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1 Introduction

This package implements the methods described in [5]. Briefly, we propose the use of a random-
effects model to fit the association between copy number and gene expression microarray data,
measured on the same samples but not necessarily using the same array platform. The model
(and this package) can be applied to either intensity or ratio data. Moreover, it can be used
to describe the association between any other two microarray data sources, such as methylation
and expression, or SNP call and expression, for example. For simplicity, we will focus on the
association between copy number and gene expression.
The SIM package depends on the globaltest and quantsmooth Bioconductor packages.

2 Overview

The package consists of functions to run and visualize results of an integrated analysis model being
applied to two microarray datasets. Two main functions read in the data and fit the model. Then
results can be visualized and tabulated with the help of other functions. We will describe the
functions in more detail in the example in section 4. Here we give a brief overview of the functions
implemented.
The assemble.data function reads in the microarray data and annotation. The main function
integrated.analysis fits the model to the data. Both functions generate results that are au-
tomatically stored on the hard disk for subsequent analysis, in especially created folders. All
subsequent functions produce output directly saved onto these folders. This is more efficient than
keeping large objects on the workspace, especially if high-density arrays are involved.
The function sim.plot.pvals.on.genome gives an overview of the multiple-testing corrected
p-values, organized along the genome. Another summary is produced by tabulate.pvals,
a tabulation of the multiple-testing corrected p-values per studied region. The function
sim.plot.pvals.on.region generates a multipage pdf including all tested regions, for which
it displays the empirical distribution of the computed p-values to convey the strength of the asso-
ciations found and it displays the multiple-testing corrected p-values per region studied, without
discretization. This helps identifying regions rich in low p-values. If there is no prior interest in
any chromosome, researchers may find it useful to use these graphs, together with the tabulated
p-values, to choose chromosome arms to focus on.
The function sim.plot.zscore.heatmap plots the pairwise associations between features in the
analyzed region in a heatmap. An additional panel can display the dependent features trend on the
samples used, in this example the copy number aberrations. Finally, to select dependent or inde-
pendent features for further analysis and validation, the functions tabulate.top.dep.features
and tabulate.top.indep.features produce tables of dependent features with adjusted p-values
and independent features with mean associations, respectively.

3 Data preparation

The microarray data sets should have been normalized with an appropriate method prior to the in-
tegrated analysis and contain log-transformed intensities or ratios. In addition to the columns con-
taining normalized microarray measurements, the minimal probe annotation required is a unique
identifier, chromosome number (X and Y for the sex-chromosomes), and base pair location within
the chromosome. Optionally, an additional identifier, often gene symbol, can be provided.
Make sure that the genomic locations in both datasets refer to the same genome assembly and
that this is in accordance with the genome build used in the chromosome table used by the SIM
package. Currently, the chrom.table is available for homo_sapiens_core_40_36b. The function
sim.update.chrom.table gives instructions on how to change the chrom.table used.
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Often, the annotation for expression array probes lack chromosome position information. We
generated two methods to add this annotation. The link.metadata function gets annotation out
of a AnnotationData package and links it to the expression data using the expression probe IDs.
It adds the two required columns chromosome and position to run the integrated.analysis.
An optional column, "Symbol" can be added. Alternatively, we can use the SIM function
RESOURCERER.annotation.to.ID, which gets annotation out of a RESOURCERER annotation
file and links them to expression data with help of expression IDs.
We recommend applying the model on the normalized (typically logarithmic) data directly, since
the use of discretization may dampen small associations. However, if for some reason the dependent
data has to be categorized, it is advisable to transform it into a factor so that the model will use
the appropriate settings (see subsection 5.1).
The function assemble.data currently expects data frames as inputs representing the array
datasets. If your array data is stored as an exprSet object, you may use exprs to extract the
array intensities/log-ratios only. If your array data is just a tab-delimited text file, reading it using
read.table will produce a data frame.
The order of the samples within each dataset is assumed to be the same and the column names
should be identical. For an example how to re-order the samples see 4.1.
The dependent data should not contain any NA’s. We have constructed the function
impute.nas.by.surrounding to impute missing copy number data by taking the median of the
surrounding probes within the same sample. This function may take a while!

4 Example: Breast cancer

4.1 Data sets

As an example we use the data generated and first analysed by Pollack and colleagues [6]. This
example involves array CGH and expression arrays from 37 breast tumor samples and 4 breast
cancer cell lines. Just for illustrative purposes we use only chromosome arm 8q. This study used
the same cDNA arrays for both expression and CGH measurements, resulting in a one-to-one
correspondence between the datasets. This is not a requirement to run the integrated analysis,
but it makes biological interpretation somewhat easier.
Arrays from each of the two data types have been pre-processed as follows. A sliding window (size
= 5) was applied to the array CGH data. If an NA was found at the center of the window and if it
was the only NA in the window, it was imputed by taking the median of the remaining 4 features.
If the window contained more than 1 NA, the feature was skipped. After NA imputation, all rows
(aCGH features) containing NAs were discarded. The expression data was filtered to make the
expression features correspond to the aCGH features (i.e. expression features that were no longer
in the aCGH dataset after NA filtering, were discarded). The end result is two datasets with an
equal number of rows. The data had been previously normalized by the authors of the study.
The Pollack data is available from the SIM package. An overview of the variables and data
contained in the package can be obtained via the command

> help(package="SIM")

To load the package after its installation, use

> library(SIM)

Then the expression and copy number data can be uploaded via the commands

> data(expr.data)
> data(acgh.data)
> data(samples)
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The objects expr.data and acgh.data are of type data.frame, and they include the probe
annotations. To find out which columns they contain, use

> names(expr.data)

[1] "ID" "Symbol"
[3] "CHROMOSOME" "STARTPOS"
[5] "Abs.start" "BT474"
[7] "MCF7" "NORWAY.10"
[9] "NORWAY.100" "NORWAY.101"

[11] "NORWAY.102" "NORWAY.104"
[13] "NORWAY.109" "NORWAY.11"
[15] "NORWAY.111" "NORWAY.112"
[17] "NORWAY.12" "NORWAY.14"
[19] "NORWAY.15" "NORWAY.16"
[21] "NORWAY.17" "NORWAY.18"
[23] "NORWAY.19" "NORWAY.26"
[25] "NORWAY.27" "NORWAY.39"
[27] "NORWAY.41" "NORWAY.47"
[29] "NORWAY.48" "NORWAY.53"
[31] "NORWAY.56" "NORWAY.57"
[33] "NORWAY.61" "NORWAY.65"
[35] "NORWAY.7" "SKBR3"
[37] "STANFORD.14" "STANFORD.16"
[39] "STANFORD.17" "STANFORD.2"
[41] "STANFORD.23" "STANFORD.24"
[43] "STANFORD.35" "STANFORD.38"
[45] "STANFORD.A" "T47D"

> names(acgh.data)

[1] "ID" "Symbol"
[3] "CHROMOSOME" "STARTPOS"
[5] "Abs.start" "BT474"
[7] "MCF7" "NORWAY.10"
[9] "NORWAY.100" "NORWAY.101"

[11] "NORWAY.102" "NORWAY.104"
[13] "NORWAY.109" "NORWAY.11"
[15] "NORWAY.111" "NORWAY.112"
[17] "NORWAY.12" "NORWAY.14"
[19] "NORWAY.15" "NORWAY.16"
[21] "NORWAY.17" "NORWAY.18"
[23] "NORWAY.19" "NORWAY.26"
[25] "NORWAY.27" "NORWAY.39"
[27] "NORWAY.41" "NORWAY.47"
[29] "NORWAY.48" "NORWAY.53"
[31] "NORWAY.56" "NORWAY.57"
[33] "NORWAY.61" "NORWAY.65"
[35] "NORWAY.7" "SKBR3"
[37] "STANFORD.14" "STANFORD.16"
[39] "STANFORD.17" "STANFORD.2"
[41] "STANFORD.23" "STANFORD.24"
[43] "STANFORD.35" "STANFORD.38"
[45] "STANFORD.A" "T47D"
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The sample columns should have identical names in both data sets, also they should be ordered
the same way. To order them, use the order function on a data frame containing the sample data
only. After sorting, the annotation columns are added again.

> acgh.data.only <- acgh.data[, 5:ncol(acgh.data)]
> expr.data.only <- expr.data[, 5:ncol(expr.data)]
> acgh.data.s <- acgh.data.only[, order(colnames(acgh.data.only))]
> expr.data.s <- expr.data.only[, order(colnames(expr.data.only))]
> sum(colnames(expr.data.s) == colnames(acgh.data.s))

[1] 42

> acgh.data <- cbind(acgh.data[, 1:4], acgh.data.s)
> expr.data <- cbind(expr.data[, 1:4], expr.data.s)

4.2 Assembling the data

The assemble.data function helps you read in the measurements and annotation data and stores
them for use in the integrated analysis and visualization. Also, the assemble.data function takes
care of ordering the probes according to position along the genome by giving each probe a unique
location called absolute start, generated by chr*10e9 + base pair position.
Finally, in assemble.data you define the run.name; a folder with this name will be generated in
which subfolders will hold the data and output. In this example, we will do the integrated analysis
for chromosome 8q, as the run.name indicates.

> assemble.data(dep.data = acgh.data,
indep.data = expr.data,
dep.ann = colnames(acgh.data)[1:4],
indep.ann = colnames(expr.data)[1:4],
dep.id = "ID",
dep.chr = "CHROMOSOME",
dep.pos = "STARTPOS",
dep.symb = "Symbol",
indep.id = "ID",
indep.chr = "CHROMOSOME",
indep.pos = "STARTPOS",
indep.symb = "Symbol",
overwrite = TRUE,
run.name = "chr8q")

Assembling data ...
... assembled dependent data: dim(99, 46).
... assembled independent data: dim(99, 46).

4.3 Applying the model

In this example, the main objective is to identify candidate regions whose copy number aberrations
affect expression levels of genes in the same region. Therefore, it is natural to consider copy number
as the dependent variable per cDNA clone, with the expression levels of genes in the same region,
playing the role of independent variables.
The integrated analysis is a regression of the independent data on the dependent features. The
regression itself is done using the globaltest [4], which means that the genes in a region (e.g.
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a chromosome arm) are tested as a gene set. The individual associations between each copy
number probe and each expression probe are calculated as z-scores (standardized influences, see
?globaltest).
The globaltest can calculate the p-values using two different models, using a asymptotic distri-
bution or based on permutations. The asymptotic model is recommended for large sample sizes
but can be conservative for small sample sizes and permutations are recommended for smaller
sample sizes or when the asymptotic distribution cannot be assumed. When confounders are in-
cluded in the model, it is not possible to use the permutation method, so the asymptotic method
is suggested. By default the asymptotic is used, if permutation = nperm, where nperm > 0 is
applied as arguments thena the permutation model is used.
The user is free to choose the regions of interest. For an unbiased, genome-wide view, we recom-
mend using chromosome arms. Predefined input regions are "all arms" and "all arms auto"
for autosomal chromosome arms only. The arms 13p, 14p, 15p, 21p and 22p are left out, because
in most studies there are no or few probes in these regions. To include them, just make your
own vector of arms. Similarly, "all chrs" and "all chrs auto" may be used. When minimal
common regions of gains and losses have been defined, the integrated analysis can be focussed to
identify candidate genes in these regions, defined by the chromosome number followed by the start
and end position like "1 1-1000000" or "chr1 1:1000000". These regions can also be combined,
e.g. c("chr1 1:1000000","2q", 3). The function splits the datasets into separate sets for each
region (as specified by the input.regions) and runs the analysis for each region separately.
When running SIM for a predefined input region, like "all arms", output can be obtained
for all input regions, as well as subsets of them. But note that the genomic unit must be the
same: if integrated.analysis was run using chromosome arms as units, any of the functions
and plots must also use chromosome arms as units, and not e.g. chromosomes. For example
if the input.regions = "all arms" was used, p-value plots can be produced by inserting the
input.regions = "all arms", but also for instance "1p" or "20q". However, to produce a plot
of the whole chromosome, e.g. chromosome 1, the integrated analysis should be re-run with
input.region=1.
The user may also specify a subset of samples to be considered in the model via the argu-
ment samples in the function call, which must consist of the list of either column numbers (e.g.
5:ncol(acgh.data) for both copy number and expression data) or corresponding column names.
SIM allows the incorporation of confounders, such as patient gender, tumor location, tumor type,
etc. into the model by using the option adjust e.g. adjust= gender. Confounder variables
can be either continuous or factors, with as many observations as the number of samples on the
datasets, and with sample observations in the same order as the samples in the array datasets.
See ?integrated.analysis for details.
Computation of the z-scores can take a long time depending on the datasets’ dimensions, and may
not be of interest for the entire genome. The default of the integrated.analysis function is not
to compute it, unless the argument zscores=TRUE.
The integrated analysis can be run using of of the following methods: a) "full"; the full indepedent
data will be used as a gene set for the globaltest, b) "overlap"; only the gene/probes of the
independent datat that overlap with the dependent data will be used, c) "smooth"; the dependent
data will be smoothed using quantsmooth, d) "window"; only the independent genes/probes that
fall in a window around the dependent genes/probes are used as a gene set for the globaltest.
Additional the window-size and end-position of the dependent genes/probes can be given.
Let us apply the integrated.analysis function to the Pollack copy number and gene expression
datasets for chromosome 8q:

> integrated.analysis(samples = samples,
input.regions = "8q",
zscores = TRUE,
method = "full",
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run.name = "chr8q")

Performing integrated analysis on input region(s): 8q.
... input region: 8q

... features 4 of 99 (5s)

... features 8 of 99 (5s)

... features 12 of 99 (5s)

... features 16 of 99 (4s)

... features 20 of 99 (4s)

... features 24 of 99 (4s)

... features 28 of 99 (4s)

... features 32 of 99 (3s)

... features 36 of 99 (3s)

... features 40 of 99 (3s)

... features 44 of 99 (3s)

... features 48 of 99 (2s)

... features 52 of 99 (2s)

... features 56 of 99 (2s)

... features 60 of 99 (2s)

... features 64 of 99 (2s)

... features 68 of 99 (2s)

... features 72 of 99 (1s)

... features 76 of 99 (1s)

... features 80 of 99 (1s)

... features 84 of 99 (1s)

... features 88 of 99 (1s)

... features 92 of 99 (0s)

... features 96 of 99 (1s)

... summary results of 'integrated.analysis()' on last feature:
... "gt.object" object from package globaltest
... Call:
... gt(response = y, alternative = x, null = adjust)
... Model: linear regression.
... Degrees of freedom: 41 total; 1 null; 1 + 99 alternative.
... Null distibution: asymptotic.

4.4 Plotting and tabulating the P-values

Once the model has been run several functions can be used to obtain overviews of the p-values
across the input regions. These functions can also be run when zcores=FALSE was used in the
integrated.analysis function to speed up the analysis.
The first one is sim.plot.pvals.on.genome. It will display all multiple-testing corrected p-values
according to chromosome location, colored depending on the model outcome (significant or not).
Regions rich in statistically significant associations will be mostly blue, while regions with few or
no significant associations will be mostly grey. Regions for which the model was not run will be
empty. The organe line indicates the analyzed regions. The purple dots indicates the centromere.
The plot will be automatically saved to the "run.name" directory, unless pdf=FALSE.

> sim.plot.pvals.on.genome(input.regions = "8q",
adjust.method = "BY",
run.name = "chr8q")

Producing genome plot ...
... input region: 8q
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... overlapping plot stored with file name:
chr8q/pvalue.plots/WholeGenomePlotfullBY.pdf
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Figure 1: Adjusted p-values on whole genome plot.

Another summary is produced by the function tabulate.pvals, which produces tabulations of
multiple-testing corrected p-values using cut-offs typically of interest in hypothesis testing. The
output is printed on screen. Each row represents an input region with tabulated p-values. The
percentage column indicates how many probes in the input region have a p-value below, in this
case, the 8th bin (0.2).

> tabulate.pvals(input.regions = "8q",
adjust.method = "BY",
bins = c(0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 1),
significance.idx=8,
run.name = "chr8q")

Tabulate P-values ...
... input region: 8q

input.region 0.001 0.005 0.01 0.025
1 8q 2 23 35 52

0.05 0.075 0.1 0.2 1 8th (%)
1 56 61 61 70 99 70.71

The function sim.plot.pvals.on.region generates a multipage pdf one page per analyzed region.
the first three panels describe the empirical distribution of the computed p-values: a histogram
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and an empirical cumulative distribution function (c.d.f.) of the uncorrected p-values, as well as
the empirical c.d.f. of the multiple-testing corrected p-values. The histogram expected if there is
no association between copy number and expression is flat, whilst in the presence of association it
will display a higher proportion of small p-values than larger ones. The empirical c.d.f., produced
by plotting the sorted p-values, conveys the same information as the histogram: if there is no
association, it will produce an approximate diagonal straight line (also plotted as a reference),
whilst association will be seen as a convex curve, staying below the expected curve. The empirical
c.d.f. of the multiple-testing adjusted p-values is mainly used to visualize how many features would
be selected for various thresholds.
The lower panel contains a plot of the multiple-testing corrected p-values positioned along the
genomic region. It is then easy to see if there are sub-regions with mostly low p-values.

> sim.plot.pvals.on.region(input.regions = "8q", adjust.method = "BY", run.name = "chr8q")

Producing region plot ...
... input region: 8q
... region plot stored with file name:
chr8q/pvalue.plots/PvalueOnRegionfullBY2e-01.pdf

By default, the multiple-testing correction used is the false discovery rate (FDR)-controlling
method suggested by Benjamini & Yekutiely [2]. It can be used in case the p-values may have been
produced by correlated tests, which we believe to be the case while testing association between
features located in the same genomic regions. However, the user may also choose to use the less
conservative FDR-controlling method suggested by Benjamini & Hochberg [1].
The default Benjamini & Yekutieli multiple testing correction is rather conservative but seems to
be the most appropriate when copy number is used as dependent variable. If effects are mild, we
suggest increasing the FDR threshold to 20%, and looking for regions rich in corrected p-values
below this threshold. Effects are expected to be mild in data sets with fewer than 50 samples, low
amplitude changes, and/or copy number changes in a low percentage of samples.

4.5 Visualizing association patterns

The association heatmap can only be drawn when z-scores have been calculated in the
integrated.analysis (zscores=TRUE). The function sim.plot.zscore.heatmap produces an
association heatmap that shows the association (standardized influence) of each independent fea-
ture (expression measurement) with each dependent feature (copy number measurement). The
copy number measurements are represented by the rows, whilst the expression measurements are
represented by the columns. One heatmap representing each region is produced and stored in the
folder heatmap.zscores. The copy number probes are on the rows, from start of region (bottom)
to end of the region (top), while the expression probes are on the columns, from start of the region
(left) to end of the region (right). Every cell in the heatmap represents association between an
individual copy number and expression probe (z-score).
To indicate the significant copy number measurements (p-value ≤ 0.2) a yellow box is draw in
place of the significant row left and right to the association heatmap. The significant z-scores are
indicated by the colours given by the colour key below the associated heatmap, in this case dark
blue indicates positive z-scores. An optional panel gives an overview of the copy number data per
sample, representing it either as a heatmap or as smoothed medians [3].
The heatmaps can also be used in an exploratory analysis, looking for very local effects of copy
number changes (usually narrow amplifications) on gene expression, that do not always lead to a
significant test result.
Since heatmaps for high-density array platforms can be rather large, it takes some time to produce
them. When running multiple chromosomal regions, the default option pdf=TRUE directly saves
the graphs into a subdirectory of the run.name folder.
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In this example we use the RColorBrewer package for a nice diverging colour palette. We also
adapted the scale of the added smoothed medians plot.

> library(RColorBrewer)
> sim.plot.zscore.heatmap(input.regions="8q",

method="full",
significance=0.005,
z.threshold=3,
colRamp=brewer.pal(11, "RdYlBu"),
add.colRamp=rainbow(10),
show.names.indep=TRUE,
show.names.dep=TRUE,
adjust.method="BY",
add.plot="smooth",
add.scale=c(-1, 3),
pdf=TRUE,
run.name="chr8q")

Producing heatmap ...
... input region: 8q
... heatmap plot stored with file name:
chr8q/heatmap.zscores/Heatmap8qfullsmoothBY5e-03.pdf

>

Note that individual z-scores only depend on the pair of probes involved and, thus, values are
exactly the same regardless of the region the model was applied to: the entire genome, a single
chromosome or a sub-chromosomal region. However, in contrast to the z-scores, p-values corre-
sponding to each test will change depending on the region considered.

4.6 Prioritizing candidate regions and genes

The p-values for the copy number probes, representing significance of association with gene ex-
pression in the region, are available in a tab-delimited text file for each analyzed region, sorted on
significance or as a list of data.frame’s for each input region:

> table.dep <- tabulate.top.dep.features(input.regions = "8q",
adjust.method = "BY",
run.name = "chr8q")

Tabulate results on dependent data ...
... input region: 8q
... tabulated P-values stored with file name:
chr8q/top.dep.features/TopDepFeatures8qfullBY1e+00.txt

> head(table.dep[["8q"]])

P.values extreme.influences
39 0.00063 11.50
41 0.00063 11.48
40 0.00160 10.95
92 0.00160 15.92
94 0.00160 16.58
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Figure 3: Association heatmap for chromosome 8q with copy number data per sample represents
as smoothed medians in the left panel.
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62 0.00170 13.91
absolute.start.position ID

39 8089118578 H09996
41 8091140007 H87934
40 8091082756 H72538
92 8145136277 AA455271
94 8145221980 AA447774
62 8102572572 W74802

Symbol CHROMOSOME STARTPOS ID.1
39 MMP16 8 89118578 W32403
41 CALB1 8 91140007 R33098
40 DECR1 8 91082756 H72538
92 GRINA 8 145136277 AA455271
94 CYC1 8 145221980 AA455271
62 8 102572572 AA055193

Symbol.1 CHROMOSOME.1 STARTPOS.1
39 MRPL15 8 55222599
41 TERF1 8 74083648
40 DECR1 8 91082756
92 GRINA 8 145136277
94 GRINA 8 145136277
62 ZNF706 8 102278381

Tabulate results on independent data ...
... input region: 8q
... tabulated results stored with file name:
chr8q/top.indep.features/TopIndepFeatures8qfullBY1e+00.txt

P.values extreme.influences
39 0.00063 11.50
41 0.00063 11.48
40 0.00160 10.95
92 0.00160 15.92
94 0.00160 16.58
62 0.00170 13.91

absolute.start.position ID
39 8089118578 H09996
41 8091140007 H87934
40 8091082756 H72538
92 8145136277 AA455271
94 8145221980 AA447774
62 8102572572 W74802

Symbol CHROMOSOME STARTPOS ID.1
39 MMP16 8 89118578 W32403
41 CALB1 8 91140007 R33098
40 DECR1 8 91082756 H72538
92 GRINA 8 145136277 AA455271
94 CYC1 8 145221980 AA455271
62 8 102572572 AA055193

Symbol.1 CHROMOSOME.1 STARTPOS.1
39 MRPL15 8 55222599
41 TERF1 8 74083648
40 DECR1 8 91082756
92 GRINA 8 145136277
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Figure 4: Showing consecutive regions in the dependent and independent data.

94 GRINA 8 145136277
62 ZNF706 8 102278381

The genes with the highest mean z-scores across the signficant copy number probes (user defined
threshold, here 0.2), can be found in a tab-delimited text file for each analyzed region, sorted on
mean z-score.

> sim.plot.overlapping.indep.dep.features(input.regions="8q",
adjust.method="BY",
significance=0.1,
z.threshold= c(-1,1),
log=TRUE,
summarize="consecutive",
pdf=TRUE,
method="full",
run.name="chr8q")

5 Extensions of the model

5.1 Categorization of copy number data

Both copy number and expression values are taken as continuous variables, so no categorization is
done. We believe part of the strength of this approach is to be able to detect associations between

14



subtle changes in copy number and expression, so that categorization is undesirable. Also, without
categorization, the actual levels of copy number aberration are taken into account. However, it is
possible to use the same model if it is preferable to categorize the data. If for example the copy
number is categorized as having either ”change” or ”no change”, the same model with a logistic
link could be used.

5.2 Other applications of the model

Our example in section 4 uses the proposed approach to answer the question: which genes have
copy number associated with the expression levels of genes on the same chromosomal region? This
suggests using copy number as dependent and expression as independent variables.
In other cases, there might be interest in finding genes whose expression levels are associated with
copy number changes in and around a fixed region. Expression-regulating mechanisms may involve
not only copy number, but also epigenetic and sequence changes, and it may thus be of interest
to identify genes whose regulation is closely associated with one of those mechanisms and apply
the model to SNP and methylation microarray data.

sessionInfo

The SIM package 1.81.0 can be run in R version 2.9 and higher R versions. For this example the
following package versions were used:

• R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: RColorBrewer 1.1-3, SIM 1.81.0, SparseM 1.84-2, quantreg 6.1

• Loaded via a namespace (and not attached): AnnotationDbi 1.73.0, Biobase 2.71.0,
BiocGenerics 0.57.0, Biostrings 2.79.1, DBI 1.2.3, IRanges 2.45.0, KEGGREST 1.51.0,
MASS 7.3-65, Matrix 1.7-4, MatrixModels 0.5-4, R6 2.6.1, RSQLite 2.4.3, S4Vectors 0.49.0,
Seqinfo 1.1.0, XML 3.99-0.19, XVector 0.51.0, annotate 1.89.0, bit 4.6.0, bit64 4.6.0-1,
blob 1.2.4, cachem 1.1.0, cli 3.6.5, compiler 4.6.0, crayon 1.5.3, fastmap 1.2.0,
generics 0.1.4, globaltest 5.65.0, grid 4.6.0, httr 1.4.7, lattice 0.22-7, memoise 2.0.1,
png 0.1-8, quantsmooth 1.77.0, rlang 1.1.6, splines 4.6.0, stats4 4.6.0, survival 3.8-3,
tools 4.6.0, vctrs 0.6.5, xtable 1.8-4
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