Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.
We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).
Here is the code from the main vignette:
library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)
# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]
# compute QC metrics
qc <- perCellQCMetrics(sce)
# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]
# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim
In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:
sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))
Now compute the pseudobulk using standard code:
sce$id <- paste0(sce$StimStatus, sce$ind)
# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
assay = "counts",
cluster_id = "cell",
sample_id = "id",
verbose = FALSE
)
The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment object:
metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups: cell [8]
## cell id cluster value1 value2
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 B cells ctrl101 3.96 -0.0410 0.0948
## 2 B cells ctrl1015 4.00 0.0802 0.0283
## 3 B cells ctrl1016 4 0.0238 0.0360
## 4 B cells ctrl1039 4.04 0.314 0.00368
## 5 B cells ctrl107 4 0.0510 0.285
## 6 B cells ctrl1244 4 -0.0655 0.0199
## 7 B cells ctrl1256 4.01 -0.00930 -0.0373
## 8 B cells ctrl1488 4.02 0.0237 -0.222
## 9 B cells stim101 4.09 -0.0776 -0.00153
## 10 B cells stim1015 4.06 0.145 0.0644
## # ℹ 118 more rows
Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb) and cell-level variables stored in metadata(pb)$aggr_means.
Variance partition and hypothesis testing proceeds as ususal:
form <- ~ StimStatus + value1 + value2
# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)
# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)
# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)
# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)
# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
## min: 164
## max: 5262
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2
A variable in colData(sce) is handled according to if the variable is
metadata(pb)$aggr_meanscolData(pb)## R Under development (unstable) (2026-01-15 r89304)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] muscData_1.25.0 scater_1.39.2
## [3] scuttle_1.21.0 ExperimentHub_3.1.0
## [5] AnnotationHub_4.1.0 BiocFileCache_3.1.0
## [7] dbplyr_2.5.1 muscat_1.25.1
## [9] dreamlet_1.9.1 SingleCellExperiment_1.33.0
## [11] SummarizedExperiment_1.41.0 Biobase_2.71.0
## [13] GenomicRanges_1.63.1 Seqinfo_1.1.0
## [15] IRanges_2.45.0 S4Vectors_0.49.0
## [17] BiocGenerics_0.57.0 generics_0.1.4
## [19] MatrixGenerics_1.23.0 matrixStats_1.5.0
## [21] variancePartition_1.41.3 BiocParallel_1.45.0
## [23] limma_3.67.0 ggplot2_4.0.1
## [25] BiocStyle_2.39.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-9 httr_1.4.7
## [3] RColorBrewer_1.1-3 doParallel_1.0.17
## [5] Rgraphviz_2.55.0 numDeriv_2016.8-1.1
## [7] sctransform_0.4.3 tools_4.6.0
## [9] backports_1.5.0 utf8_1.2.6
## [11] R6_2.6.1 metafor_4.8-0
## [13] mgcv_1.9-4 GetoptLong_1.1.0
## [15] withr_3.0.2 gridExtra_2.3
## [17] prettyunits_1.2.0 fdrtool_1.2.18
## [19] cli_3.6.5 sandwich_3.1-1
## [21] labeling_0.4.3 slam_0.1-55
## [23] sass_0.4.10 KEGGgraph_1.71.0
## [25] SQUAREM_2021.1 mvtnorm_1.3-3
## [27] S7_0.2.1 blme_1.0-7
## [29] mixsqp_0.3-54 zenith_1.13.0
## [31] dichromat_2.0-0.1 parallelly_1.46.1
## [33] invgamma_1.2 RSQLite_2.4.5
## [35] shape_1.4.6.1 gtools_3.9.5
## [37] dplyr_1.1.4 Matrix_1.7-4
## [39] metadat_1.4-0 ggbeeswarm_0.7.3
## [41] abind_1.4-8 lifecycle_1.0.5
## [43] multcomp_1.4-29 yaml_2.3.12
## [45] edgeR_4.9.2 mathjaxr_2.0-0
## [47] gplots_3.3.0 SparseArray_1.11.10
## [49] grid_4.6.0 blob_1.3.0
## [51] crayon_1.5.3 lattice_0.22-7
## [53] beachmat_2.27.2 msigdbr_25.1.1
## [55] annotate_1.89.0 KEGGREST_1.51.1
## [57] magick_2.9.0 pillar_1.11.1
## [59] knitr_1.51 ComplexHeatmap_2.27.0
## [61] rjson_0.2.23 boot_1.3-32
## [63] estimability_1.5.1 corpcor_1.6.10
## [65] future.apply_1.20.1 codetools_0.2-20
## [67] glue_1.8.0 data.table_1.18.0
## [69] vctrs_0.7.1 png_0.1-8
## [71] Rdpack_2.6.5 gtable_0.3.6
## [73] assertthat_0.2.1 cachem_1.1.0
## [75] zigg_0.0.2 xfun_0.56
## [77] rbibutils_2.4.1 S4Arrays_1.11.1
## [79] Rfast_2.1.5.2 coda_0.19-4.1
## [81] reformulas_0.4.3.1 survival_3.8-6
## [83] iterators_1.0.14 tinytex_0.58
## [85] statmod_1.5.1 TH.data_1.1-5
## [87] nlme_3.1-168 pbkrtest_0.5.5
## [89] bit64_4.6.0-1 filelock_1.0.3
## [91] progress_1.2.3 EnvStats_3.1.0
## [93] bslib_0.10.0 TMB_1.9.19
## [95] irlba_2.3.5.1 vipor_0.4.7
## [97] KernSmooth_2.23-26 otel_0.2.0
## [99] colorspace_2.1-2 rmeta_3.0
## [101] DBI_1.2.3 DESeq2_1.51.6
## [103] tidyselect_1.2.1 emmeans_2.0.1
## [105] bit_4.6.0 compiler_4.6.0
## [107] curl_7.0.0 httr2_1.2.2
## [109] graph_1.89.1 BiocNeighbors_2.5.2
## [111] DelayedArray_0.37.0 bookdown_0.46
## [113] scales_1.4.0 caTools_1.18.3
## [115] remaCor_0.0.20 rappdirs_0.3.4
## [117] stringr_1.6.0 digest_0.6.39
## [119] minqa_1.2.8 rmarkdown_2.30
## [121] aod_1.3.3 XVector_0.51.0
## [123] RhpcBLASctl_0.23-42 htmltools_0.5.9
## [125] pkgconfig_2.0.3 lme4_1.1-38
## [127] sparseMatrixStats_1.23.0 lpsymphony_1.39.0
## [129] mashr_0.2.79 fastmap_1.2.0
## [131] rlang_1.1.7 GlobalOptions_0.1.3
## [133] DelayedMatrixStats_1.33.0 farver_2.1.2
## [135] jquerylib_0.1.4 IHW_1.39.0
## [137] zoo_1.8-15 jsonlite_2.0.0
## [139] BiocSingular_1.27.1 RCurl_1.98-1.17
## [141] magrittr_2.0.4 Rcpp_1.1.1
## [143] viridis_0.6.5 babelgene_22.9
## [145] EnrichmentBrowser_2.41.0 stringi_1.8.7
## [147] MASS_7.3-65 plyr_1.8.9
## [149] listenv_0.10.0 parallel_4.6.0
## [151] ggrepel_0.9.6 Biostrings_2.79.4
## [153] splines_4.6.0 hms_1.1.4
## [155] circlize_0.4.17 locfit_1.5-9.12
## [157] ScaledMatrix_1.19.0 reshape2_1.4.5
## [159] BiocVersion_3.23.1 XML_3.99-0.20
## [161] evaluate_1.0.5 RcppParallel_5.1.11-1
## [163] BiocManager_1.30.27 nloptr_2.2.1
## [165] foreach_1.5.2 tidyr_1.3.2
## [167] purrr_1.2.1 future_1.69.0
## [169] clue_0.3-66 scattermore_1.2
## [171] ashr_2.2-63 rsvd_1.0.5
## [173] broom_1.0.11 xtable_1.8-4
## [175] fANCOVA_0.6-1 viridisLite_0.4.2
## [177] truncnorm_1.0-9 tibble_3.3.1
## [179] lmerTest_3.2-0 glmmTMB_1.1.14
## [181] memoise_2.0.1 beeswarm_0.4.0
## [183] AnnotationDbi_1.73.0 cluster_2.1.8.1
## [185] globals_0.18.0 GSEABase_1.73.0