1 Introduction

Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.

We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).

2 Standard processing

Here is the code from the main vignette:

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:

sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))

3 Pseudobulk

Now compute the pseudobulk using standard code:

sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment object:

metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups:   cell [8]
##    cell    id       cluster   value1   value2
##    <fct>   <fct>      <dbl>    <dbl>    <dbl>
##  1 B cells ctrl101     3.96 -0.0410   0.0948 
##  2 B cells ctrl1015    4.00  0.0802   0.0283 
##  3 B cells ctrl1016    4     0.0238   0.0360 
##  4 B cells ctrl1039    4.04  0.314    0.00368
##  5 B cells ctrl107     4     0.0510   0.285  
##  6 B cells ctrl1244    4    -0.0655   0.0199 
##  7 B cells ctrl1256    4.01 -0.00930 -0.0373 
##  8 B cells ctrl1488    4.02  0.0237  -0.222  
##  9 B cells stim101     4.09 -0.0776  -0.00153
## 10 B cells stim1015    4.06  0.145    0.0644 
## # ℹ 118 more rows

4 Analysis

Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb) and cell-level variables stored in metadata(pb)$aggr_means.

Variance partition and hypothesis testing proceeds as ususal:

form <- ~ StimStatus + value1 + value2

# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)

# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)

# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)

# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult 
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
##  min: 164 
##  max: 5262 
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2

5 Details

A variable in colData(sce) is handled according to if the variable is

  • continuous: the mean per donor/cell type is stored in metadata(pb)$aggr_means
  • discrete
    • [constant within each donor/cell type] it is stored in colData(pb)
    • [varies within each donor/cell type] there is no good way to summarize it. The variable is dropped.

6 Session Info

## R Under development (unstable) (2026-01-15 r89304)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] muscData_1.25.0             scater_1.39.2              
##  [3] scuttle_1.21.0              ExperimentHub_3.1.0        
##  [5] AnnotationHub_4.1.0         BiocFileCache_3.1.0        
##  [7] dbplyr_2.5.1                muscat_1.25.1              
##  [9] dreamlet_1.9.1              SingleCellExperiment_1.33.0
## [11] SummarizedExperiment_1.41.0 Biobase_2.71.0             
## [13] GenomicRanges_1.63.1        Seqinfo_1.1.0              
## [15] IRanges_2.45.0              S4Vectors_0.49.0           
## [17] BiocGenerics_0.57.0         generics_0.1.4             
## [19] MatrixGenerics_1.23.0       matrixStats_1.5.0          
## [21] variancePartition_1.41.3    BiocParallel_1.45.0        
## [23] limma_3.67.0                ggplot2_4.0.1              
## [25] BiocStyle_2.39.0           
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9              httr_1.4.7               
##   [3] RColorBrewer_1.1-3        doParallel_1.0.17        
##   [5] Rgraphviz_2.55.0          numDeriv_2016.8-1.1      
##   [7] sctransform_0.4.3         tools_4.6.0              
##   [9] backports_1.5.0           utf8_1.2.6               
##  [11] R6_2.6.1                  metafor_4.8-0            
##  [13] mgcv_1.9-4                GetoptLong_1.1.0         
##  [15] withr_3.0.2               gridExtra_2.3            
##  [17] prettyunits_1.2.0         fdrtool_1.2.18           
##  [19] cli_3.6.5                 sandwich_3.1-1           
##  [21] labeling_0.4.3            slam_0.1-55              
##  [23] sass_0.4.10               KEGGgraph_1.71.0         
##  [25] SQUAREM_2021.1            mvtnorm_1.3-3            
##  [27] S7_0.2.1                  blme_1.0-7               
##  [29] mixsqp_0.3-54             zenith_1.13.0            
##  [31] dichromat_2.0-0.1         parallelly_1.46.1        
##  [33] invgamma_1.2              RSQLite_2.4.5            
##  [35] shape_1.4.6.1             gtools_3.9.5             
##  [37] dplyr_1.1.4               Matrix_1.7-4             
##  [39] metadat_1.4-0             ggbeeswarm_0.7.3         
##  [41] abind_1.4-8               lifecycle_1.0.5          
##  [43] multcomp_1.4-29           yaml_2.3.12              
##  [45] edgeR_4.9.2               mathjaxr_2.0-0           
##  [47] gplots_3.3.0              SparseArray_1.11.10      
##  [49] grid_4.6.0                blob_1.3.0               
##  [51] crayon_1.5.3              lattice_0.22-7           
##  [53] beachmat_2.27.2           msigdbr_25.1.1           
##  [55] annotate_1.89.0           KEGGREST_1.51.1          
##  [57] magick_2.9.0              pillar_1.11.1            
##  [59] knitr_1.51                ComplexHeatmap_2.27.0    
##  [61] rjson_0.2.23              boot_1.3-32              
##  [63] estimability_1.5.1        corpcor_1.6.10           
##  [65] future.apply_1.20.1       codetools_0.2-20         
##  [67] glue_1.8.0                data.table_1.18.0        
##  [69] vctrs_0.7.1               png_0.1-8                
##  [71] Rdpack_2.6.5              gtable_0.3.6             
##  [73] assertthat_0.2.1          cachem_1.1.0             
##  [75] zigg_0.0.2                xfun_0.56                
##  [77] rbibutils_2.4.1           S4Arrays_1.11.1          
##  [79] Rfast_2.1.5.2             coda_0.19-4.1            
##  [81] reformulas_0.4.3.1        survival_3.8-6           
##  [83] iterators_1.0.14          tinytex_0.58             
##  [85] statmod_1.5.1             TH.data_1.1-5            
##  [87] nlme_3.1-168              pbkrtest_0.5.5           
##  [89] bit64_4.6.0-1             filelock_1.0.3           
##  [91] progress_1.2.3            EnvStats_3.1.0           
##  [93] bslib_0.10.0              TMB_1.9.19               
##  [95] irlba_2.3.5.1             vipor_0.4.7              
##  [97] KernSmooth_2.23-26        otel_0.2.0               
##  [99] colorspace_2.1-2          rmeta_3.0                
## [101] DBI_1.2.3                 DESeq2_1.51.6            
## [103] tidyselect_1.2.1          emmeans_2.0.1            
## [105] bit_4.6.0                 compiler_4.6.0           
## [107] curl_7.0.0                httr2_1.2.2              
## [109] graph_1.89.1              BiocNeighbors_2.5.2      
## [111] DelayedArray_0.37.0       bookdown_0.46            
## [113] scales_1.4.0              caTools_1.18.3           
## [115] remaCor_0.0.20            rappdirs_0.3.4           
## [117] stringr_1.6.0             digest_0.6.39            
## [119] minqa_1.2.8               rmarkdown_2.30           
## [121] aod_1.3.3                 XVector_0.51.0           
## [123] RhpcBLASctl_0.23-42       htmltools_0.5.9          
## [125] pkgconfig_2.0.3           lme4_1.1-38              
## [127] sparseMatrixStats_1.23.0  lpsymphony_1.39.0        
## [129] mashr_0.2.79              fastmap_1.2.0            
## [131] rlang_1.1.7               GlobalOptions_0.1.3      
## [133] DelayedMatrixStats_1.33.0 farver_2.1.2             
## [135] jquerylib_0.1.4           IHW_1.39.0               
## [137] zoo_1.8-15                jsonlite_2.0.0           
## [139] BiocSingular_1.27.1       RCurl_1.98-1.17          
## [141] magrittr_2.0.4            Rcpp_1.1.1               
## [143] viridis_0.6.5             babelgene_22.9           
## [145] EnrichmentBrowser_2.41.0  stringi_1.8.7            
## [147] MASS_7.3-65               plyr_1.8.9               
## [149] listenv_0.10.0            parallel_4.6.0           
## [151] ggrepel_0.9.6             Biostrings_2.79.4        
## [153] splines_4.6.0             hms_1.1.4                
## [155] circlize_0.4.17           locfit_1.5-9.12          
## [157] ScaledMatrix_1.19.0       reshape2_1.4.5           
## [159] BiocVersion_3.23.1        XML_3.99-0.20            
## [161] evaluate_1.0.5            RcppParallel_5.1.11-1    
## [163] BiocManager_1.30.27       nloptr_2.2.1             
## [165] foreach_1.5.2             tidyr_1.3.2              
## [167] purrr_1.2.1               future_1.69.0            
## [169] clue_0.3-66               scattermore_1.2          
## [171] ashr_2.2-63               rsvd_1.0.5               
## [173] broom_1.0.11              xtable_1.8-4             
## [175] fANCOVA_0.6-1             viridisLite_0.4.2        
## [177] truncnorm_1.0-9           tibble_3.3.1             
## [179] lmerTest_3.2-0            glmmTMB_1.1.14           
## [181] memoise_2.0.1             beeswarm_0.4.0           
## [183] AnnotationDbi_1.73.0      cluster_2.1.8.1          
## [185] globals_0.18.0            GSEABase_1.73.0