An Introduction to biovizBase

Tengfei Yin, Michael Lawrence, Dianne Cook

November 4, 2025

Contents

2.2 Cytobands Colorf
23 Strand Colorl

8.1 GRanges Related Manipulation|
3.1.1 Adding Disjoint Levels|.
8.2 Shrink the Gaps|] o oo

3.3 GC contentl

Bugs Report and Features Request)|

B

Acknowledgement|

6 Session Taf ol

[3.4 Mismatch Summary| 000000

3.5 et an Ideogram|o

D W W

Ne

10
10

12
12
12
14
15
18
19
21

21

21

22

1 Introduction

The biovizBase package is designed to provide a set of utilities and color schemes serving as the basis for
visualizing biological data, especially genomic data. Two other packages are currently built on this package, a
static version of graphics is provided by the package ggbio, and an interactive version of graphics is provided
by visnab(Currently not released).

In this vignette, we will introduce those color schemes and different utilities functions using simple
examples and data sets. Utilities includes functions that precess the raw data, validate names, add attributes,
and generate summaries such as fragment length, GC content, and mismatch information.

2 Color Schemes

The biovizBase package aims to provide a set of default color schemes for biological data, based on the
following principles.

e Make biological sense. Data is displayed in a way that is similar to observed results under the micro-
scope. (Example: giemsa stain results)

e Generate aesthetically pleasing colors based on well-defined color sets like color brewer E Produce the
appropriate color for sequential, diverging, and qualitative color schemes.

e Accommodate colorblind vision by creating color pallets that pass the color blind check on the Vis-
check website E| or use palette from package dichromat or use color-blind safe color palette checked by
ColorBrewer WGbSitEﬁ. There are three types of colorblind checking strategy defined on these website.

Deuteranope a form of red/green color deficit;
Protanope another form of red/green color deficit;

Tritanope a blue/yellow deficit- very rare.

Our color scheme try to pass color-blind checking points to make sure all the users can tell the difference
between groups of data displayed. To make the implementation easy, we most time just use dichromat to
check this, dichromat collapses red-green color distinctions to approximate the effect of the two common
forms of red/green color blindness, protanopia and deuteranopia. Or we could simply implement proved
color-blind safe palette from dichromat or RColorBrewer.

All color schemes have a general color generating function and a default color generating function. They
are automatically stored in options as default when loading the package. Other packages built on biovizBase
can use the default color scheme, ensuring consistent color themes across all static and interactive graphics.
Users may also change the default color in the options to personalize the global color scheme to fit their
needs.

> library(biovizBase)
> ## library(scales)
>

2.1 Colorblind Safe Palette

For graphics, it’s important to make sure most people can tell the difference between colors on the plots,
even for people with deficient or anomalous red-green vision.

Thttp://colorbrewer2.org/
%http://www.vischeck.com/
3http://colorbrewer2.org/

http://colorbrewer2.org/
http://www.vischeck.com/
http://colorbrewer2.org/

We will add more and more colorblind safe palette gradually, now we only supported palettes from two
packages, dichromat or RColorBrewer. However, RColorBrewer doesn’t provide information about color-
blind palette. So we need to check manually on ColorBrewer website, and add this information with the
palette information. For dichromat package, it doesn’t have a palette information like brewer.pal.info,
which contains three different types, qual, div, seq representing quality, divergent and sequential respec-
tively, and also missing max colors information, so we integrate all these information and generate three
palette information.

e brewer.pal.blind.info provides only colorblind safe palette subset.

e dichromat.pal.blind.info provides colorblind safe palette with category information and max color
allowed.

e blind.pal.info integrate first two, provides a general palette information with extra column like
pal.id, which used for function colorBlindSafePal as index for arguments palette or maxcolors for
allowed number of color. pkg providing information about which package it is defined.

> head(blind.pal.info)

maxcolors category pkg pal.id
BluetoGray.8 8 div dichromat 1
BluetoOrange.8 8 div dichromat 2
BrowntoBlue. 10 10 div dichromat 3
BluetoOrange. 10 10 div dichromat 4
PiYG 11 div RColorBrewer 5
PRGn 11 div RColorBrewer 6

Then we defined a color generating function colorBlindSafePal, this function reading in a palette
argument which could be a index number or names for palette defined in blind.pal.info. And return a
color generating function, a repeatable argument will control, for number over max color numbers required,
does it simply repeat it or just providing limited number of colors.

> ## with no arguments, return blind.pal.info
> head(colorBlindSafePal())

maxcolors category pkg pal.id
BluetoGray.8 8 div dichromat 1
BluetoOrange.8 8 div dichromat 2
BrowntoBlue. 10 10 div dichromat 3
BluetoOrange. 10 10 div dichromat 4
PiYG 11 div RColorBrewer 5
PRGn 11 div RColorBrewer 6

> ##

> mypalFun <- colorBlindSafePal("Set2")

> ## mypalFun(12, repeatable = FALSE) #only three
> mypalFun(11, repeatable = TRUE) #repeat

[1] "#66C2A5" "#FC8D62" "#B8DAOCB" "#66C2A5" "#FC8D62" "#8DAOCB"
[7] "#66C2A5" "#FC8D62" "#B8DAOCB" "#66C2A5" "#FC8D62"

To Collapses red-green color distinctions to approximate the effect of the two common forms of red- green
color blindness, protanopia and deuteranopia, we can use function dichromat from package dichromat, this
save us the time to

We only show this as an examples and won’t compare all other color schemes in the following sections.
Please notice that

for palette "Paried"

mypalFun <- colorBlindSafePal(21)

par (mfrow = c(1, 3))

showColor (mypalFun(4))

library(dichromat)

showColor (dichromat (mypalFun(4), "deutan"))
showColor (dichromat (mypalFun(4), "protan"))

V VVVVVyV

#A6CEE3 #1F78B4 #C3C3E2 #6C6CB5 #CACAE3

#B2DF8A #D2D28E #DADABA

Figure 1: Checking colors with two common type of color blindness. The first one is normal perception,
second one for deuteranopia and last one for protanopia. Since we are using selected color palettes in this
package, it should be fine with those types of blindness.

e If the categorical data contains many levels like amino acid, people cannot easily tell the difference
anyway, we did the trick to simply repeat the colors. This might be useful for many other cases like
grand linear view for chromosomes, since if the viewed orders of chromosomes is fixed it’s OK to use
repeated colors since they are not going to be layout as neighbors anyway.

e For schemes like cytobands, we try to follow the biological sense, in this case, we don’t really check the
color blindness.

2.2 Cytobands Color

Chemically staining the metaphase chromosomes results in a alternating dark and light banding pattern,
which could provide information about abnormalities for chromosomes. Cytogenetic bands could also provide
potential predictions of chromosomal structural characteristics, such as repeat structure content, CpG island
density, gene density, and GC content.

biovizBase package provides utilities to get ideograms from the UCSC genome browser, as a wrapper
around some functionality from rtracklayer. It gets the table for cytoBand and stores the table for certain
species as a GRanges object.

We found a color setting scheme in package geneplotter, and we implemented it in biovisBase.

The function .cytobandColor will return a default color set. You could also get it from options after
you load biovizBase package.

And we recommended function getBioColor to get the color vector you want, and names of the color is
biological categorical data. This function hides interval color genenerators and also the complexity of getting
color from options. You could specify whether you want to get colors by default or from options, in this
way, you can temporarily edit colors in options and could change or all the graphics. This give graphics a
uniform color scheme.

> getOption("biovizBase")$cytobandColor

gneg stalk acen gpos gvar gposl gpos2
"grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"
gpos3 gpos4 gposb gpos6 gpos7 gpos8 gpos9
"#FOFOFO" "#FTFTFT7" "#F4FAFA" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"
gpos10 gposli gpos12 gpos13 gposl4 gpos15 gpos16
"#ETE7TE7" "#ESEBES" "#E2E2E2" "#EOEOEO" "#DDDDDD" "#DADADA" "#D8D8D8"
gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23
"#D5D5D5" "#D3D3D3" "#DODODO" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"
gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30
"#C3C3C3" "#C1C1C1i" "#BEBEBE" "#BCBCBC" "#B9BOB9" "#B6B6B6" "#B4B4B4"
gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37
"#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#ATATA7T" "#A4A4A4" "#A2A2A2"
gpos38 gpos39 gpos40 gpos4l gpos42 gpos43 gpos44
"#OFOFOF" "#9DODOD" "#OAQAOA" "#979797" "#959595" "#929292" "#909090"
gpos4b gpos46 gpos47 gpos48 gpos49 gpos50 gposb1
"#8D8D8D" "#8BSB8B" "#888888" "#858585" "#838383" "#808080" "#TETETE"
gposb2 gposb3 gposb54 gposbb gposb6 gposb7 gposb8
"#TBTBTB" "#797979" "#T6T676" "#737373" "#717171" "#EEGEGE" "#6C6C6C"
gposb9 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65
"#696969" "#6T6767" "#646464" "#616161" "#BLFS5FOF" "#5C5C5C" "#5A5ABA"
gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72
"#5TB75T" "#545454" "#525252" "#4F4F4AF" "#4D4D4D" "#4A4A4A" "#484848"
gpos73 gposT4 gpos75 gpos76 gpos77 gpos78 gpos79
"#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"

gpos80
"#333333"
gpos87
"#212121"
gpos94
"#OFOFOF"

gpos81
"#303030"
gpos88
"#1E1E1E"
gpos95
"#0cococ"

gpos82
"#2E2E2E"
gpos89
"#1C1C1C"
gpos96
"#0AOAOA"

> getBioColor ("CYTOBAND")

gneg
"grey100"
gpos3
"#FOFIOF9"
gpos10
"#ETETET"
gpos17
"#D5D5D5"
gpos24
"#C3C3C3"
gpos31
"#B1B1B1"
gpos38
"#9FOFOF"
gpos4b
"#8D8D8D"
gposb2
"#7TB7B7B"
gposb9
"#696969"
gpos66
"#575757"
gposT73
"#454545"
gpos80
"#333333"
gpos87
"#212121"
gpos94
"#O0FOFOF"

V V.V Vv VvV

A

stalk
"brown3"
gpos4
"#FTFTFT"
gposll
"#ESBESES"
gpos18
"#D3D3D3"
gpos25
"#C1C1Cc1"
gpos32
"#AFAFAF"
gpos39
"#9D9DOD"
gpos46
"#8B8B8B"
gpos53
#9797
gpos60
"#676767"
gpos67
"#545454"
gpos74
"#424242"
gpos81
"#303030"
gpos88
"#1E1E1E"
gpos95
"#0cococ"

T

acen
"brown4"
gposb
"#F4F4F4"
gpos12
"#E2E2E2"
gpos19
"#DODODO"
gpos26
"#BEBEBE"
gpos33
"#ACACAC"
gpos40
"#9A9A0A"
gpos4T7
"#888888"
gposb4
"#767676"
gpos61
"#646464"
gpos68
"#525252"
gpos75
"#404040"
gpos82
"#2E2E2E"
gpos89
"#1C1C1C"
gpos96
"#0AOAOQA"

= opts)

G

gpos83
"#2B2B2B"
gpos90
"#191919"
gpos97
"#070707"

gpos
Ilgreyo n
gpos6
"#F2F2F2"
gpos13
"#EOEOEQ"
gpos20
"#CECECE"
gpos27
"#BCBCBC"
gpos34
"#AAAAAA"
gpos4l
"#9T9TOT"
gpos48
"#858585"
gposb5
"#737373"
gpos62
"#616161"
gpos69
"#4F4F4F"
gposT76
"#3D3D3D"
gpos83
"#2B2B2B"
gpos90
"#191919"
gpos97
"#070707"

C

gpos84
"#292929"
gpos91
"#171717"
gpos98
"#050505"

gvar
llgreyo n
gpos7
"#EFEFEF"
gposl4
"#DDDDDD"
gpos21
"#CBCBCB"
gpos28
"#B9B9B9"
gpos35
"HATATAT"
gpos42
"#959595"
gpos49
"#838383"
gposb6
"#717171"
gpos63
"#5F5F5F"
gpos70
"#4D4D4D"
gposT7
"#3B3B3B"
gpos84
"#292929"
gpos91
"#171717"
gpos98
"#050505"

differece source from default or options.
opts <- getOption("biovizBase")
opts$DNABasesNColor[1] <- "red"
options (biovizBase
get from option(default)
getBioColor ("DNA_BASES_N")

N

"red" "#2C7BB6" "#D7191C" "#FDAE61" "#FFFFBF"

> ## get default fixed color
> getBioColor ("DNA_BASES_N", source = "default")

gpos85
"#262626"
gpos92
"#141414"
gpos99
"#020202"

gposl
"#FFFFFF"

gpos8
"#ECECEC"
gpos1b5
"#DADADA"
gpos22
"#C8C8C8"
gpos29
"#B6B6B6"
gpos36
"#A4A4A4"
gpos43
"#929292"
gposb0
"#808080"
gpos57
"#6EGEGE"
gpos64
"#5C5C5C"
gposT71
"#4A4A4A"
gpos78
"#383838"
gpos85
"#262626"
gpos92
"#141414"
gpos99
"#020202"

gpos86
"#242424"
gpos93
"#121212"
gpos100
"#000000"

gpos2
"#FCFCFC"

gpos9
"#EAEAEA"
gpos16
"#D8D8D8"
gpos23
"#C6C6C6"
gpos30
"#B4B4B4"
gpos37
"#A2A2A2"
gpos44
"#909090"
gposb1
"#TETETE"
gpos58
"#6C6C6C"
gpos65
"#5A5A5A"
gpos72
"#484848"
gpos79
"#363636"
gpos86
"#242424"
gpos93
"#121212"
gpos100
"#000000"

A T G C N
"#ABDOEO" "#2C7BB6" "#D7191C" "#FDAE61" "#FFFFBF"

> seqs <- C(HA” HCH HT” HG” HG” HGH HCH)
> ## get colors for a sequence.

> getBioColor ("DNA_BASES_N") [segs]

A C T G G G C
"red" "#FDAE61" "#2C7BB6" "#D7191C" "#D7191C" "#D7191C" "#FDAE61"

You can check the color scheme by calling the plotColorLegend function. or the showColor.

> cols <- getBioColor ("CYTOBAND")
> plotColorLegend(cols, title = "cytoband")

cytobhand

Figure 2: Legend for cytoband color

2.3 Strand Color

In the GRanges object, we have strand which contains three levels, +, -, *. We are using a qualitative color
set from Color Brewer and check with dichromat as Figurd3|shows, and we can see that this color set passes
all three types of colorblind test. Therefore it should be a safe color set to use to color strand.

Q@

> par(mfrow = c¢(1, 3))

> cols <- getBioColor ("STRAND")

> showColor (cols)

> showColor(dichromat (cols, "deutan"))
> showColor (dichromat (cols, "protan'))

#76761A

Figure 3: Colorblind vision check for color of strand

2.4 Nucleotides Color

We start with the five most used nucleotides, A,T,C,G,N, most genome browsers have their own color
scheme to represent nucleotides, We chose our color scheme based on the principles introduced above. Since
in genetics, G C-content usually has special biological significance because GC pair is bound by three hydrogen
bonds instead of two like AT pairs. So it has higher thermostability which could result in different significance,
like higher annealing temperature in PCR. So we hope to choose warm colors for G,C and cold colors for
A,T, and a color in between to represent N. They are chosen from a diverging color set of color brewer. So
we should be able to easily tell the GC enriched region. Figure [4] shows the results from dichromat, and we
can see this color set passes all two types of the colorblind test. It should be a safe color set to use to color
the five most used nucleotides.

> getBioColor ("DNA_BASES_N")

A T G C N
"red" "#2C7BB6" "#D7191C" "#FDAE61" "#FFFFBF"

2.5 Amino Acid Color and Other Schemes

We also include some other color schemes created based on existing object in package Biostrings and other
customized color scheme. Please notice that the object name is not the same as the name in the options.
On the left of =, it’s name of object, most of them are defined in Biostrings and on the right, it’s the name
in options.

DNA_BASES_N = "DNABasesNColor"
DNA_BASES = "DNABasesColor"
DNA_ALPHABET = "DNAAlphabetColor"
RNA_BASES_N = "RNABasesNColor"
RNA_BASES = "RNABasesColor"
RNA_ALPHABET = "RNAAlphabetColor"
IUPAC_CODE_MAP = "IUPACCodeMapColor"
AMINQO_ACID_CODE = "AminoAcidCodeColor"
AA_ALPHABET = "AAAlphabetColor"
STRAND = "strandColor"

CYTOBAND = "cytobandColor"

They all could be retrieved by calling function getBioColor.

2.6 Future Schemes

Current color schemes are most generated based on known object in R, which has a clear definition and
classification. But we do have more interesting events or biological significance need to be color coded. Like
most genome browser, they try to color code many events, for instance, color the insertion size which is
larger /smaller than the estimated size; for paired RNA-seq data, we may color the paired reads mapped to
a different chromosome.

We may include more color coded events in this package in next release.

10

V VVVVVVVYV

par (mfrow = c(1, 3))

cols <- getBioColor ("DNA_BASES_N", "default")
showColor(cols, "name")

cols.deu <- dichromat(cols, "deutan')

names (cols.deu) <- names(cols)

cols.pro <- dichromat(cols, "protan")

names (cols.pro) <- names(cols)
showColor(cols.deu, "name")
showColor(cols.pro, "name")

Figure 4: Colorblind vision check for color of nucleotide

11

3 Utilities

biovizBase serves as a basis for the visualization of biological data, especially for genomic data. IRanges
and GenomicRanges are the two most important infrastructure packages to manipulate genomic data. They
already have lots of useful and fast utilities for processing genomic data. Some other package such as
rtracklayer, Rsamtools, ShortRead, GenomicFeatures provide common I/O for certain types of biological
data and utilities for processing those raw data. Most of our utilities to be introduced in this section only
manipulate the data in a simple and different way to get them ready for visualization. Most cases are only
useful for visualization work, like adding brush color attributes to a GRanges object. Some of the other
utilities are responsible for summarizing certain types of raw data, getting it ready to be visualized. Some
of those utilities may be moved to a separate package later.

3.1 GRanges Related Manipulation

biovizBase mainly focuses on visualizing the genomic data, so we have some utilities for manipulating GRanges
object. We are going to introduce these functions in the flow wing sub-sections. Overall, we hope to reduce
people’s work through these common utilities.

3.1.1 Adding Disjoint Levels

> library(GenomicRanges)
> set.seed(1)

> N <- 500

> gr <- GRanges (seqnames =

+ sample(c("chri", "chr2", "chr3", "chrX", "chrY"),

+ size = N, replace = TRUE),

+ IRanges (

+ start = sample(1:300, size = N, replace = TRUE),
+ width = sample(70:75, size = N,replace = TRUE)),
+ strand = sample(c("+", "-", "x"), size = N,

+ replace = TRUE),

+ value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

+ group = sample(c("Normal", "Tumor"),

+ size = N, replace = TRUE),

+ pair = sample(letters, size = N,

+ replace = TRUE))

This is a tricky question. For example, for pair-end RNA-seq data, we may want to put the reads with
the same gname on the same level, with nothing falling in between. For better visualization of the data, we
may hope that adding invisible extensions to the reads will prevent closely neighbored reads from showing
up on the same level.

addStepping function takes a GenomicRanges object and will add an extra column called .levels to the
object. This function is essentially a wrapper around a function disjointBins but allows a more flexible
way to assign levels to each entry. For example, if the arguments group.name is specified to one of the
column in elementMetadata, the function will make sure

e Grouped intervals are in the same levels(if they are not overlapped each other).
e No entry is following between the grouped intervals.

e If extend.size is provided, it buffers the intervals and then computes the disjoint levels, thus ensuring
that two closely positioned intervals will be assigned to different levels, a good practice for visualization.

For now, this function is only useful for visualization purposes.

12

> head(addStepping(gr))

GRanges object with 6 ranges and 5 metadata columns:

segnames ranges strand | value score group

<Rle> <IRanges> <Rle> | <numeric> <numeric> <character>

chril chril 113-182 + | 11.46229 58.8187 Tumor
chril chril 2-76 + | 13.37479 87.8879 Tumor
chri chri 109-180 * | 10.22369 73.4545 Normal
chril chril 102-176 + | 9.82206 138.4521 Tumor
chril chril 57-131 * | 13.30008 118.0667 Normal
chril chril 160-234 * | 9.50643 87.4475 Tumor

pair stepping
<character> <numeric>

chril q 8
chril r 1
chril m 18
chril c 5
chri p 13
chril w 28

seqinfo: 5 sequences from an unspecified genome; no seqlengths

> head(addStepping(gr, group.name = "pair"))

GRanges object with 6 ranges and 5 metadata columns:

segnames ranges strand | value score group

<Rle> <IRanges> <Rle> | <numeric> <numeric> <character>

chril chril 113-182 + | 11.46229 58.8187 Tumor
chri chril 2-76 + | 13.37479 87.8879 Tumor
chri chri 109-180 * | 10.22369 73.4545 Normal
chri chri 102-176 + | 9.82206 138.4521 Tumor
chril chril 57-131 * | 13.30008 118.0667 Normal
chril chril 160-234 * | 9.50643 87.4475 Tumor

pair stepping
<character> <numeric>

chri q 17
chril r 18
chril m 13
chril c 3
chril P 16
chril w 23

seqinfo: 5 sequences from an unspecified genome; no seqlengths

> gr.close <- GRanges(c("chrl", "chr1"), IRanges(c(10, 20), width = 9))
> addStepping(gr.close)

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | stepping
<Rle> <IRanges> <Rle> | <numeric>

chril chril 10-18 * | 1
chri chri 20-28 * | 1

13

seqinfo: 1 sequence from an unspecified genome; no seqlengths
> addStepping(gr.close, extend.size = 5)

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | stepping
<Rle> <IRanges> <Rle> | <numeric>

chri chri 10-18 * | 1
chril chril 20-28 * | 2

seqinfo: 1 sequence from an unspecified genome; no seqlengths

3.2 Shrink the Gaps

Sometime, in a gene centric view, we hope to truncate or shrink the gaps to better visualize the short reads
or annotation data. It’s DANGEROUS to shrink the gaps, since it only make sense in visualization. And
even in the visualization the x-scale will be discontinued, and labels became somehow meaningless. Make
sure you are not using the shrunk version of data when performing the down stream analysis.

This is a tricky question too, we hope to provide a flexible way to shrink the gaps. When we have multiple
tracks, users would be responsible to shrink all the tracks based on the common gaps, otherwise there will
be mis-aligned tracks.

maxGap computes a suitable estimated gap based on passed GenomicRanges

> gr.temp <- GRanges("chrl", IRanges(start = c(100, 250),
+ end = c(200, 300)))
> maxGap (gaps(gr.temp, start = min(start(gr.temp))))

[1] 0.1225

> maxGap (gaps(gr.temp, start = min(start(gr.temp))), ratio = 0.5)

[1] 24.5

shrinkageFun function will read in a GenomicRanges object which represents the gaps, and returns a
function which alters a different GenomicRanges object, to shrink that object based on previously specified
gaps shrinking information. You could use this function to treat multiple tracks(e.g. GRanges) to make sure
they are shrunk based on the common gaps and the same ratio.

Be careful in the following situations.

e When use the same shrinkage function to shrink multiple tracks, make sure the gaps passed to
shrinkageFun function is the common gaps across all tracks, otherwise, it doesn’t make sense to
cut a overlapped gap within one of the tracks.

e The default max gap is not 0, just for visualization purpose. If for estimation purpose, you might want
to make sure you cut all the gaps.

And notice, after shrinking, the x-axis labes only provide approximate position as shown in Figure [5| and
[6l because it’s clipped. It’s just for visualization purpose.

> grl <- GRanges("chrl", IRanges(start = c(100, 300, 600),

+ end = c(200, 400, 800)))

> shrink.funl <- shrinkageFun(gaps(grl), max.gap = maxGap(gaps(grl), 0.15))
> shrink.fun2 <- shrinkageFun(gaps(grl), max.gap = 0)

> head(shrink.funl(gril))

14

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | .ori
<Rle> <IRanges> <Rle> | <GRanges>

[1] chril 91-191 * | chr1:100-200
[2] chrli 282-382 * | chr1:300-400
[31] chrl 473-673 * | chr1:600-800

seqinfo: 1 sequence from an unspecified genome; no seqlengths
> head(shrink.fun2(gri1))

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | .ori
<Rle> <IRanges> <Rle> | <GRanges>

[1] chril 1-101 * | chr1:100-200
[2] chri 102-202 * | chr1:300-400
[3] chrl 203-403 * | chr1:600-800

seqinfo: 1 sequence from an unspecified genome; no seqlengths

gr2 <- GRanges("chr1", IRanges(start = c(100, 350, 550),
end = c(220, 500, 900)))
gaps.gr <- intersect(gaps(grl, start = min(start(grl))),
gaps(gr2, start = min(start(gr2))))
shrink.fun <- shrinkageFun(gaps.gr, max.gap = maxGap(gaps.gr))
head (shrink.fun(grl))

vV VvV + VvV + VvV

GRanges object with 3 ranges and 1 metadata column:

segnames ranges strand | .ori
<Rle> <IRanges> <Rle> | <GRanges>

[1] chrli 100-200 * | chr1:100-200
[2] chrl 222-322 * | chr1:300-400
[3] chrl 474-674 * | chr1:600-800

seqinfo: 1 sequence from an unspecified genome; no seqlengths
> head(shrink.fun(gr2))

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | .ori
<Rle> <IRanges> <Rle> | <GRanges>

[1] chrli 100-220 * | chr1:100-220
[2] chrl 272-422 * | chr1:350-500
[31] chrl 424-774 * | chr1:550-900

seqinfo: 1 sequence from an unspecified genome; no seqlengths

3.3 GC content

As mentioned before, GC content is an interesting variable which may be related to various biological
questions. So we need a way to compute GC content in a certain region of a reference genome.

15

0 200 400 600 800
Genomic Coordinates

Figure 5: Shrink single GRanges. The first track is original GRanges, the second one use a ratio which
shrink the GRanges a little bit, and default is to remove all gaps shown as the third track

16

400 600
Genomic Coordinates

Figure 6: shrinkageFun demonstration for multiple GRanges, the top two tracks are the original tracks,
please note how we clipped common gaps for those two tracks and shown as bottom two tracks.

17

GCcontent function is a wrapper around getSeq function in BSgenome package and letterFrequency
in Biostrings package. It reads a BSgenome object and returns count/probability for GC content in specified
region.

> library(BSgenome.Hsapiens.UCSC.hg19)
> GCcontent (Hsapiens, GRanges('"chrl", IRanges(le6, 1e6 + 1000)))
> GCcontent (Hsapiens, GRanges("chrl", IRanges(1le6, le6 + 1000)), view.width = 300)

3.4 Mismatch Summary

Compared to short-read alignment visualization, it’s more useful to just show the summary of nucleotides
of short reads per base and compare with the reference genome. We need a way to show the mismatched
nucleotides, coverage at each position and proportion of mismatched nucleotides, and use the default color
to indicate the type of nucleotide.

pileupAsGRanges function summarizes reads from bam files for nucleotides on single base units in a given
region, which allows the downstream mismatch summary analysis. It’s a wrapper around applyPileup func-
tion in Rsamtools package and more detailed control could be found under manual of ApplyPileupsParam
function in Rsamtools. pileupAsGRanges function returns a GRanges object which includes a summary of
nucleotides, depth, and bam file path. This object could be read directly into the pileupGRangesAsVariantTable
function for a mismatch summary.

This function returns a GRanges object with extra elementMetadata, counts for A,C,T,G,N and depth
for coverage. bam indicates the bam file path. Each row is single base unit.

pileupGRangesAsVariantTable performs comparisons to the reference genome(a BSgenome object) and
computes the mismatch summary for a certain region of reads. User need to make sure to pass the right
reference genome to this function to get the right summary. This function drops the positions that have no
reads and only keeps the regions with coverage in the summary. The result could be used to show stacked
barchart for the mismatch summary.

This function returns a GRanges with the following elementMetadata information.

ref Reference base.

read Sequenced read at that position. Each type of A,C,T,G,N summarize counts at one position, if no
counts detected, will not show it.

count Count for each nucleotide.
depth Coverage at that position.
match A logical value, indicate it’s matched or not.

bam Indicate bam file path.

Sample raw data is from SRA(Short Read Archive), Accession: SRR027894 and subset the gene at
chr10:6118023-6137427, which within gene RBM17. contains junction reads.

library(Rsamtools)

data(genesymbol)

library(BSgenome.Hsapiens.UCSC.hg19)

bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase")
test <- pileupAsGRanges(bamfile, region = genesymbol["RBM17"])

test.match <- pileupGRangesAsVariantTable(test, Hsapiens)

head(test[,-71)

head(test.match[,-5])

V VVVVYVVYV

18

3.5 Get an Ideogram

getIdeogram function is a wrapper of some functionality from rtracklayer to get certain table like cytoBand.
A full table schema can be found here at UCSC genome browser. Please click describe table schema.

This function requires a network connection and will parse the data on the fly. The first argument of
getIdeogram is species. If missing, the function will give you a choice hint, so you will not have to
remember the name for the database you want, or you can simply get the database name for a different
genome using the ucscGenomes function in Rtracklayer. The second argument subchr is used to subset
the result by chromosome name. The third argument cytoband controls if you want to get the gieStain
information/band information or not, which is useful for the visualization of the whole genome or single
chromosome. You can see some examples in ggbio.

> library(rtracklayer)

> hg19IdeogramCyto <- getldeogram("hgl9", cytoband = TRUE)
> hgl9Ideogram <- getIdeogram("hgl9", cytoband = FALSE)

> unknowIdeogram <- getIdeogram()

Please specify genome

1: hgl9 2: hgl8 3: hgl7 4: hgl6 5: felCat4
6: felCat3 7: galGal3 8: galGal2 9: panTro3 10: panTro2
11: panTrol 12: bosTau4 13: bosTau3 14: bosTau2 15: canFam2

16: canFaml 17: loxAfr3 18: fr2 19: fri1 20: cavPor3
21: equCab2 22: equCabl 23: petMarl 24: anoCar2 25: anoCarl
26: calJac3 27: calJacl 28: oryLat2 29: mm9 30: mm8
31: mm7 32: monDomb5 33: monDom4 34: monDoml 35: ponAbe2
36: ailMell 37: susScr2 38: ornAnal 39: oryCun2 40: rn4
41: rn3 42: rheMac2 43: oviAril 44: gasAcul 45: tetNig2

46: tetNigl 47: xenTro2 48: xenTrol 49: taeGutl 50: danRer?7
51: danRer6 52: danRer5 ©63: danRer4 54: danRer3 55: ci2

56: cil 57: braFlol ©58: strPur2 b59: strPurl 60: apiMel2
61: apiMell 62: anoGaml 63: droAna2 64: droAnal 65: droErel
66: droGril 67: dm3 68: dm2 69: dmil 70: droMoj2
71: droMojl 72: droPerl 73: dp3 74: dp2 75: droSecl
76: droSiml 77: droVir2 78: droVirl 79: droYak2 80: droYakl
81: caePb2 82: caePbl 83: cb3 84: cbl 85: ceb

86: ce4d 87: ce2 88: caeJapl 89: caeRem3 90: caeRem2

91: priPacl 92: aplCall 93: sacCer2 94: sacCerl

Selection:
Here is the example on how to get the genome names.
> head (ucscGenomes () $db)

[1] hgl9 hgl8 hgl7 hgl6 felCat4 felCat3
122 Levels: ailMell anoCarl anoCar2 anoGaml apiMell apiMel2 ...

We put the most used hgl9 ideogram as our default data set, so you can simply load it and see what
they look like. They are all returned by the getIdeogram function. The one with cytoband information has
two special columns.

name Name of cytogenetic band

19

http://genome.ucsc.edu/cgi-bin/hgTables

gieStain Giemsa stain results

> data(hg19IdeogramCyto)
> head(hg19IdeogramCyto)

GRanges object with 6 ranges and 2 metadata columns:

segnames ranges strand | name gieStain
<Rle> <IRanges> <Rle> | <factor> <factor>
[1] chri 0-2300000 * | p36.33 gneg
[2] chrl 2300000-5400000 * | p36.32 gpos25
[3] chrl 5400000-7200000 * | p36.31 gneg
[4] chrl 7200000-9200000 * | p36.23 gpos25
[5] chrl 9200000-12700000 * | p36.22 gneg
(6] chrl 12700000-16200000 * | p36.21 gpos50

seqinfo: 24 sequences from an unspecified genome; no seqlengths

> data(hg19Ideogram)
> head(hg19Ideogram)

GRanges object with 6 ranges and O metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrl 1-249250621 *
[2] chr1_gl000191_random 1-106433 *
[3] chri_gl000192_random 1-547496 *
[4] chr2 1-243199373 *
(5] chr3 1-198022430 *
(6] chr4 1-191154276 *

seqinfo: 93 sequences from hgl9 genome

There are two simple functions to test if the ideogram is valid or not. isIdeogram simply tests if the
result came from the getIdeogram function, making sure it’s a GenomicRanges object with an extra column.
isSimpleIdeogram only tests if it’s GenomicRanges and does not require cytoband information. But it
double checks to make sure there is only one entry per chromosome. This is useful to show stacked overview
for genomes. Please check some examples in ggbio to draw stacked overview and single chromosome.

> isIdeogram(hg19IdeogramCyto)

[1] TRUE

> isIdeogram(hgl9Ideogram)

[1] FALSE

> isSimpleIdeogram(hg19IdeogramCyto)
[1] FALSE

> isSimpleIdeogram(hg19Ideogram)

[1] TRUE

20

3.6 Other Utilities and Data Sets

We are not going to introduce other utilities in this vignette, please refer to the manual for more details, we
have other function to transform a GRanges to a special format only for graphic purpose, such as function
transformGRangesForEvenSpace and transformGRangesToDfWithTicks could be used for grand linear view

or linked view as introduced in package ggbio.

We have introduced data sets like hg19IdeogramCyto and hgl9Ideogram in the previous sections. We
also have a data set called genesymbol, which is extracted from human annotation package and stored as
GRanges object, with extra columns symbol and ensembl_id. For fast mapping, we use symbol as row names

too.

This could be used for convenient overlapped subset with other annotation, and has potential use in a

auto-complement drop list for gene search bar like most gene browsers have.

> data(genesymbol)
> head(genesymbol)

GRanges object with 6 ranges and 2 metadata columns:

segnames ranges strand

<Rle> <IRanges> <Rle
A1BG chr19 58858174-58864865
A2M chri2 9220304-9268558

NAT1 chr8 18027971-18081197
NAT1 chr8 18067618-18081197
NAT1 chr8 18079177-18081197
NAT2 chr8 18248755-18258723

>

+ o+ 4+

symbol
<character>
A1BG

A2M

NAT1

NAT1

NAT1

NAT2

seqinfo: 45 sequences from an unspecified genome; no

> genesymbol["RBM17"]

GRanges object with 1 range and 2 metadata columns:

segnames ranges strand |
<Rle> <IRanges> <Rle>
RBM17 chr10 6130949-6159420 +

symbol

| <character>

ensembl_id
<character>
ENSG00000121410
ENSGO0000175899
ENSGO0000171428
ENSG00000171428
ENSG00000171428
ENSGO0000156006

seqlengths

ensembl_id
<character>

RBM17 ENSG00000134453

seqinfo: 45 sequences from an unspecified genome; no seqlengths

4 Bugs Report and Features Request

Latest code are available on github https://github.com/tengfei/biovizBase

Please file bug/request on issue page, this is preferred way. or email me at yintengfei <at> gmail dot

com.

It’s a new package and under active development.

Thanks in advance for any feedback.

5 Acknowledgement

I wish to thank all those who helped me. Without them, I could not have started this project.

Genentech Sponsorship and valuable feed back and help for this project and my other project.

Jennifer Chang Feedback on this package

21

https://github.com/tengfei/biovizBase

6 Session Information

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[56] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets
[7] methods base

other attached packages:

[1] GenomicRanges_1.63.0 Seqinfo_1.1.0 IRanges_2.45.0
[4] S4Vectors_0.49.0 BiocGenerics_0.57.0 generics_0.1.4
[7] dichromat_2.0-0.1 biovizBase_1.59.0

loaded via a namespace (and not attached):

[1] tidyselect_1.2.1 dplyr_1.1.4

[3] farver_2.1.2 blob_1.2.4

[5] Biostrings_2.79.1 S$7_0.2.0

[7] bitops_1.0-9 RCurl_1.98-1.17

[9] lazyeval 0.2.2 fastmap_1.2.0

[11] VariantAnnotation_1.57.0 GenomicAlignments_1.47.0
[13] XML_3.99-0.19 digest_0.6.37

[15] rpart_4.1.24 lifecycle_1.0.4
[17] cluster_2.1.8.1 ProtGenerics_1.43.0
[19] KEGGREST_1.51.0 RSQLite_2.4.3

[21] magrittr_2.0.4 compiler_4.6.0

[23] rlang 1.1.6 Hmisc_5.2-4

[25] tools_4.6.0 yaml_2.3.10

[27] data.table_1.17.8 rtracklayer_1.71.0
[29] knitr_1.50 S4Arrays_1.11.0
[31] htmlwidgets_1.6.4 curl_7.0.0

[33] bit_4.6.0 DelayedArray_0.37.0
[35] RColorBrewer_1.1-3 abind_1.4-8

[37] BiocParallel_1.45.0 foreign_0.8-90

22

[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]
[61]
[63]
[65]
(67]
[69]
[71]
[73]
[75]
[77]
[79]
[81]
[83]
[85]
[87]
[89]
[91]
[93]

nnet_7.3-20
colorspace_2.1-2
scales_1.4.0
cli_3.6.5
crayon_1.5.3
rjson_0.2.23
DBI_1.2.3
stringr_1.6.0
AnnotationDbi_1.73.0
AnnotationFilter_1.35.0
matrixStats_1.5.0
vctrs_0.6.5
jsonlite_2.0.0
Formula_1.2-5
ensembldb_2.35.0
glue_1.8.0
stringi_1.8.7
GenomeInfoDb_1.47.0
UCSC.utils_1.7.0
pillar_1.11.1
BSgenome_1.79.1
evaluate_1.0.5
Biobase_2.71.0
backports_1.5.0
cigarillo_1.1.0
gridExtra_2.3
checkmate_2.3.3
MatrixGenerics_1.23.0

grid_4.6.0
ggplot2_4.0.0

SummarizedExperiment_1.41.0

rmarkdown_2.30
rstudioapi_0.17.1
httr_1.4.7
cachem_1.1.0
parallel_4.6.0
restfulr_0.0.16
XVector_0.51.0
base64enc_0.1-3
Matrix_1.7-4
bit64_4.6.0-1
htmlTable_2.4.3
GenomicFeatures_1.63.1
codetools_0.2-20
gtable_0.3.6
BiocIO0_1.21.0
tibble_3.3.0
htmltools_0.5.8.1
R6_2.6.1
lattice_0.22-7
png_0.1-8
Rsamtools_2.27.0
memoise_2.0.1
SparseArray_1.11.1
xfun_0.54
pkgconfig 2.0.3

23

	Introduction
	Color Schemes
	Colorblind Safe Palette
	Cytobands Color
	Strand Color
	Nucleotides Color
	Amino Acid Color and Other Schemes
	Future Schemes

	Utilities
	GRanges Related Manipulation
	Adding Disjoint Levels

	Shrink the Gaps
	GC content
	Mismatch Summary
	Get an Ideogram
	Other Utilities and Data Sets

	Bugs Report and Features Request
	Acknowledgement
	Session Information

