
HowTo: Querying online Data

Jeff Gentry and Robert Gentleman

October 31, 2025

1 Overview
This article demonstrates how you can make use of the tools that have been provided for
on-line querying of data resources. These tools rely on others (such as the NLM and
NCBI) providing and documenting appropriate web interfaces. The tools described
here allow you to either retrieve the data (usually in XML) or have it rendered in a
browser on the local machine. To do this you will need the Biobase, XML, and anno-
tate packages. The functionality in this article was first described in (Gentleman and
Gentry, 2002), although some enhancements have been made since the writing of that
article.

Assembling and using meta-data annotation is a non-trivial task. In the Biocon-
ductor Project we have developed tools to support two different methods of accessing
meta-data. One is based on obtaining data from a variety of sources, of curating it
and packaging it in a form that is suitable for analysing microarray data. The second
method is to make use of on-line resources such as those provided by NLM and NCBI.
The functions described in this vignette provide infrastructure for that second type of
meta-data usage.

We first describe the functions that allow users to specify queries and open the
appropriate web page on their local machine. Then, we investigate the much richer set
of tools that are provided by NLM for accessing and working with PubMed data.

2 Using the Browser
There are currently four functions that provide functionality for accessing online data
resources. They are:

genbank Users specify GenBank identifiers and can request them to be rendered in
the browser or returned in XML.

pubmed Users specify PubMed identifiers and can request them to be rendered in the
browser or returned in XML. More details on parsing and manipulating the XML
are given below.

entrezGeneByID Users specify Entrez Gene identifiers and the appropriate links are
opened in the browser. Entrez Gene does not provide XML so there is no down-
load option, currently. The user can request that the URL be rendered or returned.

1



entrezGeneQuery Users specify a string that will be used as the Entrez Gene query
and the species of interest (there can be several). The user can request either that
the URL be rendered or returned.

Both genbank and pubmed can return XML versions of the data. These returned
values can subsequently be processed using functionality provided by the XML package
(Temple Lang, 2000). Specific details and examples for PubMed are given in Section 3.

The function entrezGeneByID takes a set of known Entrez Gene identifiers
and constructs a URL that will have these rendered. The user can either save the URL
(perhaps to send to someone else or to embed in an HTML page, see the vignette on
creating HTML output for more details).

The function entrezGeneQuery takes a character string to be used for querying
PubMed. For example, this function call,

entrezGeneQuery("leukemia", "Homo sapiens")

will find all Human genes that have the word leukemia associated with them in their
Entrez Gene records. Note that the R code is merely an interface to the services pro-
vided by NLM and NCBI and users are referred to those sites for complete descriptions
of the algorithms they use for searching etc.

3 Accessing PubMed information
In this section we demonstrate how to query PubMed and how to operate on the data
that are returned. As noted above, these queries generate XML, which must then be
parsed to provide the specific data items of interest. Our example is based on the
sample.ExpressionSet data from the package Biobase. Users should be able to
easily replace these data with their own.

> library("annotate")
> data(sample.ExpressionSet)
> affys <- featureNames(sample.ExpressionSet)[490:500]
> affys

[1] "31729_at" "31730_at" "31731_at" "31732_at" "31733_at" "31734_at"
[7] "31735_at" "31736_at" "31737_at" "31738_at" "31739_at"

Here we have selected an arbitrary set of 11 genes to be interested in from our sam-
ple data. However, sample.ExpressionSet provided us with Affymetrix identi-
fiers, and for the pubmed function, we need to use PubMed ID values. To obtain these,
we can use the annotation tools within annotate.

> library("hgu95av2.db")
> ids <- getPMID(affys,"hgu95av2")
> ids <- unlist(ids,use.names=FALSE)
> ids <- unique(ids[!is.na(as.numeric(ids))])
> length(ids)

2



[1] 946

> ids[1:10]

[1] "1939271" "2449431" "7729427" "7835343" "7836461" "7933101"
[7] "8121496" "8680883" "8764009" "8764062"

We use getPMID to obtain the PubMed identifiers that are related to our probes of
interest. Then we process these to leave out any that have no PMIDs and we remove
duplicates as well. The mapping to PMIDs are actually based on Entrez Gene identi-
fiers and since the mapping from Affymetrix IDs to Entrz Gene is many to one there
is some chance of duplication. From our initial 11 Affymetrix identifiers we see that
there are 946 unique PubMed identifiers (i.e. papers).

For each of these papers we can obtain information, such as the title, the authors,
the abstract, the Entrez Gene identifiers for genes that are referred to in the paper and
many other pieces of information. Again, for a complete listing and description the
reader is referred to the NLM website.

We next generate the query and store the results in a variable named x. This object
is of class XMLDocument and to manipulate it we will use functions provided by the
XML package.

> x <- pubmed(ids[1:10])
> a <- xmlRoot(x)
> numAbst <- length(xmlChildren(a))
> numAbst

[1] 10

Our search of the 946 PubMed IDs (from the 11 Affymetrix IDs) has resulted in 10
abstracts from PubMed (stored in R using XML format). The annotate package also
provides a pubMedAbst class, which will take the raw XML format from a call to
pubmed and extract the interesting sections for easy review.

> arts <- vector("list", length=numAbst)
> absts <- rep(NA, numAbst)
> for (i in 1:numAbst) {
+ ## Generate the PubMedAbst object for this abstract
+ arts[[i]] <- buildPubMedAbst(a[[i]])
+ ## Retrieve the abstract text for this abstract
+ absts[i] <- abstText(arts[[i]])
+ }
> arts[[7]]

An object of class 'pubMedAbst':
Title: Direct interaction of human TFIID with the HIV-1

transactivator tat.
PMID: 8121496

3



Authors: F Kashanchi, G Piras, MF Radonovich, JF Duvall, A
Fattaey, CM Chiang, RG Roeder, JN Brady

Journal: Nature
Date: Jan 1994

In the S language we say that the pubMedAbst class has a number of different
slots. They are:

authors The vector of authors.

pmid The PubMed record number.

abstText The actual abstract (in text).

articleTitle The title of the article.

journal The journal it is published in.

pubDate The publication date.

These can all be individually extracted utilizing the provided methods, such as abstText
in the above example. As you can see, the pubMedAbst class provides several key
pieces of information: authors, abstract text, article title, journal, and the publication
date of the journal.

Once the abstracts have been assembled you can search them using any of the
standard search techniques. Suppose for example we wanted to know which abstracts
have the term cDNA in them, then the following code chunk shows how to identify
these abstracts.

> found <- grep("cDNA",absts)
> goodAbsts <- arts[found]
> length(goodAbsts)

[1] 2

So 2 of the articles relating to our genes of interest mention the term cDNA in their
abstracts.

Lastly, as a demonstration for how one can use the query toolset to cross refer-
ence several databases, we can use the same set of PubMed IDs with another function.
In this example, the genbank function is used with the argument type="uid". By
default, the genbank function assumes that the id values passed in are Genbank ac-
cession numbers, but we currently have PubMed ID values that we want to use. The
type="uid" argument specifies that we are using PubMed IDs (aka NCBI UID num-
bers).

> y <- genbank(ids[1:10], type="uid")
> b <- xmlRoot(y)

At this point the object b can be manipulated in a manner similar to a from the
PubMed example.

Also, note that both pubmed and genbank have an option to display the data
directly in the browser instead of XML, by specifying disp="browser" in the pa-
rameter listing.

4



4 Generating HTML output for your abstracts
Many users find it useful to have a web page created with links for all of their abstracts,
leading to the actual PubMed page online. These pages can then be distributed to
other people who have an interest in the abstracts that you have found. There are two
formats for this, the first provides for a simple HTML page which has a link for every
abstract, and the other provides for a framed HTML page with the links on the left and
the resulting PubMed page in the main frame. For these examples, we will be using
temporary files:

> fname <- tempfile()
> pmAbst2HTML(goodAbsts, filename=fname)
> fnameBase <- tempfile()
> pmAbst2HTML(goodAbsts, filename=fnameBase, frames=TRUE)

5 Session Information
The version number of R and packages loaded for generating the vignette were:

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] grid stats4 stats graphics grDevices utils
[7] datasets methods base

other attached packages:
[1] Rgraphviz_2.55.0 graph_1.89.0 xtable_1.8-4
[4] GO.db_3.22.0 hgu95av2.db_3.13.0 org.Hs.eg.db_3.22.0

5



[7] annotate_1.89.0 XML_3.99-0.19 AnnotationDbi_1.73.0
[10] IRanges_2.45.0 S4Vectors_0.49.0 Biobase_2.71.0
[13] BiocGenerics_0.57.0 generics_0.1.4 BiocStyle_2.39.0

loaded via a namespace (and not attached):
[1] bit_4.6.0 jsonlite_2.0.0 compiler_4.6.0
[4] BiocManager_1.30.26 crayon_1.5.3 blob_1.2.4
[7] Biostrings_2.79.1 jquerylib_0.1.4 Seqinfo_1.1.0

[10] png_0.1-8 yaml_2.3.10 fastmap_1.2.0
[13] R6_2.6.1 XVector_0.51.0 knitr_1.50
[16] bookdown_0.45 DBI_1.2.3 bslib_0.9.0
[19] rlang_1.1.6 KEGGREST_1.51.0 cachem_1.1.0
[22] xfun_0.54 sass_0.4.10 bit64_4.6.0-1
[25] RSQLite_2.4.3 memoise_2.0.1 cli_3.6.5
[28] digest_0.6.37 lifecycle_1.0.4 vctrs_0.6.5
[31] evaluate_1.0.5 rmarkdown_2.30 httr_1.4.7
[34] pkgconfig_2.0.3 tools_4.6.0 htmltools_0.5.8.1

References
R. Gentleman and J. Gentry. Querying pubmed. R News, 2(2):28–31, June 2002. URL
http://CRAN.R-project.org/doc/Rnews/.

Duncan Temple Lang. Tools for parsing and generating xml within r and s-plus. CRAN,
2000. URL http://www.omegahat.org/RSXML.

6

http://CRAN.R-project.org/doc/Rnews/
http://www.omegahat.org/RSXML


Figure 1: pmAbst2HTML without frames

Figure 2: pmAbst2HTML with frames

7


	Overview
	Using the Browser
	Accessing PubMed information
	Generating HTML output for your abstracts
	Session Information

