM formulations. This means that the value of such SVM
parameters need to be adapted when changing to an SVM with a different SVM formulation.

Please note that in binary classification the value used for the positive label must be selected
in a specific way. For numeric labels in binary classification the positive class must have the larger
value, for factor or character based labels the positive label must be at the first position when
sorting the labels in descendent order according to the C locale.

Instead of sequences, also a precomputed kernel matrix or an explicit representation can be
passed as training data to the method kbsvm. Precomputed kernel matrices can be interesting for
large data sets or kernels with higher runtime when multiple training runs should be performed
without the overhead of recreating the kernel matrix on each run. A sequence kernel should be
passed to kbsvm also in this situation as it might be needed for the computation of feature weights.
The following example shows how to train and predict with a precomputed explicit representation.
In this example the C-SVM from package kernlab is used and a dense explicit representation is
generated because the SVMs in kernlab currently only support dense explicit representations.
For the packages e1071 and LiblineaR sparse explicit representations can also be used which
are more efficient both statically and dynamically and also reduce the training time, especially for
larger feature spaces.

gappyK1M4 <- gappyPairKernel(k=1, m=4)
exrep <- getExRep(enhancerFB, gappyK1M4, sparse=FALSE)
numSamples <- length(enhancerFB)
trainingFraction <- 0.8
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
model <- kbsvm(x=exrep[train, ], y=yFB[train], kernel=gappyK1M4,

pkg="kernlab", svm="C-svc", cost=15)
pred <- predict(model, exrep[test, ])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 42 9
## -1 7 42
##
## Accuracy: 84.000% (84 of 100)
## Balanced accuracy: 84.034% (42 of 49 and 42 of 51)
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## Matthews CC: 0.681
##
## Sensitivity: 85.714% (42 of 49)
## Specificity: 82.353% (42 of 51)
## Precision: 82.353% (42 of 51)

When the training is performed with a precomputed kernel matrix also in prediction a kernel
matrix must be passed to the predict() method. In this case the kernel matrix is rectangular, the
rows of the kernel matrix correspond to the test samples and the columns to the training samples
in the training set order. The preferred way of training and prediction via kernel matrix is the
dense LIBSVM implementation integrated in kebabs which is addressed when package e1071 is
selected for training with a kernel matrix. With a precomputed kernel matrix the repeated effort
for kernel matrix computation in multiple training runs can be avoided. However, for training with
a precomputed kernel matrix the computation of feature weights is not possible.

## compute symmetric kernel matrix for training samples
kmtrain <- getKernelMatrix(gappyK1M4, x=enhancerFB, selx=train)
model1 <- kbsvm(x=kmtrain, y=yFB[train], kernel=gappyK1M4,

pkg="e1071", svm="C-svc", cost=15)
## compute rectangular kernel matrix of test samples against support vectors
kmtest <- getKernelMatrix(gappyK1M4, x=enhancerFB, y=enhancerFB, selx=test,

sely=train)
pred1 <- predict(model1, kmtest)
evaluatePrediction(pred1, yFB[test], allLabels=unique(yFB))

## 1 -1
## 1 42 9
## -1 7 42
##
## Accuracy: 84.000% (84 of 100)
## Balanced accuracy: 84.034% (42 of 49 and 42 of 51)
## Matthews CC: 0.681
##
## Sensitivity: 85.714% (42 of 49)
## Specificity: 82.353% (42 of 51)
## Precision: 82.353% (42 of 51)

The method kbsvm() returns a KeBABS model of class KBModel which is needed for predic-
tion, calculation of feature weights and generation of prediction profiles. It stores all data needed
for these functions in an SVM independent format. It also contains the native model returned
by the selected SVM. This model can be retrieved from the KeBABS model with the accessor
svmModel. Apart from this data, the KeBABS model also can contain results returned from cross
validation, grid search and model selection (see Section 7).

The method predict() is used to predict the class for new sequences from the model. The
methods returns the class labels by default. Controlled through the parameter predictionType,



48 6 Training and Prediction for Binary Classification

the predict() method can also return the decision values or class membership probability values
instead of the class label. For class membership probability values, a probability model is nec-
essary which is computed during training when the parameter probModel is set to TRUE. When
feature weights (see Section 9) are available in the model, prediction is performed entirely within
KeBABS. Native prediction in the selected SVM can be enforced by setting the flag native to
TRUE in the predict() method.

Prediction profiles (see Section 10) are computed during prediction for the predicted sequences
when the parameter predProfiles is set to TRUE in predict. Prediction profile generation re-
quires the presence of feature weights (see Section 9) in the KeBABS model.

For classification the evaluatePrediction() method can be used to compute the perfor-
mance parameters accuracy (ACC), balanced accuracy (BACC), Matthews Correlation Coefficient
(MCC), area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC) and precision
(PREC) from the predicted values and the true labels as shown in the previous examples. The
performance measures are defined in section 12. The AUC value is computed when the deci-
sion values are passed to the function additionally like in the following example. Currently it is
available for binary classification only.

preddec <- predict(model, exrep[test, ], predictionType="decision")
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),

decValues=preddec)

## 1 -1
## 1 42 9
## -1 7 42
##
## Accuracy: 84.000% (84 of 100)
## Balanced accuracy: 84.034% (42 of 49 and 42 of 51)
## Matthews CC: 0.681
## AUC: 0.910
##
## Sensitivity: 85.714% (42 of 49)
## Specificity: 82.353% (42 of 51)
## Precision: 82.353% (42 of 51)

Performance values can be stored in a data frame for user-specific processing. The columns of
the data frame are explained on the help page of the function evaluatePrediction().

perf <- evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),
decValues=preddec, print=FALSE)

perf

## NUM PBAL TP FP FN TN ACC BAL_ACC SENS SPEC PREC
## 1 100 0.49 42 9 7 42 84 84.03361 85.71429 82.35294 82.35294
## MAT_CC AUC
## 1 0.6806723 0.9095638
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The Receiver Operating Characteristics (ROC) curve is supported for binary classification in
KeBABS as shown below.

rocdata <- computeROCandAUC(preddec, yFB[test], unique(yFB))
plot(rocdata, main="Receiver Operating Characteristics", col="red", lwd=2)
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7 Selection of Kernel Parameters, Hyperparameters and Models

For selection of kernel, kernel parameters, and SVM hyperparameters KeBABS provides cross
validation and grid search. Both functionalities are implemented entirely in the kebabs pack-
age. They are available for all supported SVMs in a package-independent way for binary and
multi-class classification as well as regression. Also model selection is provided by KeBABS for
all supported SVMs. All of these functions require repeated training and prediction and, there-
fore, KeBABS was designed with strong focus on good performance of individual training and
prediction runs allowing reasonable number of repetitions.

Under special circumstances, it might make sense to first narrow down the parameter range
with the fast SVM implementations in package LiblineaR and then refine the reduced range with
the slower but likely slightly more accurate SVMs from package e1071 or kernlab.

7.1 Cross Validation

Cross validation (CV) is provided in KeBABS in three different variants:
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k-fold cross validation: For k-fold cross validation the data set is split into k roughly equally
sized parts called folds. One of these folds is used as test set and the other k − 1 folds as
training set. In k training runs the test fold is changed cyclically giving k different perfor-
mance values on different subsets of the data. This variant is selected through setting the
parameter cross, which defines the number of folds, to values larger than 1 in kbsvm.

Leave-One-Out cross validation (LOOCV): The LOOCV is k-fold CV taken to the extreme
with a fold size of one sample. This variant is dynamically quite demanding and leads to
the same number of training runs as there are samples in the data set. It is selected through
setting the parameter cross to -1 in kbsvm.

Grouped cross validation (GCV): For this variant samples must be assigned to groups before
running cross validation. Grouping can be performed in a way that learning can focus on the
relevant features and is not distracted by simple features which do not really give adequate
information about the classes. GCV is a specialized version of k-fold CV which respects
group membership when splitting the data into folds. This means that one group is never
distributed over more than one fold. GCV is performed when passing the group assignment
of samples as integer vector or factor with the parameter groupBy to kbsvm together with a
value of parameter cross that is smaller or equal to the number of groups.

For all types of CV, the result can be retrieved from the model with the accessor function
cvResult. For classification the cross validation error is the mean classification error over all CV
runs. For regression, the average of the mean squared errors of the runs is used.

For classification tasks, the collection of additional performance parameters during cross vali-
dation runs can be requested with the parameter perfParameters in kbsvm. This could be helpful
especially when working with unbalanced datasets. For multiple repetitions of CV, the parameter
noCross is used.

In the following example, grid search with grouped CV for the coiled coil sequences is shown
as 3-fold grouped cross validation with two repetitions. In this example the groups were deter-
mined through single linkage clustering of sequence similarities derived from ungapped heptad-
specific pairwise alignment of the sequences. The variable ccgroup contains the pre-calculated
group assignments for the individual sequences. The grouping is a measure against over-represen-
tation of specific sequences in the PDB and ensures, that no pair of sequences from two different
clusters match to a degree of 60% or higher of match positions related to the length of the shorter
sequence (see also data Web page of package procoil6).

data(CCoil)
ccseq

## AAStringSet object of length 477:
## width seq names
## [1] 57 LRELQEALEEEVLTRQS...ARNRDLEAHVRQLQERM PDB1
## [2] 50 PLDISQNLAAVNKSLSD...DKIEEILSKIYHIENEI PDB2
## [3] 50 VMESFAVQNQNIDAQGE...QLILEALQGINKRLDNL PDB3

6http://www.bioinf.jku.at/software/procoil/data.html

http://www.bioinf.jku.at/software/procoil/data.html
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## [4] 47 SLVQAQTNARAIAAMKN...EGTQRLAIAVQAIQDHI PDB4
## [5] 46 LAGIVQQQQQLLDVVKR...KNLQTRVTAIEKYLKDQ PDB5
## ... ... ...
## [473] 11 AMKLVEKIREE PDB473
## [474] 11 NLLILYDAIGT PDB474
## [475] 11 EAACSAFATLE PDB475
## [476] 10 LAVALHELAS PDB476
## [477] 123 KKAAEDRSKQLEDELVS...QKDEEKMEIQEIQLKEA PDB477

head(yCC)

## [1] TRIMER TRIMER TRIMER TRIMER TRIMER TRIMER
## Levels: DIMER TRIMER

head(ccgroups)

## PDB1 PDB2 PDB3 PDB4 PDB5 PDB6
## 45 2 44 43 38 42

gappyK1M6 <- gappyPairKernel(k=1, m=6)
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappyK1M6,

pkg="LiblineaR", svm="C-svc", cost=30, cross=3,
noCross=2, groupBy=ccgroups, perfObjective="BACC",
perfParameters=c("ACC", "BACC"))

cvResult(model)

##
## Cross validation result object of class "CrossValidationResult"
##
## cross : 3
## noCross : 2
##
## Mean CV error : 0.19400228
## Mean accuracy : 0.80599772
## Mean balanced accuracy: 0.58381786
##
## Run CV errors :
## 0.17791822, 0.21008634
##
## Run accuracies :
## 0.82208178, 0.78991366
##
## Run bal. accuracies :
## 0.60190934, 0.56572639
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7.2 Grid Search

The grid search functionality gives an overview of the performance behavior for different parame-
ter settings and supports the user in the selection of the sequence kernel and optimal values for the
kernel parameters and SVM hyperparameters. The grid in this functionality is defined as rectangu-
lar data structure, where the rows correspond to different sequence kernels including their kernel
parameters. Each row corresponds to a single sequence kernel object with a specific setting of
the kernel parameters. The columns correspond to the SVM parameters. KeBABS automatically
performs cross validations for each of these grid points and returns the CV error as performance
measure by default. Also grouped CV can be used for each grid point as shown above. The acces-
sor modelSelResult to the grid search results in the model is identical to the accessor for model
selection results.

specK24 <- spectrumKernel(k=2:4)
gappyK1M24 <- gappyPairKernel(k=1, m=2:4)
gridKernels <- c(specK24, gappyK1M24)
cost <- c(1, 10, 100, 1000, 10000)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,

pkg="LiblineaR", svm="C-svc", cost=cost, cross=3,
explicit="yes", showProgress=TRUE)

##
## Grid Search Progress:

##
## Kernel_1 .....
## Kernel_2 .....
## Kernel_3 .....
## Kernel_4 .....
## Kernel_5 .....
## Kernel_6 .....

modelSelResult(model)

##
## Grid search result object of class "ModelSelectionResult"
##
## cross : 3
## noCross : 1
## Smallest CV error : 0.18793738
##
## Grid Rows:
## Kernel_1 SpectrumKernel: k=2
## Kernel_2 SpectrumKernel: k=3
## Kernel_3 SpectrumKernel: k=4
## Kernel_4 GappyPairKernel: k=1, m=2
## Kernel_5 GappyPairKernel: k=1, m=3
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## Kernel_6 GappyPairKernel: k=1, m=4
##
## Grid Columns:
## cost
## GridCol_1 1
## GridCol_2 10
## GridCol_3 100
## GridCol_4 1000
## GridCol_5 10000
##
## Grid Errors:
##
## GridCol_1 GridCol_2 GridCol_3 GridCol_4 GridCol_5
## Kernel_1 0.3459587 0.2839983 0.2520862 0.3961234 0.3798547
## Kernel_2 0.2500541 0.2260058 0.2400139 0.3019383 0.3320588
## Kernel_3 0.2340379 0.2100257 0.2580622 0.2360340 0.2539740
## Kernel_4 0.3679388 0.2239256 0.2059255 0.3580189 0.3479547
## Kernel_5 0.3619508 0.2220018 0.1879374 0.2882308 0.2899262
## Kernel_6 0.3579107 0.2080898 0.2060097 0.2220138 0.3779790
##
## Selected Grid Row:
## GappyPairKernel: k=1, m=3
##
## Selected Grid Column:
## cost
## GridCol_3 100

In this example, only 3-fold CV was used to save time for vignette generation. When using 10-
fold CV the differences between the kernels become more prominent because the effect of random
splits of the data average out better. When the parameter showProgress is set to TRUE in kbsvm ,
a progress indication is displayed.

The default performance parameter in grid search is the CV error, as in cross validation.
For non-symmetrical datasets other performance parameters set with parameter perfParameters
might be more expressive. For grid search, the performance objective can be defined explicitly
with the parameter perfObjective as criterion to select the best setting of the grid parameters.
The accuracy (ACC), balanced accuracy (BACC), Matthews Correlation Coefficient (MCC) and
area under the ROC curve (AUC) can be chosen as performance objective. The AUC is currently
only supported for binary classification.

Grid search can also be done over multiple SVMs in the same or in different packages as in
the next example. In this case vectors of identical length must be passed for the parameters pkg,
svm and the respective SVM parameters. The corresponding entries in these vectors refer to one
SVM with its hyperparameter(s) represent one grid column. With the parameter showCVTimes set
to TRUE in kbsvm the cross validation runtimes are recorded for each individual grid point and
are displayed at the end of the grid search.
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specK34 <- spectrumKernel(k=3:4)
gappyK1M34 <- gappyPairKernel(k=1, m=3:4)
gridKernels <- c(specK34, gappyK1M34)
pkgs <- c("e1071", "LiblineaR", "LiblineaR")
svms <- c("C-svc","C-svc","l1rl2l-svc")
cost <- c(50, 50, 12)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,

pkg=pkgs, svm=svms, cost=cost, cross=10,
explicit="yes", showProgress=TRUE,
showCVTimes=TRUE)

##
## Grid Search Progress:

##
## Kernel_1 ...
## Kernel_2 ...
## Kernel_3 ...
## Kernel_4 ...

##
## Grid Search Times:
##
## GridCol_1 GridCol_2 GridCol_3
## Kernel_1 0.686 0.542 1.157
## Kernel_2 2.993 1.350 2.379
## Kernel_3 0.626 0.551 1.123
## Kernel_4 0.775 0.619 1.277

modelSelResult(model)

##
## Grid search result object of class "ModelSelectionResult"
##
## cross : 10
## noCross : 1
## Smallest CV error : 0.172
##
## Grid Rows:
## Kernel_1 SpectrumKernel: k=3
## Kernel_2 SpectrumKernel: k=4
## Kernel_3 GappyPairKernel: k=1, m=3
## Kernel_4 GappyPairKernel: k=1, m=4
##
## Grid Columns:
## pkg svm cost
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## GridCol_1 e1071 C-svc 50
## GridCol_2 LiblineaR C-svc 50
## GridCol_3 LiblineaR l1rl2l-svc 12
##
## Grid Errors:
##
## GridCol_1 GridCol_2 GridCol_3
## Kernel_1 0.208 0.204 0.212
## Kernel_2 0.236 0.252 0.248
## Kernel_3 0.190 0.172 0.194
## Kernel_4 0.186 0.188 0.198
##
## Selected Grid Row:
## GappyPairKernel: k=1, m=3
##
## Selected Grid Column:
## pkg svm cost
## GridCol_2 LiblineaR C-svc 50

7.3 Model Selection

In KeBABS model selection is performed very similar to grid search. It is based on nested cross
validation with an inner cross validation loop that determines the best setting of the hyper parame-
ters and an outer cross validation loop to test the performance of the model with the best parameter
settings on independent test sets. The result of model selection is the performance of the complete
model selection process, not that of a single best model.

Model selection is triggered when the parameter nestedCross in kbsvm is set to a value larger
than 1. This parameter defines the number of folds in the outer cross validation. The number of
folds in the inner cross validation is defined through the parameter cross as usual. Multiple
repetitions of model selection can be requested with the parameter noNestedCross.

In the following example, model selection is performed with 4-fold outer cross validation
and 10-fold inner cross validation. The parameters of the best models selected in the inner cross
validation are shown in the model selection result object and the results of the outer cross validation
in the CV result object extracted from the model.

specK34 <- spectrumKernel(k=3:4)
gappyK1M34 <- gappyPairKernel(k=1, m=3:4)
gridKernels <- c(specK34, gappyK1M34)
cost <- c(10, 50, 100)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,

pkg="LiblineaR", svm="C-svc", cost=cost, cross=10,
explicit="yes", nestedCross=4)

modelSelResult(model)
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##
## Model selection result object of class "ModelSelectionResult"
##
## cross : 10
## noCross : 1
## nestedCross : 4
## noNestedCross : 1
##
## Grid Rows:
## Kernel_1 SpectrumKernel: k=3
## Kernel_2 SpectrumKernel: k=4
## Kernel_3 GappyPairKernel: k=1, m=3
## Kernel_4 GappyPairKernel: k=1, m=4
##
## Grid Columns:
## cost
## GridCol_1 10
## GridCol_2 50
## GridCol_3 100
##
## Selected Grid Row:
## 1 GappyPairKernel: k=1, m=4
## 2 GappyPairKernel: k=1, m=3
## 3 GappyPairKernel: k=1, m=3
## 4 SpectrumKernel: k=4
##
## Selected Grid Column:
## selGridCol cost
## 1 GridCol_2 50
## 2 GridCol_3 100
## 3 GridCol_3 100
## 4 GridCol_1 10

cvResult(model)

##
## Outer cross validation result object of class "CrossValidationResult"
##
## nestedCross : 4
## noNestedCross : 1
## CV error: : 0.208

The accuracy of the model selection procedure is the average of the results from the outer CV
runs. The performance for the best model is pretty similar and the gappy pair kernel together with
a cost parameter value of 50 is selected as best model in most cases. This result shows that the best
model with the gappy pair kernel is pretty stable for different splits of the data. Please also consider
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the small amount of data that is used for model selection in this example. Usually a larger number
of samples should be used. Even under these unfavorable conditions, the performance is very
reasonable. The fold performance can be displayed through the accessor foldPerformance()
for the CrossValidationResult object which returns the run performance and fold performance
as list.

performance(cvResult(model))$foldErrors

## [,1] [,2] [,3] [,4]
## [1,] 0.2 0.184 0.216 0.232

8 Regression

The classification examples shown up to now were based on real world data for transcription factor
binding. For regression, no real-world data exists for the sequences provided in the package. We
use a toy dataset with an artificial set of real values as target values for the regression example
through linear combination of feature values for the features A.A, CC, C.G, GG, G.G, TG and T.G
plus added noise. The vector with the target values is called yReg. We perform grid search with
the gappy pair kernel on the nu support vector regression in e1071 for hyperparameter nu.

head(yReg)

## [,1]
## chr19.21240050.21240876 1.017952
## chr2.144463827.144464504 1.341635
## chr7.38525408.38526285 1.268669
## chr4.90747075.90748001 1.426697
## chr4.9148679.9149631 1.116384
## chr5.113189184.113189986 1.459810

gappyK1M2 <- gappyPairKernel(k=1, m=2)
model <- kbsvm(x=enhancerFB, y=yReg, kernel=gappyK1M2,

pkg="e1071", svm="nu-svr", nu=c(0.5, 0.6, 0.7, 0.8),
cross=10, showProgress=TRUE)

##
## Grid Search Progress:

##
## Kernel_1 ....

modelSelResult(model)
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##
## Grid search result object of class "ModelSelectionResult"
##
## cross : 10
## noCross : 1
## Smallest CV error : 0.0030517152
##
## Grid Rows:
## Kernel_1 GappyPairKernel: k=1, m=2
##
## Grid Columns:
## nu
## GridCol_1 0.5
## GridCol_2 0.6
## GridCol_3 0.7
## GridCol_4 0.8
##
## Grid Errors:
##
## GridCol_1 GridCol_2 GridCol_3 GridCol_4
## Kernel_1 0.003104235 0.003062301 0.003051715 0.003095905
##
## Selected Grid Column:
## nu
## GridCol_3 0.7

Now a model is trained on a training set with the best performing hyperparameters nu=0.7 and
the target value for the remaining sequences is predicted. Usually the hyperparameters should be
selected on independent data which is not used for verification of the performance of the selected
hyperparameter set. Because of the small size of the dataset we could not perform hyperparameter
selection on independent data. In the regression scenario the mean squared error is used as per-
formance measure. Finally we check the feature weights (see section 9) which were computed by
default.

numSamples <- length(enhancerFB)
trainingFraction <- 0.7
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
model <- kbsvm(x=enhancerFB[train], y=yReg[train],

kernel=gappyK1M2, pkg="e1071", svm="nu-svr",
nu=0.7)

pred <- predict(model, enhancerFB[test])
mse <- sum((yReg[test] - pred)^2)/length(test)
mse

## [1] 0.003378353
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featWeights <- featureWeights(model)
colnames(featWeights)[which(featWeights > 0.4)]

## [1] "CC" "C..G" "G.C" "GG" "G.G" "G..G" "TG" "T.G"

We see that the strongest features in the model were extracted correctly even in the presence of
30% noise on the target. The feature A.A had the smallest contribution to the target value. As the
target values were created from the features of a gappy pair kernel a spectrum kernel is not able
to extract the same amount of high weight features but those present in the feature space of the
spectrum kernel are found.

model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=spectrumKernel(k=2), pkg="e1071", svm="nu-svr",
nu=0.7)

pred <- predict(model, enhancerFB[test])
featWeights <- featureWeights(model)
colnames(featWeights)[which(featWeights > 0.4)]

## [1] "CC" "GG" "TG"

Comparing the performance with model selection for parameter nu the gappy pair kernel shows the
better performance as expected. Please note the different parameter ranges for the hyperparameter
nu between spectrum kernel and gappy pair kernel.

model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=spectrumKernel(k=2), pkg="e1071", svm="nu-svr",
nu=c(0.5, 0.55, 0.6), cross=10, nestedCross=5)

modelSelResult(model)

##
## Model selection result object of class "ModelSelectionResult"
##
## cross : 10
## noCross : 1
## nestedCross : 5
## noNestedCross : 1
##
## Grid Rows:
## Kernel_1 SpectrumKernel: k=2
##
## Grid Columns:
## nu
## GridCol_1 0.50
## GridCol_2 0.55
## GridCol_3 0.60
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##
## Selected Grid Column:
## selGridCol nu
## 1 GridCol_2 0.55
## 2 GridCol_2 0.55
## 3 GridCol_3 0.60
## 4 GridCol_1 0.50
## 5 GridCol_1 0.50

cvResult(model)

##
## Outer cross validation result object of class "CrossValidationResult"
##
## nestedCross : 5
## noNestedCross : 1
## CV error: : 0.0045920275

model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=gappyPairKernel(k=1,m=2), pkg="e1071",
svm="nu-svr", nu=c(0.6, 0.65, 0.7), cross=10,
nestedCross=5)

modelSelResult(model)

##
## Model selection result object of class "ModelSelectionResult"
##
## cross : 10
## noCross : 1
## nestedCross : 5
## noNestedCross : 1
##
## Grid Rows:
## Kernel_1 GappyPairKernel: k=1, m=2
##
## Grid Columns:
## nu
## GridCol_1 0.60
## GridCol_2 0.65
## GridCol_3 0.70
##
## Selected Grid Column:
## selGridCol nu
## 1 GridCol_1 0.60
## 2 GridCol_2 0.65
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## 3 GridCol_3 0.70
## 4 GridCol_3 0.70
## 5 GridCol_2 0.65

cvResult(model)

##
## Outer cross validation result object of class "CrossValidationResult"
##
## nestedCross : 5
## noNestedCross : 1
## CV error: : 0.0035631955

9 Feature Weights

For the position-independent kernel the kernel was expressed as

k(x, y) =
∑
m∈M

N(m,x) ·N(m, y) (11)

The discrimination function of a support vector machine with the Langrange multipliers α1, ...., αl

is given as

g(x) = b+

l∑
i

αi · yi · k(x, xi)

= b+

l∑
i

αi · yi ·
∑
m∈M

N(m,x) ·N(m,xi)

= b+
∑
m∈M

N(m,x) ·
l∑
i

αi · yi ·N(m,xi)︸ ︷︷ ︸
=w(m)

(12)

Through rearrangement of the sums, terms that are not dependent on the current sample can
be split off and can be computed in advance from the Lagrange multipliers and the explicit repre-
sentation of the support vectors. These precomputed terms are called feature weights because they
give the weight for each feature with which the feature counts are weighted.

The feature weight values give the contribution of each occurrence of a pattern to the discrim-
ination value. As mentioned before, this gives some rough hint on the relevance of a pattern but
does not describe the importance of a pattern exactly because of overlapping features and substring
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features. We will see in the Section 10 how to get a clearer picture about the relevance of specific
positions in the sequence.

Feature weights are computed by default if possible during training. With the parameter
featureWeights set to FALSE in kbsvm the generation of feature weights can be suppressed.
When a pre-computed kernel matrix for a sequence kernel is passed to KeBABS training feature
weights cannot be computed. Feature weights are used for prediction and they are a prerequisite
for the generation of feature profiles.

For the position-dependent kernel, a similar representation of the feature weights can be de-
rived. The position-dependent kernel in its most general form can be described as

k(x, y) =
∑
m∈M

Lx∑
p=1

Ly∑
q=1

1(m,x, p) · E(p, q) · 1(m, y, q) (13)

The discrimination function of a support vector machine with the Lagrange multipliers α1, ...., αl

is given for the position-dependent kernel as

g(x) = b+
l∑
i

αi · yi · k(x, xi)

= b+
l∑

i=1

αi · yi ·
∑
m∈M

Lx∑
p=1

Lxi∑
q=1

1(m,x, p) · E(p, q) · 1(m,xi, q)

= b+
∑
m∈M

Lx∑
p=1

1(m,x, p) ·
l∑

i=1

Lxi∑
q=1

1(m,xi, q) · αi · yi · E(p, q)︸ ︷︷ ︸
=w̃(m,p)

(14)

In a similar way as in the position-independent case a part that is independent of the current
sample can be split off through exchange of sums and rearrangement. In the case of position-
specific kernels the feature weights are dependent both on patterns and positions. For more details
see Bodenhofer et al. [2009].

As feature weights for the position-dependent kernel are dependent on the positions, they
are not computed fully during the training. Only a first step of feature weight computation is
performed during training allowing faster computation of full feature weights during prediction or
computation of feature profiles when the actual sequences are available.

Feature weights can be extracted from the model with the accessor featureWeights. For
pairwise multiclass the feature weights of multiple pairwise SVMs are stored as list in the model.
When feature weights are present in the model the prediction is performed via feature weights in
KeBABS except for multiclass classification where always native prediction is used.
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10 Prediction Profiles

Prediction profiles are computed from feature weights to show the contribution of each sequence
position to the decision value. If stretches of the DNA sequence show a clear positive or negative
contribution they are likely relevant for the biological function underlying the learning task.

Prediction profiles can be computed for all KeBABS provided sequence kernels. Feature
weights are a prerequisite for computation of feature profiles and must either be computed dur-
ing training (see parameter featureWeights in method kbsvm) or added later to the model with
the function getFeatureWeights(). Prediction profiles can either be generated during predic-
tion (see parameter predProf in predict()) or specifically for a given set of sequences from a
given model with getPredictionProfile. Finally the predicition profiles for a single sequence
or a pair of sequences can be plotted. Usually only plotting to a PDF file makes sense to get a
reasonable resolution for longer sequences.

The example for prediction profiles is based on the sequence data for coiled coiled proteins
that we used earlier already. A more detailed description is presented in [Mahrenholz et al., 2011].
We train a model on the full dataset and compute prediction profiles for the wild-type yeast protein
GCN4. Finally the prediction profile for this sequence is generated.

data(CCoil)
gappya <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappya,

pkg="e1071", svm="C-svc", cost=15)
featureWeights(model)[,1:5]

## A......Aa......a AAab A.......Aa.......b
## 0.11453726 0.11933186 0.04043841
## A.Aa.c A........Aa........c
## -0.08263644 0.05626802

GCN4 <- AAStringSet(c("MKQLEDKVEELLSKNYHLENEVARLKKLV",
"MKQLEDKVEELLSKYYHTENEVARLKKLV"))

names(GCN4) <- c("GCN4wt", "GCN_N16Y,L19T")
annCharset <- annotationCharset(ccseq)
annot <- c("abcdefgabcdefgabcdefgabcdefga",

"abcdefgabcdefgabcdefgabcdefga")

annotationMetadata(GCN4, annCharset=annCharset) <- annot
predProf <- getPredictionProfile(GCN4, gappya,

featureWeights(model),
modelOffset(model))

predProf

## An object of class "PredictionProfile"
##
## Sequences:
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##
## AAStringSet object of length 2:
## width seq names
## [1] 29 MKQLEDKVEELLSKNYHLENEVARLKKLV GCN4wt
## [2] 29 MKQLEDKVEELLSKYYHTENEVARLKKLV GCN_N16Y,L19T
##
## gappy pair kernel: k=1, m=11, annSpec=TRUE
##
## Baselines: 0.02365245 0.02365245
##
## Profiles:
## Pos 1 Pos 2 Pos 28 Pos 29
## GCN4wt 0.111889252 -0.140135744 ... 0.063537667 0.130766121
## GCN_N16Y,L19T 0.115429679 -0.144569953 ... 0.059671695 0.122502550

The prediction profiles are contained in a data structure together with the sequences and the
sequence kernel used for model training and profile generation. Each row in a profile is associated
with one sample, each entry corresponds to the contribution of the specific position in the sample
to the decision value. As all patterns relevant at a position are included in the profile values the
relevance of positions for prediction results become visible. The prediction profile of the wild-type
GCN4 protein which builds dimers is plotted with

plot(predProf, sel=1, ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
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We see that especially position 16 has a strong negative contribution, i.e. a contribution for
prediction as dimer. In the trimeric second protein GCN4N16Y,L19T with a mutation at this lo-
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cation the prediction profile shows the difference. The next plot shows both prediction profiles
overlayed. The strong contribution of position 16 to dimeric oligomerization prediction is lost.

plot(predProf, sel=c(1, 2), ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
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In this simple example with short sequences the plot can easily be displayed. When using
longer sequences plotting to PDF file is necessary. The help page for plot() in KeBABS shows
an example. The plotting function also provides the possibility for smoothing the profile with a
sliding window average. This could be interesting in situations where regions of interest should
be identified.

In contrast to feature weights which show the individual contribution of a single feature occur-
rence but are not as clearly indicative because of overlaps with other features and substring fea-
tures in prediction profiles the contribution of all features present at a single position is summed up
showing the full contribution of each position to the decision value. In this way prediction profiles
provide much better biological interpretability of the learning results because individual positions
as in this example or stretches of the sequence containing the driving patterns become visible.

The sequence patterns driving the microbiological mechanism which is studied might be more
complex than the patterns available in a specific kernel. Therefore the high contributing feature
weights / sequence positions might be part of a larger pattern that is not fully captured by the
used kernel and additional analysis steps might be necessary once the relevant sections of the
sequences are identified. Considering these aspects the results of such an analysis need to be taken
with a grain of salt. If some biological understanding of the underlying pattern(s) is available
already especially the motif kernel provides high flexibility to define the features according to this
knowledge.
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11 Multiclass Classification

As in the regression case, no real-wold multi-class labels are available for the sequences provided
with the package. We create synthetic labels by splitting the value range of the regression target
into three similar sized intervals. The multiclass label vector provided with the package is called
yMC. Different types of multiclass are implemented for the non-native multiclass variants in the
supported packages. In LiblineaR all non-native multiclass implementations are based on One-
Against-The-Rest which is used in the following example of multiclass training and prediction.

table(yMC)

## yMC
## 1 2 3
## 137 193 170

gappyK1M2 <- gappyPairKernel(k=1, m=2)
model <- kbsvm(x=enhancerFB[train], y=yMC[train],

kernel=gappyK1M2, pkg="LiblineaR",
svm="C-svc", cost=300)

pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yMC[test], allLabels=unique(yMC))

## 1 2 3
## 1 28 10 0
## 2 3 47 6
## 3 0 11 45
##
## Accuracy: 80.000% (120 of 150)
## Balanced accuracy: 82.559%
## Matthews CC: 0.698
##
## Class 1:
## Sensitivity: 90.323% (28 of 31)
## Specificity: 77.311% (92 of 119)
## Precision: 73.684% (28 of 38)
##
## Class 2:
## Sensitivity: 69.118% (47 of 68)
## Specificity: 89.024% (73 of 82)
## Precision: 83.929% (47 of 56)
##
## Class 3:
## Sensitivity: 88.235% (45 of 51)
## Specificity: 75.758% (75 of 99)
## Precision: 80.357% (45 of 56)
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In the One-Against-The-Rest approach with k classes multi-class training consists of k binary
classification training runs using in each run one class and the union of all other classes as second
class. As for binary classification the performance measures can be determines with the function
evalualuatePrediction(). For multi class classification the performance measures sensitivity
(SENS), specificity (SPEC) and precision (PREC) are class specific. The performance measures
are defined in section 12. When feature weights are computed, the model also contains the feature
weights for these k binary classifiers structured as list.

featWeights <- featureWeights(model)
length(featWeights)

## [1] 3

featWeights[[1]][1:5]

## [1] 6.4671549 0.8779336 -0.5394951 -9.5434563 1.3600091

featWeights[[2]][1:5]

## [1] -3.1135218 -17.8941203 -0.6575665 -4.7880668 9.9201483

featWeights[[3]][1:5]

## [1] 4.307738 14.842611 9.102977 5.027274 4.427793

Multiclass prediction is always performed natively in the package used for training. Prediction
profiles can be generated in the multiclass case for the individual binary SVMs with the function
getPredictionProfiles by passing the respective element from feature weights and from the
model offset vector as in the following example.

predProf <- getPredictionProfile(enhancerFB, gappyK1M2,
featureWeights(model)[[2]],
modelOffset(model)[2])

predProf

## An object of class "PredictionProfile"
##
## Sequences:
##
## DNAStringSet object of length 500:
## width seq names
## [1] 827 ACTAAACAACATCAATC...TAGGCAAAATCCTGACA Sample_1
## [2] 678 GAATATAGACCCTTGGT...AAGTTATATTAATTTAT Sample_2
## [3] 878 CACCCACATGGTGGCTC...TCCCCACTGTATCACTC Sample_3
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## [4] 927 TGCCGTAGTGTGCCAGC...TGATTCTCCTGGATCAA Sample_4
## [5] 953 CTTCATATACCTATTAA...CCTAATTTAAAAAGGGG Sample_5
## ... ... ...
## [496] 478 ACGAGAATGAGGGAAAG...GTCTGCCTTCCGAGTGA Sample_496
## [497] 1552 AGGGGACTGGAAGAAAG...TCTCTTCTAAGCGAGCA Sample_497
## [498] 503 GATGAACGTAAAATGCA...TAATGACTCCCTTCTGA Sample_498
## [499] 1577 ACCCCTCTGAGACCAAG...GTAGGTCTGTATTCCTG Sample_499
## [500] 778 CACTGTCATAACTTGCT...GTAGAGTAGCTGCTCTC Sample_500
##
## gappy pair kernel: k=1, m=2
##
## Baselines: -0.02345264 -0.02860669 ... -0.01229888 -0.02492974
##
## Profiles:
## Pos 1 Pos 2 Pos 2327 Pos 2328
## Sample_1 -0.015141495 0.001546340 ... 0.000000000 0.000000000
## Sample_2 0.006366786 -0.022538365 ... 0.000000000 0.000000000
## Sample_3 -0.021985633 0.023788683 ... 0.000000000 0.000000000
## Sample_4 -0.020404423 -0.073324215 ... 0.000000000 0.000000000
## Sample_5 -0.024391076 0.001298602 ... 0.000000000 0.000000000
## ........ ...... ...... ...... ......
## Sample_496 0.010694699 -0.056572739 ... 0.000000000 0.000000000
## Sample_497 0.004791484 -0.040465218 ... 0.000000000 0.000000000
## Sample_498 -0.033337689 0.015431451 ... 0.000000000 0.000000000
## Sample_499 0.009933820 -0.032097076 ... 0.000000000 0.000000000
## Sample_500 -0.003782409 -0.021011356 ... 0.000000000 0.000000000

The non-native multiclass implementation in packages kernlab and e1071 are based on pair-
wise binary classifications. For k classes k ∗ (k − 1)/2 binary classifications are performed and
the feature weights and model offsets of these models are stored in the KeBABS model. For larger
numbers of classes the number of binary training runs is considerably higher than for the One-
Against-The-Rest approach which was chosen in LiblineaR because this package is especially
aiming at large feature spaces and large number of samples. If the performance is not an issue,
usually pairwise multiclass is considered as the preferred method. The native multiclass approach
according to Crammer and Singer is available in packages kernlab and LiblineaR by select-
ing the value mc-natC for the parameter svm. The Weston/Watkins native multiclass approach is
only available in kernlab and is selected with the parameter value mc-natW. For Weston/Watkins
multiclass no feature weights and prediction profiles are available. As KeBABS supports all of
the variants via the supported packages and as switching between implementations is simple the
performance of all methods can be compared easily if the data size allows it.
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12 Definition of Performance Measures for Binary and Multiclass
Classification

Several performance measures are computed in KeBABS to estimate the performance behavior of
a model on future data. With L as the total number of samples, TP as true positives, FP as false
positives, TN as true negatives and FN as false negatives the performance measures for binary
classification are defined as

Accuracy (ACC)

ACC =
TP + TN

TP + FP + FN + TN
(15)

Sensitivity (SENS)

SENS =
TP

TP + FN
(16)

Specificity (SPEC)

SPEC =
TN

TN + FP
(17)

Precision (PREC)

PREC =
TP

TP + FP
(18)

Balanced Accuracy (BACC)

BACC =
SENS + SPEC

2
=

1

2
(

TP

TP + FN
+

TN

TN + FP
) (19)

Matthews Correlation Coefficient (MCC)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(20)

Using M as the m×m confusion matrix for m classes with rows as predictions and columns
as true labels the performance parameters for multi class are defined as follows

Accuracy (ACC)

ACC =

∑m
i=1Mii∑m
i,j=1Mij

(21)
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Balanced Accuracy (BACC)

BACC =
1

m

m∑
j=1

Mjj∑m
i=1Mij

(22)

Matthews Correlation Coefficient (MCC) according to Gorodkin [2004]

MCC =

∑m
i,j,k=1MiiMjk −MijMki√∑m

i=1(
∑m

j=1Mij)(
∑m

k,l=1
k ̸=i

Mkl)
√∑m

i=1(
∑m

j=1Mji)(
∑m

k,l=1
k ̸=i

Mlk)
(23)

In the multi class scenario sensitivity, specificity and precision are defined as class specific
measures.

Sensitivity (SENS)

SENSi =
Mii∑m
j=1Mji

(24)

Specificity (SPEC)

SPECi =

∑m
j=1
j ̸=i

Mjj∑m
j,k=1
k ̸=i

Mjk
(25)

Precision (PREC)

PRECi =
Mii∑m
j=1Mij

(26)

13 User-Defined Sequence Kernels

The KeBABS SVM framework gives the users the possibility to work with user-defined sequence
kernels. The definition of the kernel is loaded from an R source file before the analysis is started.
Following definitions are needed for a user-defined sequence kernel

kernel class definition a kernel class for the new kernel must be defined as subclass of the generic
kebabs sequence kernel class SequenceKernel.

kernel constructor the constructor function takes kernel parameters as input and returns a kernel
object

kernel processing function this function performs the actual computation of the kernel matrix
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show method a method to display the kernel object

coercion method to character a method that coerces the sequence kernel object to a character
string

kernel parameter getter the getter reads the kernel parameters of a given kernel object and re-
turns them as list

An example for a user-defined sequence kernel containing all of these elements can be found
in the directory inst/example/UserDefinedSequenceKernel/SpectrumKernlabKernel of the kebabs
package source tar ball. This example makes the spectrum kernel in package kernlab available
as user-defined sequence kernel. The file SpectrumKernlabKernel.R contains the R definitions
for the new sequence kernel which internally in the kernel matrix processing routine invokes the
kernlab kernel matrix generation using the string dot spectrum kernel. The file RunKernel.R shows
an example analysis with the user-defined sequence kernel. The new kernel can be used in the
analysis like any kebabs sequence kernel. In this example no additional C/C++ code is necessary.
If the new sequence kernel requires code parts in C/C++ a shared library must be prebuilt and
loaded. Building of the shared library is done on the command line with R CMD SHLIB, the
loading of the shared library in the R session through dyn.load().

For user-defined sequence kernels an explicit representation, feature weights and prediction
profiles are not supported. The new kernel cannot be used as single instance kernel in the sym-
metric pair kernel.

14 Future Extensions

The current version of the package is single threaded and does not make use of multiprocessing
infrastructures. The performance of this framework can further be improved by parallelization of
various functions in the package for multicore machines.

To restrict the effort the current implementation only considers SVMs in the packages kernlab,
e1071 and LiblineaR. In the future additional SVMs should be included in the framework, e.g.

Potential Support Vector Machine (PSVM) [Hochreiter and Obermayer, 2006]

Relevance Vector Machine (RVM) [Tipping, 2001]

Least Squares Support Vector Machine (LS-SVM) [Suykens and Vandewalle, 1999]

. . .

Additional sequence kernels like the local alignment kernel, Fisher kernel and TOP kernel
should be considered for implementation.
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15 How to cite this package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

J. Palme, S. Hochreiter, and U. Bodenhofer (2015). KeBABS: an R package for
kernel-based analysis of biological sequences. Bioinformatics, 31(15):2574-2576,
2015. DOI: 10.1093/bioinformatics/btv176.

To obtain BibTEX entries of the reference, you can enter the following into your R session:

toBibtex(citation("kebabs"))
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