
Using geneRxCluster

Charles C. Berry

October 31, 2025

Contents
1 Overview 1

2 Basic Use 1
2.1 Reading Data from a File . 2
2.2 Simulating Data . 2
2.3 Invoking gRxCluster . 3
2.4 Simulating Clumps . 4

3 Customizing Critical Regions and Filters 7

1 Overview
The geneRxCluster package provides some functions for exploring genomic in-
sertion sites originating from two different sources. Possibly, the two sources are
two different gene therapy vectors. In what follows, some simulations are used
to create datasets to illustrate functions in the package, but it is not necessary
to follow the details of the simulations to get an understanding of the functions.
More examples and details are given by Supplement 2 of Berry et al [1] available
at the Bioinformatics web site.

2 Basic Use
It might be helpful to look at these help pages briefly before getting started:

Function Purpose
critVal.target a helper for gRxCluster
gRxCluster the main function
gRxCluster-object says what gRxCluster returns
gRxPlot plots results and crtical regions
gRxSummary quick summary of results

1

http://dx.doi.org/10.1093/bioinformatics/btu035

2.1 Reading Data from a File
The core function in the package is gRxCluster and it requires genomic locations
and group indicators. Those basic data might be represented by a table like this:

chromo pos grp
chr1 176812 FALSE
chr1 191298 TRUE
chr1 337906 TRUE
chr1 356317 TRUE
chr1 516904 FALSE
chr1 661124 FALSE
. . .
. . .
. . .

In R that table might be a data.frame or a collection of three equal length
vectors. The first one here, chromo, indicates the chromosome. The pos column
indicates the position on the chromosome (and note that the positions have been
ordered from lowest to highest), and the grp vector indicates which of the two
groups the row is associated with.

If a table called exptData.txt contained the table above, this command
would read it in:

> df <- read.table("exptData.txt", header=TRUE)

2.2 Simulating Data
Here, df will be simulated. For a start some insertion sites are simulated ac-
cording to a null distribution - i.e. the two sources are chosen according to a
coin toss at each location. First the chromosome lengths are given

> chr.lens <- structure(c(247249719L, 242951149L, 199501827L,
+ 191273063L, 180857866L, 170899992L, 158821424L, 146274826L,
+ 140273252L, 135374737L, 134452384L, 132349534L, 114142980L,
+ 106368585L, 100338915L, 88827254L, 78774742L, 76117153L,
+ 63811651L, 62435964L, 46944323L, 49691432L, 154913754L,
+ 57772954L), .Names = c("chr1", "chr2", "chr3", "chr4", "chr5",
+ "chr6", "chr7", "chr8", "chr9", "chr10", "chr11", "chr12",
+ "chr13", "chr14", "chr15", "chr16", "chr17", "chr18", "chr19",
+ "chr20", "chr21", "chr22", "chrX", "chrY"))

Now a sample is drawn from the chromosomes and for each chromosome a
sample of positions is drawn. The function sample.pos is defined that samples
the desired number of positions in the right range. These results are placed in
a data.frame

2

> set.seed(13245)
> chr.names <- names(chr.lens)
> chr.factor <- factor(chr.names,chr.names)
> chrs <- sample(chr.factor,40000,repl=TRUE,
+ prob=chr.lens)
> chr.ns <- table(chrs)
> sample.pos <- function(x,y) sort(sample(y,x,repl=TRUE))
> chr.pos <-
+ mapply(sample.pos, chr.ns,chr.lens,SIMPLIFY=FALSE)
> df <-
+ data.frame(chromo=rep(chr.factor,chr.ns),
+ pos=unlist(chr.pos))

Now two groups are sampled as a logical vector:

> df$grp <-
+ rbinom(40000, 1, 0.5)==1

2.3 Invoking gRxCluster

With this data.frame the function can be invoked.

> require(geneRxCluster,quietly=TRUE)
> null.results <-
+ gRxCluster(df$chromo,df$pos,df$grp,15L:30L,nperm=100L)
> as.data.frame(null.results)[,c(-4,-5)]

seqnames start end value1 value2 clump.id target.min
1 chr2 154533235 155377716 1 17 1 2.8672885
2 chr11 5364513 6980405 24 4 2 3.5451090
3 chr11 38223665 39379034 16 0 3 1.2113574
4 chr11 45364963 46613229 19 2 4 4.3757092
5 chr11 56026587 58059395 24 4 5 3.5451090
6 chr21 31030761 32183051 17 0 6 0.3025031

The function call specified window widths of 15L:30L sites and called for
100 permutations of the data with nperm=100L.

The resulting object, null.results, is a GRanges object (which is supported
by the GenomicRanges package [2]) has 5 clumps. These clumps can be com-
pared to the number of expected False Discoveries by invoking the function
gRxSummary:

> gRxSummary(null.results)

$Clusters_Discovered
[1] 6

3

$FDR
[1] 0.5542857

$permutations
[1] 100

$targetFD
[1] 5

$call
gRxCluster(object = df$chromo, starts = df$pos, group = df$grp,

kvals = 15L:30L, nperm = 100L, cutpt.tail.expr = critVal.target(k,
n, target = 5, posdiff = x), cutpt.filter.expr = as.double(apply(x,
2, median, na.rm = TRUE)))

The printed summary indicates 5 clusters (or clumps) were discovered, and
that the estimated False Discovery Rate was 0.68 is a bit less than 1.0, which
we know to be the actual False Discovery Rate. However, this is well within
the bounds of variation in a simulation like this. The last part of the printout
shows the values of all the arguments used in the call to gRxCluster including
two that were filled in by default, and which will be discussed later on.

2.4 Simulating Clumps
Let’s look at another example, but first add some true clumps to the simulation.
We start by sampling chromosomes 30 times:

> clump.chrs <- sample(chr.factor,30,repl=TRUE,
+ prob=chr.lens)

For each sample a position is chosen using the sample.pos function defined
above

> clump.chr.pos.bound <-
+ sapply(chr.lens[clump.chrs], function(y) sample.pos(1,y))

For each position, the number of sites in the clump is determined:

> clump.site.ns <- rep(c(15,25,40),each=10)

For every position, nearby sites (< 1 Mbase) are sampled:

> clump.sites <-
+ lapply(seq_along(clump.chrs),
+ function(x) {
+ chromo <- clump.chrs[x]

4

+ n <- clump.site.ns[x]
+ ctr <- clump.chr.pos.bound[x]
+ chrLen <- chr.lens[chromo]
+ if (ctr<chrLen/2)
+ {
+ ctr + sample(1e6,n)
+ } else {
+ ctr - sample(1e6,n)
+ }
+ })

and grps are assigned to each clump

> clump.grps <- rep(0:1,15)==1

then a data.frame is constructed, added to the df data.frame and the
positions are put in order:

> df2 <- data.frame(
+ chromo=rep(clump.chrs,clump.site.ns),
+ pos=unlist(clump.sites),
+ grp=rep(clump.grps,clump.site.ns)
+)
> df3 <- rbind(df,df2)
> df3 <- df3[order(df3$chromo,df3$pos),]

Finally, the clump discovery takes place:

> alt.results <-
+ gRxCluster(df3$chromo,df3$pos,df3$grp,
+ 15L:30L, nperm=100L)
> gRxSummary(alt.results)

$Clusters_Discovered
[1] 27

$FDR
[1] 0.1135714

$permutations
[1] 100

$targetFD
[1] 5

$call
gRxCluster(object = df3$chromo, starts = df3$pos, group = df3$grp,

kvals = 15L:30L, nperm = 100L, cutpt.tail.expr = critVal.target(k,

5

n, target = 5, posdiff = x), cutpt.filter.expr = as.double(apply(x,
2, median, na.rm = TRUE)))

There were plenty of clumps discovered. Were they the simulated clumps or
just False Discoveries? Several functions from the GenomicRanges package [2]
are useful in sorting this out. Here sites in the simulated clumps are turned into
a GRanges object.

> df2.GRanges <-
+ GRanges(seqnames=df2$chromo,IRanges(start=df2$pos,width=1),
+ clump=rep(1:30,clump.site.ns))

The function findOverlaps is used to map the regions in which clumps
were found to the sites composing those simulated clumps, then the function
subjectHits indicates which of the simulated clumps were found.

> clumps.found <- subjectHits(findOverlaps(alt.results,df2.GRanges))

Finally, the number of sites in the simulated clumps that are covered by each
estimated clump is printed.

> matrix(
+ table(factor(df2.GRanges$clump[clumps.found],1:30)),
+ nrow=10,dimnames=list(clump=NULL,site.ns=c(15,25,40)))

site.ns
clump 15 25 40

[1,] 12 22 33
[2,] 0 0 32
[3,] 0 25 14
[4,] 8 21 40
[5,] 0 0 26
[6,] 15 25 34
[7,] 0 15 32
[8,] 13 21 23
[9,] 0 20 40

[10,] 0 0 40

Notice that fewer than half of the clumps consisting of just 15 sites are found,
the clumps of 25 sites are usually found, but usually all of the sites composing
each clump are not found. The clumps formed from 40 sites are found and all
or almost all of the sites in each clump are found.

And here the clumps that are False Discoveries are counted by using the
countOverlaps function

> sum(countOverlaps(alt.results, df2.GRanges) == 0)

[1] 6

6

3 Customizing Critical Regions and Filters
The critical regions used above can be displayed like this:

> gRxPlot(alt.results,method="criticalRegions")

15 17 19 21 23 25 27 29

Sites in Window = wj

0
5

10
15

20
25

30

Notice that the regions are not perfectly symmetrical. This is because the
proportions of the two classes are not exactly equal:

> xtabs(~grp, df3)

grp
FALSE TRUE
20401 20399

The gRxCluster function provides a means of using another set of criitical
regions and another filter expression. The expression for settings up critical
regions is found in the is found in the metadata() slot of alt.results in the
$call component:

> as.list(metadata(alt.results)$call)[['cutpt.tail.expr']]

critVal.target(k, n, target = 5, posdiff = x)

7

The expression is evaluated in an enviroment that has objects k, n, and an
object called x that the expression may use. The object k is a set of values for
the number of sites to include in a window, n is the results of table(df3$grp),
and x is a matrix of the lagged differences of df3[,"pos"]. The lags of order
(15:30)-1 (setting those that cross chromosome boundaries to NA) make up the
columns of x.

One obvious change that a user might make is to reset the value of target.

> generous.target.expr <-
+ quote(critVal.target(k,n, target=20, posdiff=x))
> generous.results <-
+ gRxCluster(df3$chromo,df3$pos,df3$grp,
+ 15L:30L,nperm=100L,
+ cutpt.tail.expr=generous.target.expr)
> gRxSummary(generous.results)

$Clusters_Discovered
[1] 47

$FDR
[1] 0.3420833

$permutations
[1] 100

$targetFD
[1] 20

$call
gRxCluster(object = df3$chromo, starts = df3$pos, group = df3$grp,

kvals = 15L:30L, nperm = 100L, cutpt.tail.expr = generous.target.expr,
cutpt.filter.expr = as.double(apply(x, 2, median, na.rm = TRUE)))

Many more discoveries are made, but look at the count of false discoveries:

> sum(0==countOverlaps(generous.results,df2.GRanges))

[1] 21

The filter function is also found in the metadata() slot of alt.results in
the $call component:

> as.list(metadata(alt.results)$call)[['cutpt.filter.expr']]

as.double(apply(x, 2, median, na.rm = TRUE))

alt.result filtered out the windows whose widths were less than the median
number of bases. The expression is evaluated in the enviroment as before, but

8

only the object x has been added in at the time the expression is called. If
filtering is not desired it can be tunred off by using an expression that returns
values higher than any seen in x such as this:

> no.filter.expr <- quote(rep(Inf,ncol(x)))
> no.filter.results <-
+ gRxCluster(df3$chromo,df3$pos,df3$grp,15L:30L,nperm=100L,
+ cutpt.filter.expr=no.filter.expr)
> gRxSummary(no.filter.results)

$Clusters_Discovered
[1] 22

$FDR
[1] 0.1634783

$permutations
[1] 100

$targetFD
[1] 5

$call
gRxCluster(object = df3$chromo, starts = df3$pos, group = df3$grp,

kvals = 15L:30L, nperm = 100L, cutpt.filter.expr = no.filter.expr,
cutpt.tail.expr = critVal.target(k, n, target = 5, posdiff = x))

The effect of using non-specific filters to increase power is applied in gene-
expression microarray studies [3]. The less stringent filtering results in fewer
discoveries, but the number of false discoveries also decreased:

> sum(0==countOverlaps(no.filter.results,df2.GRanges))

[1] 3

Here a more stringent filter is used

> hard.filter.expr <-
+ quote(apply(x,2,quantile, 0.15, na.rm=TRUE))
> hard.filter.results <-
+ gRxCluster(df3$chromo,df3$pos,df3$grp,15L:30L,
+ nperm=100L,
+ cutpt.filter.expr=hard.filter.expr)
> gRxSummary(hard.filter.results)

$Clusters_Discovered
[1] 31

9

$FDR
[1] 0.114375

$permutations
[1] 100

$targetFD
[1] 5

$call
gRxCluster(object = df3$chromo, starts = df3$pos, group = df3$grp,

kvals = 15L:30L, nperm = 100L, cutpt.filter.expr = hard.filter.expr,
cutpt.tail.expr = critVal.target(k, n, target = 5, posdiff = x))

The number of discoveries here needs to be corrected for the number of false
discoveries if comparisons are to be made:

> sum(0==countOverlaps(hard.filter.results,df2.GRanges))

[1] 6

It seems to do a bit better than the other two alternatives when true and
false discovery numbers are considered.

References
[1] Charles C. Berry and Karen E. Ocwieja and Nirvav Malani and Frederic D.

Bushman. Comparing DNA site clusters with Scan Statistics. Bioinformat-
ics, doi: 10.1093/bioinformatics/btu035, 2014.

[2] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc
Carlson, Robert Gentleman, Martin T Morgan, and Vincent J Carey. Soft-
ware for computing and annotating genomic ranges. PLoS Computational
Biology, 9(8):e1003118, 2013.

[3] R. Bourgon, R. Gentleman, and W. Huber. Independent filtering increases
detection power for high-throughput experiments. Proceedings of the Na-
tional Academy of Sciences, 107(21):9546, 2010.

10

	Overview
	Basic Use
	Reading Data from a File
	Simulating Data
	Invoking gRxCluster
	Simulating Clumps

	Customizing Critical Regions and Filters

