SMITE Vignette

Andrew D. Johnston, N. Ari Wijetunga, and John M. Greally

July 28, 2015

Abstract

This tutorial exemplifies how SMITE can inegrate the results from gene expression
and epigenome wide studies to identify functional modules, subnetworks within a
gene interaction network. Here we will take gene expression, DNA methylation and
publicly available ChIP-seq results simulated from a large multi-level unpublished
study, and we will generate significance-based functional modules. The main aim
of our example is to find functional modules that characterize processes related to
the infection of HFF cells with Tozoplasma Gondii when compared to uninfected
controls. In the process, we detail how to set-up SMITE, curate data for input,
use SMITE commands, and annotate/visualize modules.

1 Setup Environment

First, we will set our environment parameters and install the SMITE package. The package
can be found on Github

options(stringsAsFactors=FALSE)
library (SMITE)

2 Curate Data

Before inputting epigenetic and expression data into the SMITE algorithms, expression,
DNA methylation, and annotation tracks need to be in the proper format. Because genomics
data can come in many different formats, pre-processing the data is important to establish
uniformity in downstream results. Within the package, there is curated, pre-processed data
available for testing as well.

Start by loading in a DNA methylation dataset(Chr, Start, Stop, effect size, p-value for each
CpG). This data was generated using the HELP-tagging assay and shows the difference of
mean 5’-cytosine methylation between triplicate Tozoplasma infected and uninfected Human
Foreskin Fibroblasts (HFF). The p-value was generated using t-tests (DNA methylation ~

https://github.com/GreallyLab/SMITE

Infection).

To curate the DNA methylation dataset, it is necessary to remove uninformative loci (NAs)
and p-values=0 since logarithms of p-values are employed within the code. We replace any
p-values=0 with the minimum p-value in the dataset. We also remove CpGs for which the
p-value is NA. The curated datasets available through Github have already been processed
but were not included in the package because of size restrictions.

Load methylation data
data(methylationdata)

head (methylation)

Vi V2 V3 V4 V5
7687 chrill 2160269 2160270 -0.717 0.34022689
95408 chrl10 32793206 32793207 NA NA

11891 chrl0 11305429 11305430 -1.593 0.07552725
59902 chrl0 115770766 115770767 -6.291 0.44454585
42342 chril 1780702 1780703 -1.053 0.36048353
85425 chril 456508 456509 -1.644 0.00000000

Replace zeros with minimum non-zero p-value
methylation[, 5] <- replace(methylation[, 5], methylation[, 5] ==
0, min(subset (methylation[, 5], methylation[, 5] != 0), na.rm = TRUE))
Remove NAs from p-value column
methylation <- methylation[-which(is.na(methylation[, 5])),]

Before integrating data from multiple datasets, it is EXTREMELY important that you
choose a single gene ID platform that you will use for the entire analysis. Any form of gene
ID will work as long as every dataset uses it or efforts are made to convert gene IDs. We
prefer to use gene symbols to avoid downstream networks cluttered by multiple transcripts
of the same gene, and we assign gene symbols to our expression dataset instead of RefSeq
IDs using a convenient function. If starting from a different gene ID system, one can also
convert ensemble, ensembleprot, and uniprot gene IDs to their respective gene symbols (See
Manual). The convertGenelds function enumerates the combinations of to and from, so if a
particular annotation is desired, we can add the functionality, if requested.

Load fake genes to show expression conversion

data(genes_for_conversiontest)

genes[, 1] <- convertGenelds(gene_IDs = genes[, 1], ID_type = "refseq",
ID_convert_to = "symbol")

Next, we load in the example expression dataset (genes, effect, p-value) generated via RNA-seq
on the same HFF samples. Because of size restrictions, we could not include an unprocessed
dataset. We have, however, provided an unprocessed dataset on Github for users to apply
the following lines of codes to in order to better see how to pre-process their data. In the
curated data, the rownames are gene symbols and the other columns include effect size (log
fold change) and p-value from a negative binomial test in DESeq.

https://github.com/GreallyLab/SMITEdatasets
https://github.com/GreallyLab/SMITEdatasets

After gene id conversion (example shown above), we remove expression data for genes where a
gene symbol was not found (NAs). We then take the lowest (most significant) pvalue for genes
that had more than 1 entry. Finally, we replace p-values of zeros with the lowest p-value in
the dataset.

This 1s just an example of how to pre—process data
expression <- expression[-which(is.na(expression[, 1])), 1]
expression <- split(expression, expression[, 1])
expression <- lapply(expression, function(i) {
if (nrow(as.data.frame(i)) > 1) {
i <= i[which(i[, 3] == min(i[, 3], na.rm = TRUE)) [1],
]
}
return(i)
)
expression <- do.call(rbind, expression)
expression <- expression[, -1]
expression[, 2] <- replace(expression[, 2], expression[, 2] ==
0, min(subset (expression[, 2], expression[, 2] != 0), na.rm = TRUE))

Load expression data
data(curated_expressiondata)
View data

head (expression_curated)

effect pval
A1BG 0.3190600 0.835528104
A1BG-AS1 -0.7744693 0.127105406
A2M -0.3604916 0.133665150
A2M-AS1 0.3482564 0.004019176
A2ML1 0.4232293 0.441982383
A2MP1 -4.0973360 0.024239448

Then, we load in gene sequences as well as other data that we wish to include in our analysis.
These files must be in bed format with the first three columns as (chr,start,stop). A gene
strand and name are also required, but the downstream functions allow users to specify a
column for strand and gene name.

Load hgl9 gene annotation BED file
data(hgl9_genes_bed)

Load histone modification file
data(histone_h3k4mel)

View files

head(hgl9_genes)

Vi V2 V3 Vi V5 V6
1 chrl 11873 14409 NR_046018 DDX11L1 +

2 chrl 14361 29370 NR_024540 WASH7P -
3 chrl 34610 36081 NR_026818 FAM138A -
4 chrl 34610 36081 NR_026820 FAM138F -

5 chrl 69090 70008 NM 001005484 OR4F5 +
6 chrl 134772 140566 NR_039983 LOC729737 -
head (h3k4me1l)

Vi V2 V3

1 chrl 569800 569999

2 chrl 724000 727199

3 chrl 751600 758999

4 chrl 760800 762199

5 chrl 764800 765599

6 chrl 766800 769399

3 Integrate Datasets

In makePvalueAnnotation, we create a GRangesList object where each gene is associated
with a promoter region (4 /- 1000bp from TSS), gene body region (TSS+1000bp to TES),
and putative “enhancers” using H3K4mel ChIP-seq peaks (+/- 5000bp from TSS). Note:
These are the sizes of regions of the genome for which we are interested in calculating scores,
but the user can easily alter the parameters. Additionally, the argument otherdata can be an
unlimited list of bed files that will be associated with genes and then scored in functional
modules. The argument other d is the distance from the TSS that will be used to associate
each otherdata dataset with a gene. If different distances are required for otherdata, then
you must provide a distance for each dataset.

test_annotation <- makePvalueAnnotation(data = hgl9_genes,
other_data = list(h3k4mel = h3k4mel), gene name_col = 5,
other_tss_distance = 5000, promoter_ upstream_distance =
promoter downstream_distance = 1000)

1000,

Genes are duplicated. Removing duplicates

Having created a PvalueAnnotation, we can now load in the expression and methylation
dataset. First we load the expression data. If effect_col and pval_col are not provided,
the program will attempt to find them using the column names, but its probably safer to
just provide the arguments.

test_annotation <- annotateExpression(pvalue_annotation = test_annotation,
expr_data = expression_curated, effect_col =1,
pval_col = 2)

To load in modification data, we have provided a function that can be used multiple times,
once for each modifcation data type (e.g. DNA methylation, DNA hydroxymethylation). This
is accomplished by using the mod_type character string, which can be any word. Please do

not use an underscore or names that are nested in one another (e.g. methylation and methyl)
as this will cause erratic behavior when string splitting column names downstream. For each
loaded modification, when mod_corr=TRUE (DEFAULT);set as FALSE to reduce computation
time) the function will determine a correlation structure, adjust the p-values and combine the
p-values using the method specified (here, Stouffer’s method (DEFAULT)). In addition, we
use a Monte Carlo Method (MCM) of random sampling of the combined scores to determine
a FDR like p-value which will used as the p-value/score in downstream analysis. When
combining p-values using any method (see companion paper or ?7annotateModification
for more details), p-values will be combined over the gene promoters (DEFAULT), gene
bodies (DEFAULT), and over any provided other datasets. Stouffer’s method allows optional
weights to be given, which we define here has "distance" (weighting the effect and p-value
by distance from the TSS), "pval" (weighting the effect by the signifcance of the effect), or
anything other text (unweighted). Note: Depending on the amount of data, this step can
take roughly 10 minutes per mod_type.

test_annotation <- annotateModification(test_annotation,
methylation, weight_ by method = "Stouffer",
weight by = c(promoter = "distance", body = "distance",
h3k4mel = "distance"), verbose = TRUE,
mod_corr = FALSE, mod_type = "methylation")

We can view the loaded data using the following functions:

See expression data

head (extractExpression(test_annotation))

See the uncombined p-values for a specific or

all modType(s)

extractModification(test_annotation, mod_type = "methylation")
See the combined p-value data.frame

head (extractModSummary (test_annotation))

4 Adjusting Values and Scoring

Having loaded gene expression and DNA methylation data into the PvalueAnnotation,
we now bring all of the data together into an object class called a PvalueObject. The
PvalueObject we will create has a slot within the PvalueAnnotation called score_data
accessed through slot (PvalueAnnotation, "scoredata") or one of the accessor functions
that we have set up like SMITEextractScores. At this step we specify an a priori argu-
ment that will be used in scoring downstream effect_directions. We must specify an
effect_directions element for each modification-context pairing that we wish to score.
It should reflect whether you want your modification-context (e.g. DNA methylation in
gene promoters) to have a pre-specified relationship with expression so that if the opposite
relationship is observed the score will be penalized. Users can specify either "increase",
"decrease" and "bidirectional" (for no prespecifed relationship). This information will
be stored and will not be used until the SMITEscorePval function is used.

test_annotation <- makePvalueObject(test_annotation,
effect_directions = c(methylation promoter = "decrease',
methylation_body = "increase",
methylation_h3k4mel = "bidirectional"))

P-values/scores that are combined and then randomized will have a different range than
gene expression, or one another, which can skew the identified modules toward a particular
modification-context pairing. Using the plotDensityPval function we view the distribution
and then normalize using the normalizePval function if necessary. Using the (DEFAULT)
rescale procedure, p-values are logit transformed before rescaling resulting in a shifting
of an approximately normal distribution and no effect on the order of p-values within a
modification-context pairing.

Plot denstity of p-values
plotDensityPval(pvalue_annotation = test_annotation,
ref = "expression")

Plotting: methylation_promoter
Plotting: methylation_body
Plotting: methylation_h3k4mel
Density of P-values/Scores

o _

(92]

ToR B expression (REF)

N - methylation

o romoter

>] ethylation

o =
> bodK .
= methylation
7 LN |
. h3k4mel
o

o

S

0

o

S _

© | | |

0.0 0.5 1.0
P-values

Normalize the p-values to the
range of expresstion

test_annotation <- normalizePval(test_annotation,

#i#
##
##
#i#t
#i#
#i#

Density

ref = "expression", method = "rescale")
Plotting: methylation_promoter
Plotting: methylation_body

Plotting: methylation_h3k4mel

Plotting: methylation_promoter
Plotting: methylation_body

Plotting: methylation_h3k4mel

Density of P-values/Scores

o
S -
o B expression (REF)
N - methylation
romoter
° = ethylation
N bodx)
- methylation
. h3k4mel
9
o
S
LO —
o
o
S -
I I I
0.0 0.5 1.0
P-values

Density

Density of P-values/Scores

[Te}

expression (REF)

methylation

romoter
ethylation

bod}; .
methylation
h3k4mel

E OB N

-02 02 06 10

P-values

We can compare p-values for different features using the plotCompareScores function, with
the hope that it may reveal interesting patterns within the data.

plotCompareScores(test_annotation, x name = "expression',
y_name = "methylation_promoter")

Warning: Removed 20228 rows containing non-finite outside the scale range
("stat_binhex()7).

methylation_promoter vs expression p—values comparing effect direction

count
12.5

10.0
7.5
5.0
2.5

methylation_promoter Score * Effect Direction

expression Score * Effect Direction

Scoring the genes is the final step before finding modules, and after scoring, the high scoring
genes can be extracted using the SMITEhighScores function. When using SMITEscorePval,
users can provide an optional weighting vector that will allow prioritization of certain
modfication-context pairings. We included this feature because we find that a researcher
often has a specific goal (e.g. finding DNA methylation that is significantly different at
enhancer), and rather than allowing researchers to selectively choose results that support
their hypothesis, it may be beneficial to define a numeric quantity that can be reported at
the time of publication and reproduced. We provide the SMITEreport function for text dump
of all defined parameters.

score with all four features contributing
test_annotation <- scorePval(test_annotation,
weights = c(methylation_promoter = 0.3, methylation_body = 0.1,
expression = 0.3, methylation_h3k4mel = 0.3))

5 Visualize Modules

Now that we have generated weighted significance values from different modifications that
relate to each gene, we can visualize modules using interactome data and module-building
packages, such as BioNet. Specifically, following the example of Epimods we use igraph’s
spinglass algorithm to determine the best modules.

First, we load the desired interactome, in our case from REACTOME and run the Spin-glass
algorithm. We can then run a goseq like approach on our modules to annotate them using
pathways, like KEGG.

load REACTOME
load(system.file("data", "Reactome.Symbol.Igraph.rda",
package = "SMITE"))
Run Spin-glass
test_annotation <- runSpinglass(test_annotation,
network = REACTOME, maxsize = 50, num iterations = 1000)
Run goseq on individual modules to
determine bias an annotate functions
test_annotation <- runGOseq(test_annotation, supply_cov = TRUE,
coverage = read.table(system.file("extdata",
"hgl9 symbol _hpaii.sites.inbodyand2kbupstream.bed.gz",
package = "SMITE")), type = "kegg")

We can use keywords such as “cell cycle” to find within the goseq output which modules we
are most interested. We can then use SMITEplotModule to visualize the module.

search goseq output for keywords

searchGOseq(test_annotation, search_string = "cell cycle")
epimod_name epimod_position_pval term rank of term total terms
1 PARD3 4 / 0.0242 Cell cycle 28 30

Draw a network
plotModule(test_annotation, which network = 6, layout = "fr",
label_scale = TRUE, compare_plot = FALSE)

This graph was created by an old(er) igraph version.
i Call “igraph::upgrade_graph()” on it to use with the current igraph version.
For now we convert it on the fly...

Warning in text.default(-1.2, 1.44, expression("node ", Chi[2]72)):
length(labels) > max(length(x), length(y)). labels truncated to length 1.

Warning in text.default(-1.2, 1.24, expression("edge ", Chi[4]72)):
length(labels) > max(length(x), length(y)). labels truncated to length 1.

Chi-square P-value= 0.07/09

methylation
promoter

Compare two networks
plotModule(test_annotation, which network = c(4, 6), layout = "fr",
label scale = TRUE, compare_plot = TRUE)

Press key to go to next plot

10

Network built around PARD3 Network built around RBP4
Chi-square P-value= 0.0242 Chi-square P-value= 0.0709

Draw a network with goseq analystis
plotModule(test_annotation, which_network = 1, layout = "fr",
goseq = TRUE, label scale = FALSE)

Warning in text.default(-1.2, 1.44, expression("node ", Chi[2]72)):
length(labels) > max(length(x), length(y)). labels truncated to length 1.

Warning in text.default(-1.2, 1.24, expression("edge ", Chi[4]72)):
length(labels) > max(length(x), length(y)). labels truncated to length 1.

11

e SOTL UeToys

expression “»‘6“ - o
[Qigk3®" 5
v\/

Chi-square P-value= 0.004

12

Num Enriched

Genes Pathway/Term
21 Axon guidance

4 T cell receptor signaling pathway

3 Renal cell carcinoma

5 Regulation of actin cytoskeleton

5 Focal adhesion

3 Adherens junction

3 ErbB signaling pathway

3 Alzheimer's disease

	1 Setup Environment
	2 Curate Data
	3 Integrate Datasets
	4 Adjusting Values and Scoring
	5 Visualize Modules

