Package ‘benchdamic’

November 6, 2025

Type Package
Title Benchmark of differential abundance methods on microbiome data
Version 1.17.0

Description Starting from a microbiome dataset (16S or WMS with absolute count

values) it is possible to perform several analysis to assess the

performances of many differential abundance detection methods. A basic and
standardized version of the main differential abundance analysis methods is
supplied but the user can also add his method to the benchmark.

The analyses focus on 4 main aspects: i) the goodness of fit of each

method's distributional assumptions on the observed count data, ii) the
ability to control the false discovery rate, iii) the within and between

method concordances, iv) the truthfulness of the findings if any apriori
knowledge is given. Several graphical functions are available for result
visualization.

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.3.0)

Imports stats, stats4, utils, methods, phyloseq,

TreeSummarizedExperiment, BiocParallel, zinbwave, edgeR,
DESeq2, limma, ALDEXx2, corncob, SummarizedExperiment, MAST,
Seurat, ANCOMBC, microbiome, mixOmics, Ime4, NOISeq, dearseq,
MicrobiomeStat, Maaslin2, maaslin3, GUniFrac, metagenomeSeq,
MGLM, ggplot2, RColorBrewer, plyr, reshape2, ggdendro,

ggridges, graphics, cowplot, grDevices, tidytext

Suggests knitr, rmarkdown, kableExtra, BiocStyle, magick, SPsimSeq,

testthat

VignetteBuilder knitr
LazyData TRUE
RoxygenNote 7.3.3

biocViews Metagenomics, Microbiome, DifferentialExpression,

MultipleComparison, Normalization, Preprocessing, Software

BugReports https://github.com/mcalgaro93/benchdamic/issues

1

https://github.com/mcalgaro93/benchdamic/issues

git_url https://git.bioconductor.org/packages/benchdamic
git_branch devel

git_last_commit 316209¢

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-06

Author Matteo Calgaro [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3056-518X>),
Chiara Romualdi [aut] (ORCID: <https://orcid.org/0000-0003-4792-9047>),
Davide Risso [aut] (ORCID: <https://orcid.org/0000-0001-8508-5012>),
Nicola Vitulo [aut] (ORCID: <https://orcid.org/0000-0002-9571-0747>)

Maintainer Matteo Calgaro <mcalgaro93@gmail.com>

Contents

addKnowledge
areaCAT e
CAT . . e
checkNormalization e
createColors e e e
createConcordance e
createEnrichment
createMOCKS e e
createPositives L L L
createSplits
createTIEC e e
DA_ALDEX2 e e e e
DA_ANCOM e e e e
DA _basic
DA_corncob
DA_dearseq oo e
DA_DESeq2 e e
DA_edgeR e
DA_limma e
DA _linda
DA_Maaslin2 e
DA_maaslin3 e
DA_MAST . . . e e e
DA_metagenomeSeqo e
DA _mixMC
DA_NOISeq. o o e
DA_Seurat e
DA_ZicoSeq e
enrichmentTesto
extractDA e
extractStatistics

Contents

https://orcid.org/0000-0002-3056-518X
https://orcid.org/0000-0003-4792-9047
https://orcid.org/0000-0001-8508-5012
https://orcid.org/0000-0002-9571-0747

Contents

3
fitDM . . e e e e e e 53
fitHURDLE e e e 54
fitModels e 55
fitNB . . e e e e e 56
fitZIG . . e e e e e e 57
fitZINB . . . e 58
getDA . . e e 58
getPOSItIVES e e e e 60
etStatiStics e 62
get_counts_metadata L. L. 64
iterative_ordering L 65
meanDifferences L e e 66
microbial_metabolism 67
norm_CSS . . . e 67
norm_DESeq2 e e 68
norm_edgeR 70
norm_TSS e 71
plotConcordance e e e e e 72
plotConcordanceDendrogram L L 74
plotConcordanceHeatmap L 74
plotContingency e e 75
plotEnrichment e 77
plotFDR e 78
plotFPR e 79
PIOtKS . . e e e 80
plotLogP . . . e 82
PlotMD . . L e 83
plotMutualFindings L 84
PlOtPOSItIVES e e e 86
PlotQQ . . e 87
PlotRMSE e 88
prepareObserved e e e 89
ps_plaque_16S 90
ps_stool _16S 91
RMSE . . . e e e e e 91
runDA . . . e 92
runMocks . . . L. e e e e 93
runNormalizations e 94
runSplits e e e e e 95
setNormalizations e e e e e 97
set. ALDEX2 e e e 98
set. ANCOM e e 99
SEt_basiC e e e 101
SEt_COrNCOD e 102
set_dearseq e 103
set_DESeq2 e e 105
set_edgeR L e 106

set_ limma e e 107

4 addKnowledge
set_ linda e e 109
set_ Maaslin2 e, 110
set_maaslind e 111
set_ MAST e e e e 114
Set_MetagenomeSeq e e e e e e e e e e e e e e e 115
set MIXMOC e e e 116
Set_NOISeq o e 117
Set_Seurat oL . L e s 118
SEL_ZACOSEQ « v v v v e e e e e e e e e e e e 120
weights_ZINB e 122

Index 124

addKnowledge addKnowledge
Description
Add a priori knowledge for each feature tested by a method.
Usage

addKnowledge(method, priorKnowledge, enrichmentCol, namesCol = NULL)

Arguments

method Output of differential abundance detection method in which DA information is

extracted by the getDA function.

priorKnowledge data.frame (with feature names as row.names) containing feature level meta-

data.

enrichmentCol name of the column containing information for enrichment analysis.

namesCol name of the column containing new names for features (default namesCol =

Value

NULL).

A data. frame with a new column containing information for enrichment analysis.

See Also

createEnrichment.

areaCAT

Examples

data("ps_plaque_16S")
data("microbial_metabolism™)

Extract genera from the phyloseq tax_table slot
genera <- phyloseq: :tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"”
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown”
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis

Make sure the subject ID variable is a factor
phyloseq: :sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: : sample_data(ps_plaque_16S)[["RSID"1])

Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")

DA analysis
da.limma <- DA_limma(
object = ps_plaque_16S,

design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = "TMM"

)

DA <- getDA(method = da.limma, slot = "pValMat”, colName = "adjP",
type = "pvalue”, direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL)

Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorlInfo,

enrichmentCol = "Type”, namesCol = "newNames")
areaCAT areaCAT
Description

Compute the area between the bisector and the concordance curve.

6 areaCAT

Usage
areaCAT(concordance, plotIt = FALSE)

Arguments
concordance A long format data. frame produced by createConcordance function.
plotIt Plot the concordance (default plotIt = FALSE).

Value

A long format data. frame object with several columns:

comparison which indicates the comparison number;

n_features which indicates the total number of taxa in the comparison dataset;
method1 which contains the first method name;

method2 which contains the first method name;

rank ;

concordance which is defined as the cardinality of the intersection of the top rank elements of
each list, divided by rank, i.e. , (L1:rank [M1:rank)/(rank), where L and M represent the
lists of the extracted statistics of method1 and method2 respectively;

heightOver which is the distance between the bisector and the concordance value;

areaOver which is the cumulative sum of the heightOver value.

See Also

createConcordance and plotConcordance

Examples

data(ps_plaque_16S)

Balanced design for dependent samples
my_splits <- createSplits(
object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE",
balanced = TRUE, paired = "RSID”, N = 10 # N = 100 suggested
)

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Initialize some limma based methods

my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),

CAT 7

method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(
object = results, slot = "pValMat”, colName = "rawP”, type = "pvalue”

Add area over the concordance curve
concordance_area <- areaCAT(concordance = concordance_pvalues)

CAT CAT

Description

For the i top-ranked members of each list, concordance is defined as length(intersect(vec1[1:i],vec2[1:1]))/i.

Usage
CAT(vecl, vec2, maxrank = min(length(vec1), length(vec2)))

Arguments
vecl, vec? Two numeric vectors, for computing concordance. If these are numeric vec-
tors with names, the numeric values will be used for sorting and the names
will be used for calculating concordance. Otherwise, they are assumed to be
already-ranked vectors, and the values themselves will be used for calculating
concordance.
maxrank Optionally specify the maximum size of top-ranked items that you want to plot.
Value

a data.frame with two columns: rank containing the length of the top lists and concordance which
is the fraction in common that the two provided lists have in the top rank items.

See Also

createConcordance.

Examples

vecl <- c("A" 10, "B" = 5, "C" = 20, "D" = 15)
vec2 <- c("A” =1, "B" = 2, "C" =3, "D" = 4)

CAT(vecl, vec2)

8 createColors

checkNormalization checkNormalization

Description

Check if the normalization function’s name and the method’s name to compute normalization/scaling
factors are correctly matched.

Usage
checkNormalization(fun, method, ...)
Arguments
fun a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2",
"norm_CSS"..).
method a character with the normalization method (e.g. "TMM", "upperquartile"... if
the fun is "norm_edgeR").
other arguments if needed (e.g. for norm_edgeR normalizations).
Value

a list object containing the normalization method and its parameters.

See Also

setNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

Check if TMM normalization belong to "norm_edgeR”
check_TMM_normalization <- checkNormalization(fun = "norm_edgeR",
method = "TMM")

createColors createColors

Description

Produce a qualitative set of colors.

Usage

createColors(variable)

createConcordance

Arguments

variable

Value

character vector or factor variable.

A named vector containing the color codes.

Examples

Given qualitative variable

cond <- factor(c(
levels = c("A

A ’ A ’ B ’ B ’ C ’ D)7
’ B ’ C ’ D))

Associate a color to each level (or unique value, if not a factor)
cond_colors <- createColors(cond)

createConcordance

createConcordance

Description

Compute the between and within method concordances comparing the lists of extracted statistics
from the outputs of the differential abundance detection methods.

Usage
createConcordance(object, slot = "pValMat”, colName = "rawP", type = "pvalue")
Arguments
object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).
slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").
colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").
type A character vector with 1 or number-of-methods-times repeats of the value type

of the column selected where to extract values for each method. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue”).

10 createConcordance

Value
A long format data. frame object with several columns:

comparison which indicates the comparison number;

n_features which indicates the total number of taxa in the comparison dataset;
method1 which contains the first method name;

method2 which contains the first method name;

rank ;

concordance which is defined as the cardinality of the intersection of the top rank elements of
each list, divided by rank, i.e. , (L1.rank [) M1.rank)/(rank), where L and M represent the
lists of the extracted statistics of method1 and method?2 respectively (averaged values between
subset] and subset2).

See Also

extractStatistics and areaCAT.

Examples

data(ps_plaque_16S)

Balanced design

my_splits <- createSplits(
object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
paired = "RSID", N = 10 # N = 100 suggested

)

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Initialize some limma based methods

my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(
object = results, slot = "pValMat"”, colName = "rawP”, type = "pvalue”

)

Concordance for log fold changes

createEnrichment 11

concordance_logfc <- createConcordance(
object = results, slot = "statInfo”, colName = "logFC", type = "logfc”
)

Concordance for log fold changes in the first method and p-values in the
other
concordance_logfc_pvalues <- createConcordance(

object = results, slot = c("statInfo”, "pValMat"),

colName = c("logFC", "rawP"), type = c("logfc"”, "pvalue")

createEnrichment createEnrichment

Description

Create a data. frame object with several information to perform enrichment analysis.

Usage

createEnrichment(
object,
priorKnowledge,
enrichmentCol,
namesCol = NULL,
slot = "pValMat”,
colName = "adjP",
type = "pvalue”,
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,

top = NULL,
alternative = "greater”,
verbose = FALSE
)
Arguments
object Output of differential abundance detection methods. pValMat, statInfo matri-

ces, and method’s name must be present (See vignette for detailed information).

priorKnowledge data.frame (with feature names as row.names) containing feature level meta-
data.

enrichmentCol name of the column containing information for enrichment analysis.

namesCol name of the column containing new names for features (default namesCol =
NULL).
slot A character vector with 1 or number-of-methods-times repeats of the slot names

where to extract values for each method (default slot = "pValMat").

12

colName

type

direction

createEnrichment

A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue").

A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue

threshold_logfc

top

alternative

verbose

Value

A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue =1 to not filter by p-values.

A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are
considered differentially abundant. Set threshold_logfc =@ to not filter by
log fold change values.

If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

indicates the alternative hypothesis and must be one of "two.sided"”, "greater”
or "less”. You can specify just the initial letter. Only used in the 2 x 2 case.

Boolean to display the kind of extracted values (default verbose = FALSE).

a list of objects for each method. Each list contains:

data adata.frame object with DA directions, statistics, and feature names;

tables alist of 2x2 contingency tables;

tests the list of Fisher exact tests’ p-values for each contingency table;

summaries a list with the first element of each contingency table and its p-value (for graphical

purposes);

See Also

addKnowledge, extractDA, and enrichmentTest.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot

genera <- phyloseq: :tax_table(ps_plaque_16S)[, "GENUS"]

Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus

createMocks 13

Match OTUs to their metabolism
priorInfo <- data.frame(genera,
"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"”] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]11)

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis

enrichment <- createEnrichment(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type”, namesCol = "GENUS",
slot = "pValMat"”, colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

createMocks createMocks

Description

Given the number of samples of the dataset from which the mocks should be created, this function
produces a data.frame object with as many rows as the number of mocks and as many columns
as the number of samples. If an odd number of samples is given, the lower even integer will be
considered in order to obtain a balanced design for the mocks.

Usage

createMocks(nsamples, N = 1000)

14 createPositives

Arguments
nsamples an integer representing the total number of samples.
N number of mock comparison to generate.

Value

a data.frame containing N rows and nsamples columns (if even). Each cell of the data frame
contains the "grpl" or "grp2" characters which represent the mock groups pattern.

Examples

Generate the pattern for 100 mock comparisons for an experiment with 30

samples
mocks <- createMocks(nsamples = 30, N = 100)
head(mocks)
createPositives createPositives
Description

Inspect the list of p-values or/and log fold changes from the output of the differential abundance
detection methods and count the True Positives (TP) and the False Positives (FP).

Usage

createPositives(
object,
priorKnowledge,
enrichmentCol,
namesCol = NULL,
slot = "pValMat”,
colName = "adjP",
type = "pvalue”,
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
alternative = "greater”,
verbose = FALSE,
TP,
FP

createPositives

Arguments

object
priorKnowledge

enrichmentCol
namesCol

slot

colName

type

direction

15

Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

data. frame (with feature names as row.names) containing feature level meta-
data.

name of the column containing information for enrichment analysis.

name of the column containing new names for features (default namesCol =
NULL).

A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue”).

A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue

threshold_logfc

top

alternative

verbose
TP

FP

Value

A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue = 1 to not filter by p-values.

A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are
considered differentially abundant. Set threshold_logfc =@ to not filter by
log fold change values.

If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

indicates the alternative hypothesis and must be one of "two.sided", "greater”
or "less". You can specify just the initial letter. Only used in the 2 x 2 case.
Boolean to display the kind of extracted values (default verbose = FALSE).

A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is expected in that direction, in
the second position.

A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is not expected in that direc-
tion, in the second position.

a data. frame object which contains the number of TPs and FPs features for each method and for
each threshold of the top argument.

16 createPositives

See Also

getPositives, plotPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism™)

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"”
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Count TPs and FPs, from the top 1 to the top 20 features.
As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type",
namesCol = "newNames"”, slot = "pValMat”, colName = "rawP”,
type = "pvalue”, direction = "logFC", threshold_pvalue = 1,
threshold_logfc = @, top = 1:20, alternative = "greater”,
verbose = FALSE,
TP = list(c("DOWN Abundant”, "Anaerobic”), c("UP Abundant”, "Aerobic")),
FP = list(c("DOWN Abundant”, "Aerobic"), c("UP Abundant”, "Anaerobic")))

Plot the TP-FP differences for each threshold
plotPositives(positives = positives)

createSplits 17

createSplits createSplits

Description

Given a phyloseq or TreeSummarizedExperiment object from which the random splits should be
created, this function produces a list of 2 data. frame objects: Subset1 and Subset2 with as many
rows as the number of splits and as many columns as the half of the number of samples.

Usage

createSplits(
object,
assay_name = "counts”,
varName = NULL,
paired = NULL,
balanced = TRUE,

N = 1000
)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
varName name of a factor variable of interest.
paired name of the unique subject identifier variable. If specified, paired samples will
remain in the same split. (default = NULL).
balanced If TRUE a balanced design will be created for the splits (default balanced =
TRUE).
N number of splits to generate.
Value

A list of 2 data.frame objects: Subset1 and Subset2 containing N rows and half of the total
number of samples columns. Each cell contains a unique sample identifier.

Examples

data(ps_plaque_16S)
set.seed(123)

Balanced design for repeated measures

Balanced design for independent samples
splits_df <- createSplits(

18 createTIEC

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = TRUE, N = 100
)

Unbalanced design
splits_df <- createSplits(
object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE"”, balanced = FALSE, N = 100

createTIEC createTIEC

Description

Extract the list of p-values from the outputs of the differential abundance detection methods to
compute several statistics to study the ability to control the type I error and the p-values distribution.

Usage
createTIEC(object)
Arguments
object Output of the differential abundance tests on mock comparisons. Must follow
a specific structure with comparison, method, matrix of p-values, and method’s
name (See vignette for detailed information).
Value

A list of data.frames:

df_pval 5 columns per number_of_features x methods x comparisons rows data.frame. The four
columns are called Comparison, Method, variable (containing the feature names), pval, and
padj;

df_FPR 5 columns per methods x comparisons rows data.frame. For each set of method and com-
parison, the proportion of false positives, considering 3 thresholds (0.01, 0.05, 0.1) are re-
ported;

df_FDR 4 columns per methods rows data.frame. For each method, the average proportion of mock
comparisons where false positives are found, considering 3 thresholds (0.01, 0.05, 0.1), are
reported. Each value is an estimate of the nominal False Discovery Rate (FDR);

df_QQ contains the coordinates to draw the QQ-plot to compare the mean observed p-value distri-
bution across comparisons, with the theoretical uniform distribution;

df_KS 5 columns and methods x comparisons rows data.frame. For each set of method and com-
parison, the Kolmogorov-Smirnov test statistics and p-values are reported in KS and KS_pval
columns respectively.

DA_ALDEx2 19

See Also

createMocks

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head (mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(df_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(@, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

DA_ALDEx2 DA_ALDEXx2

Description
Fast run for the ALDEx2’s differential abundance detection method. Support for Welch’s t, Wilcoxon,
Kruskal-Wallace, Kruskal-Wallace glm ANOVA-like, and glm tests.

Usage

DA_ALDEx2(
object,

20

assay_name = "counts”,
pseudo_count = FALSE,

DA_ALDEx2

design = NULL,

mc.samples = 128,

test = c("t", "wilcox”, "kw"”, "kw_glm", "glm"),
paired.test = FALSE,

denom = "all",

contrast = NULL,

verbose =

Arguments

object

assay_nhame

pseudo_count
design

mc.samples

test

paired.test

denom

contrast

verbose

TRUE

a phyloseq or TreeSummarizedExperiment object.

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

a character with the name of a variable to group samples and compare them or a
formula to compute a model.matrix (when test = "glm").

an integer. The number of Monte Carlo samples to use when estimating the un-
derlying distributions. Since we are estimating central tendencies, 128 is usually
sufficient.

a character string. Indicates which tests to perform. "t" runs Welch’s t test while
"wilcox" runs Wilcoxon test. "kw" runs Kruskal-Wallace test while "kw_gIm"
runs glm ANOVA-like test. "glm" runs a generalized linear model.

A boolean. Toggles whether to do paired-sample tests. Applies to effect =
TRUE and test = "t".

An any variable (all, iglr, zero, lvha, median, user) indicating features to use as
the denominator for the Geometric Mean calculation The default "all" uses the
geometric mean abundance of all features. Using "median" returns the median
abundance of all features. Using "iglr" uses the features that are between the
first and third quartile of the variance of the clr values across all samples. Using
"zero" uses the non-zero features in each grop as the denominator. This approach
is an extreme case where there are many nonzero features in one condition but
many zeros in another. Using "lvha" uses features that have low variance (bot-
tom quartile) and high relative abundance (top quartile in every sample). It is
also possible to supply a vector of row indices to use as the denominator. Here,
the experimentalist is determining a-priori which rows are thought to be invari-
ant. In the case of RNA-seq, this could include ribosomal protein genes and and
other house-keeping genes. This should be used with caution because the offsets
may be different in the original data and in the data used by the function because
features that are 0 in all samples are removed by aldex.clr.

character vector with exactly three elements: the name of a variable used in
"design", the name of the level of interest, and the name of the reference level.
If "kw" or "kw_glm" as test, contrast vector is not used.

an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

DA_ANCOM 21

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statlnfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

aldex for the Dirichlet-Multinomial model estimation. Several and more complex tests are present
in the ALDEx2 framework.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 300, size = 3, prob = 0.5), nrow = 50, ncol = 6)

metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: : sample_data(metadata))

Differential abundance with t test and denom defined by the user

DA_t <- DA_ALDEx2(ps, design = "group”, test = "t", denom = c(1,2,3),
paired.test = FALSE, contrast = c("group”, "B", "A"))

Differential abundance with wilcox test and denom = "iqlr"

DA_w <- DA_ALDEx2(ps, design = "group”, test = "wilcox"”, denom = "iqglr",
paired.test = FALSE, contrast = c("group”, "B", "A"))

Differential abundance with kw test and denom = "zero”

mc.samples = 2 to speed up (128 suggested)

DA_kw <- DA_ALDEx2(ps, design = "group”, test = "kw", denom = "zero",
mc.samples = 2)

Differential abundance with kw_glm test and denom = "median”

DA_kw_glm <- DA_ALDEx2(ps, design = "group”, test = "kw", denom = "median”,
mc.samples = 2)

Differential abundance with glm test and denom = "all”

DA_glm <- DA_ALDEx2(ps, design = ~ group, test = "glm”, denom = "all",

mc.samples = 2, contrast = c("group”, "B", "A"))
DA_ANCOM DA_ANCOM
Description

Fast run for ANCOM and ANCOM-BC?2 differential abundance detection methods.

Usage

DA_ANCOM(
object,
assay_name = "counts”,
pseudo_count = FALSE,

22 DA_ANCOM

fix_formula = NULL,

adj_formula = NULL,

rand_formula = NULL,

lme_control = 1lme4::1lmerControl(),
contrast = NULL,

alpha = 0.05,

p_adj_method = "BH",
struc_zero = FALSE,

BC = TRUE,
n_cl =1,
verbose = TRUE
)
Arguments
object a phyloseq or TreeSummarizedExperiment object.

assay_name

pseudo_count

fix_formula

adj_formula

rand_formula

Ime_control

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

Used when BC = TRUE (ANCOM-BC2). The character string expresses how the
microbial absolute abundances for each taxon depend on the fixed effects in
metadata.

Used when BC = FALSE (ANCOM). The character string represents the formula
for covariate adjustment. Default is NULL.

Optionally used when BC = TRUE or BC = FALSE. The character string expresses
how the microbial absolute abundances for each taxon depend on the random
effects in metadata. ANCOMB and ANCOM-BC2 follows the 1merTest pack-
age in formulating the random effects. See ?1merTest: : lmer for more details.
Default is rand_formula = NULL.

a list of control parameters for mixed model fitting. See ?1me4: : lmerControl
for details.

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

alpha numeric. Level of significance. Default is 0.05.

p_adj_method

struc_zero

character. method to adjust p-values. Default is "holm". Options include
"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See
?stats::p.adjust for more details.

logical. Whether to detect structural zeros based on group. Default is FALSE.
See Details for a more comprehensive discussion on structural zeros.

BC boolean for ANCOM method to use. If TRUE the bias correction (ANCOM-
BC2) is computed (default BC = TRUE). When BC = FALSE computational time
may increase and p-values are not computed.
n_cl numeric. The number of nodes to be forked. For details, see ?parallel: :makeCluster.

Default is 1 (no parallel computing).

DA_basic 23

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat®, a matrix of summary statistics for each
tag ‘statlnfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function. ANCOM (BC = FALSE) does not produce p-values but W statistics. Hence, ‘pValMat*
matrix is filled with 1 - W / (nfeatures - 1) values which are not p-values. To find DA features a
threshold on this statistic can be used (liberal < 0.4, < 0.3, < 0.2, < 0.1 conservative).

See Also

ancombc for analysis of microbiome compositions with bias correction or without it ancom.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))
Differential abundance
DA_ANCOM(object = ps, pseudo_count = FALSE, fix_formula = "group”, contrast =
c("group”, "B", "A"), verbose = FALSE)

DA_basic DA_basic

Description

Fast run for basic differential abundance detection methods such as wilcox and t tests.

Usage

DA_basic(
object,
assay_name = "counts”,
pseudo_count = FALSE,
contrast = NULL,
test = c("t”, "wilcox"),
paired = FALSE,
verbose = TRUE

24

Arguments

object

assay_name

pseudo_count

contrast

test

paired

verbose

Value

DA_corncob

a phyloseq or TreeSummarizedExperiment object.

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

name of the test to perform. Choose between "t" or "wilcox".

boolean. Choose whether the test is paired or not (default paired = FALSE). If
paired = TRUE be sure to provide the object properly ordered (by the grouping
variable).

an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

A list object containing the matrix of p-values ‘pValMat®, a matrix of summary statistics for each
tag ‘statInfo’, and a suggested ‘name* of the final object considering the parameters passed to the

function.

See Also

DA_Seurat for a similar implementation of basic tests.

Examples

set.seed(1)

Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),

"group” = as.factor(c(”A", "A", "A" "B "B "B")Y)

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))

Differential abundance
DA_basic(object = ps, pseudo_count = FALSE, contrast = c("group”, "B", "A"),
test = "t", verbose = FALSE)

DA_corncob

DA_corncob

Description

Fast run for corncob differential abundance detection method.

DA_corncob 25

Usage
DA_corncob(
object,
assay_name = "counts”,
pseudo_count = FALSE,
formula,

phi.formula,
formula_null,
phi.formula_null,
test,

boot = FALSE,
coefficient = NULL,
verbose = TRUE

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

formula an object of class formula without the response: a symbolic description of the
model to be fitted to the abundance.

phi.formula an object of class formula without the response: a symbolic description of the
model to be fitted to the dispersion.

formula_null Formula for mean under null, without response

phi.formula_null
Formula for overdispersion under null, without response

test Character. Hypothesis testing procedure to use. One of "Wald"” or "LRT" (like-
lihood ratio test).

boot Boolean. Defaults to FALSE. Indicator of whether or not to use parametric boot-
strap algorithm. (See pbWald and pbLRT).

coefficient The coefficient of interest as a single word formed by the variable name and

the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statlnfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

bbdml and differentialTest for differential abundance and differential variance evaluation.

26

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "Sg"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Differential abundance

DA_corncob(object = ps, formula = ~ group, phi.formula = ~ group,
formula_null = ~ 1, phi.formula_null = ~ group, coefficient = "groupB”,
test = "Wald")

DA_dearseq

DA_dearseq DA_dearseq

Description

Fast run for dearseq differential abundance detection method.

Usage

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

DA_dearseq(
object,
assay_name = "counts”,
pseudo_count = FALSE,
covariates = NULL,
variables2test = NULL,
sample_group = NULL,
test = c("permutation”, "asymptotic"),
preprocessed = FALSE,
n_perm = 1000,
verbose = TRUE

(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

covariates a character vector containing the colnames of the covariates to include in the

model.

variables2test a character vector containing the colnames of the variable of interest.

DA_DESeq?2 27

sample_group a vector of length n indicating whether the samples should be grouped (e.g.
paired samples or longitudinal data). Coerced to be a factor. Default is NULL
in which case no grouping is performed.

test a character string indicating which method to use to approximate the variance
component score test, either ’permutation’ or asymptotic’ (default test = "permutation”).

preprocessed a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

n_perm the number of perturbations. Default is 1000

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat*, a matrix of summary statistics for each tag
‘statInfo‘ which are still the p-values as this method does not produce other values, and a suggested
‘name* of the final object considering the parameters passed to the function.

See Also

dear_seq for analysis of differential expression/abundance through a variance component test.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Differential abundance

DA_dearseq(object = ps, pseudo_count = FALSE, covariates = NULL,
variables2test = "group”, sample_group = NULL, test = "asymptotic"”,
preprocessed = FALSE, verbose = TRUE)

DA_DESeq2 DA_DESeq?2

Description

Fast run for DESeq?2 differential abundance detection method.

28 DA_DESeq?2

Usage

DA_DESeq2(
object,
assay_name = "counts”,
pseudo_count = FALSE,
design = NULL,
contrast = NULL,

alpha = 0.05,
norm = c("ratio”, "poscounts”, "iterate"),
weights,
verbose = TRUE

)

Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
design character or formula to specify the model matrix.

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

alpha the significance cutoff used for optimizing the independent filtering (by default
0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha
should be set to that value.

norm name of the normalization method to use in the differential abundance analy-
sis. Choose between the native DESeq2 normalization methods, such as ratio,
poscounts, or iterate. Alternatively (only for advanced users), if norm is
equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile”, or
"none" from norm_edgeR, "CSS" from norm_CSS, or "TSS" from norm_TSS, the
normalization factors are automatically transformed into size factors. If custom
factors are supplied, make sure they are compatible with DESeq2 size factors.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A list object containing the matrix of p-values ‘pValMat*, the dispersion estimates ‘dispEsts‘, the
matrix of summary statistics for each tag ‘statInfo‘, and a suggested ‘name‘ of the final object
considering the parameters passed to the function.

See Also

phyloseq_to_deseq2 for phyloseq to DESeq2 object conversion, DESeq and results for the dif-
ferential abundance method.

DA_edgeR 29

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))

Calculate the poscounts size factors

ps_NF <- norm_DESeq2(object = ps, method = "poscounts")

The phyloseq object now contains the size factors:

sizeFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts"]

head(sizeFacts)
Differential abundance
DA_DESeqg2(object = ps_NF, pseudo_count = FALSE, design = ~ group, contrast =
c("group”, "B", "A"), norm = "poscounts")
DA_edgeR DA_edgeR
Description

Fast run for edgeR differential abundance detection method.

Usage

DA_edgeR(
object,
assay_name = "counts”,
pseudo_count = FALSE,
group_name = NULL,
design = NULL,
robust = FALSE,

coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile”, "posupperquartile”, "none"),
weights,
verbose = TRUE

)

Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

group_name character giving the name of the column containing information about experi-
mental group/condition for each sample/library.

30

DA_edgeR

design character or formula to specify the model matrix.

robust logical, should the estimation of prior.df be robustified against outliers?

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-
vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,
"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,
make sure they are compatible with edgeR normalization factors.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values pValMat, the dispersion estimates dispEsts, the
matrix of summary statistics for each tag statInfo, and a suggested name of the final object con-
sidering the parameters passed to the function.

See Also

DGEList for the edgeR DEG object creation, estimateDisp and estimateGLMRobustDisp for
dispersion estimation, and glmQLFit and glmQLFTest for the quasi-likelihood negative binomial

model fit.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: : sample_data(metadata))

Calculate the TMM normalization factors

ps_NF <- norm_edgeR(object = ps, method = "TMM")

The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(normFacts)

Differential abundance
DA_edgeR(object = ps_NF, pseudo_count = FALSE, group_name = "group”,
design = ~ group, coef = 2, robust = FALSE, norm = "TMM")

DA_limma 31

DA_limma DA_limma

Description

Fast run for limma voom differential abundance detection method.

Usage

DA_limma(
object,
assay_name = "counts”,
pseudo_count = FALSE,
design = NULL,

coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile”, "posupperquartile”, "none"),
weights,
verbose = TRUE

)

Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design character name of the metadata columns, formula, or design matrix with rows
corresponding to samples and columns to coefficients to be estimated.

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-
vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,
"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,

make sure they are compatible with edgeR normalization factors.
weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the
function.

32 DA _linda

See Also

voom for the mean-variance relationship estimation, ImFit for the linear model framework.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: : sample_data(metadata))

Calculate the TMM normalization factors

ps_NF <- norm_edgeR(object = ps, method = "TMM")

The phyloseq object now contains the normalization factors:

normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]

head(normFacts)
Differential abundance
DA_limma(object = ps_NF, pseudo_count = FALSE, design = ~ group, coef = 2,

norm = "TMM")

DA_linda DA_linda

Description

Fast run for linda differential abundance detection method.

Usage

DA_linda(
object,
assay_name = "counts”,
formula = NULL,
contrast = NULL,
is.winsor = TRUE,
outlier.pct = 0.03,
zero.handling = c("pseudo-count”, "imputation”),
pseudo.cnt = 0.5,
alpha = 0.05,
p.adj.method = "BH",
verbose = TRUE

Arguments

object a phyloseq or TreeSummarizedExperiment object.

DA _linda

assay_name

formula

contrast

is.winsor

outlier.pct

zero.handling

pseudo.cnt

alpha

p.adj.method

verbose

Value

33

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

a character string for the formula. The formula should conform to that used
by 1m (independent data) or 1mer (correlated data). For example: formula =
"~x1xx2+x3+(1]1id)'. At least one fixed effect is required.

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

a logical value indicating whether winsorization should be performed to replace
outliers (high values). The default is TRUE.

the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03.

a character string of ’pseudo-count’ or ’imputation’ indicating the zero handling
method used when feature.dat is "count’. If ’pseudo-count’, apseudo.cnt
will be added to each value in feature.dat. If "imputation’, then we use the im-
putation approach using the formula in the referenced paper. Basically, zeros are
imputed with values proportional to the sequencing depth. When feature.dat
is ’proportion’, this parameter will be ignored and zeros will be imputed by half
of the minimum for each feature.

a positive numeric value for the pseudo-count to be added if zero.handling is
"pseudo-count’. Default is 0.5.

a numerical value between 0 and 1 indicating the significance level for declaring
differential features. Default is 0.05.

a character string indicating the p-value adjustment approach for addressing
multiple testing. See R function p.adjust. Default is 'BH’.

an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

A list object containing the matrix of p-values ‘pValMat‘, a matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the

function.

See Also

linda.

Examples

set.seed(1)

Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),

ngroupn - aS.faCtOl"(C("A”, ”A“, “A”, an, an’ "B”)))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: : sample_data(metadata))

34 DA_Maaslin2

Differential abundance

DA_linda(object = ps, formula = "~ group”, contrast = c("group”, "B", "A"),
is.winsor = TRUE, zero.handling = "pseudo-count”, verbose = FALSE)
DA_Maaslin?2 DA _Maaslin2
Description

Fast run for Maaslin2 differential abundance detection method.

Usage

DA_Maaslin2(
object,
assay_name = "counts”,
normalization = c("TSS", "CLR", "CSS", "NONE", "TMM"),
transform = c("LOG", "LOGIT", "AST", "NONE"),
analysis_method = c("LM", "CPLM", "ZICP", "NEGBIN", "ZINB"),
correction = "BH",
random_effects = NULL,
fixed_effects = NULL,
contrast = NULL,
reference = NULL,
verbose = TRUE

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
normalization The normalization method to apply.

transform The transform to apply.
analysis_method
The analysis method to apply.

correction The correction method for computing the g-value.
random_effects The random effects for the model, comma-delimited for multiple effects.
fixed_effects The fixed effects for the model, comma-delimited for multiple effects.

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

reference The factor to use as a reference for a variable with more than two levels provided
as a string of ’variable,reference’ semi-colon delimited for multiple variables.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

DA _maaslin3 35

Value

A list object containing the matrix of p-values ‘pValMat‘, a matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the
function.

See Also

Maaslin2.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: : sample_data(metadata))

Differential abundance

DA_Maaslin2(object = ps, normalization "CLR", transform = "NONE",
analysis_method = "LM", correction = "BH", random_effects = NULL,
fixed_effects = "group”, contrast = c("group”, "B", "A"),
verbose = FALSE)

DA_maaslin3 DA_maaslin3

Description

Fast run for maaslin3 differential abundance detection method.

Usage

DA_maaslin3(
object,
assay_name = "counts”,
formula = NULL,
contrast = NULL,
normalization = c("TSS", "CLR", "NONE"),
transform = c("LOG", "PLOG", "NONE"),
median_comparison_abundance = TRUE,
small_random_effects = FALSE,

stat_type = c("abundance"”, "prevalence"),
pvalue_type = c("abundance”, "prevalence”, "joint"),
correction = "BH",

verbose = TRUE

36 DA_maaslin3

Arguments

object a phyloseq or TreeSummarizedExperiment object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

formula A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and
strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

contrast character vector with exactly, three elements: a string indicating the name of

factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.

small_random_effects
Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

stat_type Whether to return statistics based on abundance ("abundance") or prevalence
("prevalence") models.

pvalue_type Whether to return p-values based on abundance ("abundance") models, preva-
lence ("prevalence") models, or joint ("joint") p-values. Choose "abundance"
or "joint" when stat_type is set to "abundance", choose "prevalence" when
stat_type is set to "prevalence".

correction The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Details

Some maaslin3 parameters are not available for customization in this implementation. For this
reason they assume default values or are internally assigned. The latter case is represented by:

* warn_prevalence which is internally set to TRUE when normalization = "TSS" and transform
= n LOG”;

* subtract_median which is internally set to the same median_comparison_abundance value;

DA_MAST 37

* zero_threshold which is automatically set to -1 when transform = "PLOG";

* evaluate_only is automatically set to "abundance” when transform = "PLOG".

MaAsLin 3 produces both abundance and prevalence associations with individual p and adjusted
p-values (specific to abundance or prevalence) as well as joint p and adjusted p-values for testing
whether a metadatum is associated with either the abundance or prevalence. To avoid issues with
having twice as many associations as other tools (from both abundance and prevalence), stat_type
can be set to report the desired abundance or prevalence associations. When the abundance and
prevalence associations are expected to go in the same direction, pvalue_type = "joint" allows
to return p-values and adjusted p-values taken from the joint p-values and adjusted p-values. Please
refer to maaslin3’s guide to choose proper parameter combinations.

Value

A list object containing the matrix of p-values ‘pValMat®, a matrix of summary statistics for each
tag ‘statInfo’, and a suggested ‘name* of the final object considering the parameters passed to the
function.

See Also

maaslin3.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: : sample_data(metadata))

Differential abundance

DA_maaslin3(object = ps, formula = "~ group”, normalization = "CLR",
transform = "NONE"”, correction = "BH", contrast = c("group”, "B", "A"),
verbose = FALSE, stat_type = "abundance”, pvalue_type = "joint")

DA_MAST DA_MAST

Description

Fast run for MAST differential abundance detection method.

38 DA _MAST
Usage
DA_MAST(
object,
assay_name = "counts”,
pseudo_count = FALSE,
rescale = c("median”, "default"),
design,
coefficient = NULL,
verbose = TRUE
)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
rescale Rescale count data, per million if "default’, or per median library size if 'median’
("median’ is suggested for metagenomics data).
design The model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula, or a ‘model.matrix‘ object.
coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo’, and a suggested ‘name* of the final object considering the parameters passed to the

function.

See Also

z1m for the Truncated Gaussian Hurdle model estimation.

Examples

set.seed(1)

Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 600, size = 3, prob = 0.5),

nrow = 100, ncol = 6)

metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c(”A", "A", "A" "B" "B "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))

DA_metagenomeSeq 39

Differential abundance

DA_MAST (object = ps, pseudo_count = FALSE, rescale = "median”,
design = ~ group, coefficient = "groupB")
DA_metagenomeSeq DA_metagenomeSeq

Description

Fast run for the metagenomeSeq’s differential abundance detection method.

Usage
DA_metagenomeSeq(
object,
assay_name = "counts”,

pseudo_count = FALSE,
design = NULL,

coef = 2,

norm = "CSS",

model = "fitFeatureModel”,
verbose = TRUE

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design the model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula.

coef coefficient of interest to grab log fold-changes.

norm name of the normalization method to use in the differential abundance analy-
sis. Choose the native metagenomeSeq normalization method CSS. Alternatively
(only for advanced users), if normis equal to "TMM", "TMMwsp", "RLE", "up-
perquartile”, "posupperquartile”, or "none" from norm_edgeR, "ratio", "poscounts"”,
or "iterate" from norm_DESeq2, or "TSS" from norm_TSS, the factors are auto-
matically transformed into scaling factors. If custom factors are supplied, make

sure they are compatible with metagenomeSeq normalization factors.

model character equal to "fitFeatureModel" for differential abundance analysis using a
zero-inflated log-normal model, "fitZig" for a complex mathematical optimiza-
tion routine to estimate probabilities that a zero for a particular feature in a
sample is a technical zero or not. The latter model relies heavily on the limma
package (default model = "fitFeatureModel”).

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

40 DA_mixMC

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statlnfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

fitZig for the Zero-Inflated Gaussian regression model estimation and MRfulltable for results
extraction.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))

Calculate the CSS normalization factors

ps_NF <- norm_CSS(object = ps, method = "CSS")

The phyloseq object now contains the normalization factors:

normFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSS"]

head(normFacts)

Differential abundance

DA_metagenomeSeq(object = ps_NF, pseudo_count = FALSE, design = ~ group,

coef = 2, norm = "CSS")

DA_mixMC DA_mixMC

Description

Fast run for mixMC sPLS-DA method for biomarker identification. It performs a CLR transforma-
tion on the ‘counts + pseudo_counts‘ values. Then the sPLS-DA is tuned through a leave-one-out
cross validation procedure.

Usage
DA_mixMC(
object,
pseudo_count = 1,
assay_name = "counts”,

contrast = NULL,
ID_variable = NULL,
verbose = TRUE

DA_mixMC

Arguments

object
pseudo_count

assay_name

contrast

ID_variable

verbose

Value

41

a phyloseq or TreeSummarizedExperiment object.
a positive numeric value for the pseudo-count to be added. Default is 1.

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

a character string indicating the name of the variable name corresponding to the
repeated measures units (e.g., the subject ID).

an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

A list object containing the matrix of p-values ‘pValMat‘, a matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the
function. mixMC does not produce p-values. The frequency and the importance values are pro-
duced instead. The frequency indicates the stability of the features across the folds of the cross
validation. The importance indicates the magnitude of the discrimination for the features and their
direction. Hence, ‘pValMat‘ matrix is filled with 1 - frequency values which are not p-values.
To find discriminant features a threshold on this statistic can be used (liberal < 1, < 0.5, < 0.1

conservative).

See Also

splsda, perf, tune.splsda.

Examples

set.seed(1)

Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c(”A", "A", "A", "B" "B "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: : sample_data(metadata))

Differential abundance
DA_mixMC(object = ps, pseudo_count = 1, contrast = c("group”, "B", "A"),

verbose =

FALSE)

42

DA_NOISeq

DA_NOISeq

DA_NOISeq

Description

Fast run for NOISeqBIO differential abundance detection method. It computes differential expres-
sion between two experimental conditions.

Usage

DA_NOISeq(
object,
assay_name = "counts”,
pseudo_count = FALSE,
contrast = NULL,

norm = C(”rpkm"’ ”uqua"7 "tmm”, ”n")’
verbose = TRUE
)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-

"non

vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,

"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,
make sure they are compatible with edgeR normalization factors.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, a matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the
function. NOISeq does not produce p-values but an estimated probability of differential expression
for each feature. Note that these probabilities are not equivalent to p-values. The higher the prob-
ability, the more likely that the difference in abundance is due to the change in the experimental
condition and not to chance... Hence, ‘pValMat‘ matrix is filled with 1 - prob values which can be
interpreted as 1 - FDR. Where FDR can be considered as an adjusted p-value (see NOISeq vignette).

DA_Seurat 43

See Also

noiseqgbio for analysis of differential expression/abundance between two experimental conditions
from read count data.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))
Differential abundance
DA_NOISeq(object = ps, pseudo_count = FALSE, contrast = c("group”, "B", "A"),

norm = "tmm"”, verbose = FALSE)
DA_Seurat DA_Seurat
Description

Fast run for Seurat differential abundance detection method.

Usage
DA_Seurat(

object,

assay_name = "counts"”,
pseudo_count = FALSE,
norm = "LogNormalize”,
scale.factor = 10000,
test = "wilcox”,

contrast = NULL,
verbose = TRUE

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
norm Method for normalization.

LogNormalize Feature counts for each sample are divided by the total counts
of that sample and multiplied by the scale.factor. This is then natural-log
transformed using loglp;

44 DA_Seurat

CLR Applies a centered log ratio transformation;

RC Relative counts. Feature counts for each sample are divided by the total
counts of that sample and multiplied by the scale.factor. No log-transformation
is applied. For counts per million (CPM) set scale.factor = 1e6;

none No normalization

scale.factor Sets the scale factor for cell-level normalization
test Denotes which test to use. Available options are:

"wilcox” Identifies differentially abundant features between two groups of sam-
ples using a Wilcoxon Rank Sum test (default).

"bimod"” Likelihood-ratio test for the feature abundances, (McDavid et al., Bioin-
formatics, 2013).

"roc” Identifies 'markers’ of feature abundance using ROC analysis. For each
feature, evaluates (using AUC) a classifier built on that feature alone, to
classify between two groups of cells. An AUC value of 1 means that abun-
dance values for this feature alone can perfectly classify the two groupings
(i.e. Each of the samples in group.l exhibit a higher level than each of
the samples in group.2). An AUC value of 0 also means there is perfect
classification, but in the other direction. A value of 0.5 implies that the
feature has no predictive power to classify the two groups. Returns a ’pre-
dictive power’ (abs(AUC-0.5) * 2) ranked matrix of putative differentially
expressed genes.

"t" Identify differentially abundant features between two groups of samples
using the Student’s t-test.

"negbinom” Identifies differentially abundant features between two groups of
samples using a negative binomial generalized linear model.

"poisson” Identifies differentially abundant features between two groups of
samples using a poisson generalized linear model.

"LR" Uses a logistic regression framework to determine differentially abundant
features. Constructs a logistic regression model predicting group member-
ship based on each feature individually and compares this to a null model
with a likelihood ratio test.

"MAST" Identifies differentially expressed genes between two groups of cells
using a hurdle model tailored to scRNA-seq data. Utilizes the MAST pack-
age to run the DE testing.

"DESeq2"” Identifies differentially abundant features between two groups of sam-
ples based on a model using DESeq2 which uses a negative binomial dis-
tribution (Love et al, Genome Biology, 2014).

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the

DA_ZicoSeq 45

function.

See Also

CreateSeuratObject to create the Seurat object, AddMetaData to add metadata information, NormalizeData
to compute the normalization for the counts, FindVariableFeatures to estimate the mean-variance

trend, ScaleData to scale and center features in the dataset, and FindMarkers to perform differen-

tial abundance analysis.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Differential abundance
DA_Seurat(object = ps, contrast = c("group”,"B","A"))

Perform a simple Wilcoxon test using Seurat on raw data

DA_Seurat(object = ps, contrast = c("group”,”B","A"), norm = "none”,
test = "wilcox")
DA_ZicoSeq DA_ZicoSeq
Description

Fast run for ZicoSeq differential abundance detection method.

Usage

DA_ZicoSeq(
object,
assay_name = "counts”,
contrast = NULL,
strata = NULL,
adj.name = NULL,
feature.dat.type = c("count”, "proportion", "other"),
is.winsor = TRUE,
outlier.pct = 0.03,
winsor.end = c("top”, "bottom”, "both"),
is.post.sample = TRUE,
post.sample.no = 25,
perm.no = 99,

46 DA_ZicoSeq

link.func = list(function(x) sign(x) * (abs(x))"*0.5),
ref.pct = 0.5,

stage.no = 6,

excl.pct = 0.2,

verbose = TRUE

)
Arguments

object a phyloseq or TreeSummarizedExperiment object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

strata a factor such as subject IDs indicating the permutation strata or characters in-
dicating the strata variable in meta.dat. Permutation will be confined to each
stratum. This can be used for paired or some longitudinal designs.

adj.name the name(s) for the variable(s) to be adjusted. Multiple variables are allowed.

They could be numeric or categorical; should be in meta.dat.

feature.dat. type
the type of the feature data. It could be "count", "proportion" or "other". For
"proportion" data type, posterior sampling will not be performed, but the reference-
based ratio approach will still be used to address compositional effects. For
"other" data type, neither posterior sampling or reference-base ratio approach
will be used.

is.winsor a logical value indicating whether winsorization should be performed to replace
outliers. The default is TRUE.

outlier.pct the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03. For count/proportion data, outlier.pct should be less than
prev.filter.

winsor.end a character indicating whether the outliers at the "top", "bottom" or "both" will
be winsorized. The default is "top". If the feature.dat. type is "other", "both"
may be considered.

is.post.sample alogical value indicating whether to perform posterior sampling of the underly-
ing proportions. Only relevant when the feature data are counts.

post.sample.no the number of posterior samples if posterior sampling is used. The default is 25.

perm.no the number of permutations. If the raw p values are of the major interest, set
perm.no to at least 999.

link.func a list of transformation functions for the feature data or the ratios. Based on our
experience, square-root transformation is a robust choice for many datasets.

ref.pct percentage of reference taxa. The default is 0.5.

stage.no the number of stages if multiple-stage normalization is used. The default is 6.

enrichmentTest 47

excl.pct the maximum percentage of significant features (nominal p-value < 0.05) in the
reference set that should be removed. Only relevant when multiple-stage nor-
malization is used.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat®, a matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name* of the final object considering the parameters passed to the
function.

See Also

ZicoSeq.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100,
ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))
Differential abundance
DA_ZicoSeq(object = ps, feature.dat.type = "count”,
contrast = c("group”, "B", "A"), is.winsor = TRUE, winsor.end = "top”,
is.post.sample = FALSE, verbose = FALSE)

enrichmentTest enrichmentTest

Description

Perform the Fisher exact test for all the possible 2x2 contingency tables, considering differential
abundance direction and enrichment variable.

Usage

enrichmentTest(method, enrichmentCol, alternative = "greater")

48 enrichmentTest

Arguments

method Output of differential abundance detection method in which DA information is
extracted by the getDA function and the information related to enrichment is
appropriately added through the addknowledge.

enrichmentCol name of the column containing information for enrichment analysis.

alternative indicates the alternative hypothesis and must be one of "two.sided”, "greater”
or "less”. You can specify just the initial letter. Only used in the 2 x 2 case.

Value
a list of objects:

data adata.frame object with DA directions, statistics, and feature names;
tables alist of 2x2 contingency tables;
tests the list of Fisher exact tests’ p-values for each contingency table;

summaries a list with the first element of each contingency table and its p-value (for graphical
purposes);

See Also

extractDA, addknowledge, and createEnrichment

Examples

data("ps_plaque_16S")
data(”"microbial_metabolism™)

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames (microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown”
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis

Make sure the subject ID variable is a factor

phyloseq: :sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")

extractDA 49

DA analysis
da.limma <- DA_limma(
object = ps_plaque_16S,

design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = "TMM"

)

DA <- getDA(method = da.limma, slot = "pValMat”, colName = "adjP",
type = "pvalue”, direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL)

Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorInfo,

enrichmentCol = "Type"”, namesCol = "newNames")

Create contingency tables and compute F tests

DA_info_enriched <- enrichmentTest(method = DA_info, enrichmentCol = "Type”,
alternative = "greater")
extractDA extractDA
Description

Inspect the list of p-values or/and log fold changes from the output of differential abundance detec-
tion methods.

Usage

extractDA(

object,

slot = "pValMat”,
colName = "adjP",
type = "pvalue”,
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,

top = NULL,
verbose = FALSE
)
Arguments
object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).
slot A character vector with 1 or number-of-methods-times repeats of the slot names

where to extract values for each method (default slot = "pValMat").

50 extractDA

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type

of the column selected where to extract values for each method. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue”).

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue
A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc
A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are
considered differentially abundant. Set threshold_logfc =@ to not filter by
log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).
verbose Boolean to display the kind of extracted values (default verbose = FALSE).
Value

A data. frame with several columns for each method:

stat which contains the p-values or the absolute log fold change values;

direction which is present if direction was supplied, it contains the information about direc-
tionality of differential abundance (usually log fold changes);

DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if
direction = NULL, "UP Abundant”, "DOWN Abundant”, or "non-DA" otherwise.

See Also

getDA, extractStatistics

Examples

data("ps_plaque_16S")
Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)
Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,
norm = c("TMM", "CSS"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)

extractStatistics 51

Top 10 features (ordered by 'direction') are DA

DA_1 <- extractDA(
object = Plaque_16S_DA, slot = "pValMat”, colName = "adjP”,
type = "pvalue”, direction = "logFC", threshold_pvalue = 1,
threshold_logfc = @, top = 10

)

Features with p-value < 0.05 and |logFC| > 1 are DA

DA_2 <- extractDA(
object = Plaque_16S_DA, slot = "pValMat”, colName = "adjP”,
type = "pvalue”, direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL

extractStatistics extractStatistics

Description

Extract the list of p-values or/and log fold changes from the outputs of the differential abundance
detection methods.

Usage

extractStatistics(
object,
slot = "pValMat”,
colName = "rawP",
type = "pvalue”,
direction = NULL,
verbose = FALSE

)
Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s

column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

52 extractStatistics

Value

A vector or a data.frame for each method. If direction =NULL, the colname column val-
ues, transformed according to type (not tranformed if type = "pvalue”, -abs(value) if type
="logfc"), of the slot are reported , otherwise the direction column of the statInfo matrix is
added to the output.

See Also

getStatistics

Examples

data("ps_plaque_16S")
Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)
Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,
norm = c("TMM", "CSS"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)
#i## Extract statistics for concordance analysis:
Only p-values
extracted_pvalues <- extractStatistics(
object = Plaque_16S_DA, slot =
"pValMat"”, colName = "rawP"”, type = "pvalue”
)
Only transformed log fold changes -abs(logFC)
extracted_abslfc <- extractStatistics(
object = Plaque_16S_DA, slot =
"statInfo”, colName = "logFC", type = "logfc”
)
Only transformed log fold changes for a method and p-values for the other
extracted_abslfc_pvalues <- extractStatistics(
object = Plaque_16S_DA,
slot = c("statInfo”, "pValMat"), colName = c("logFC", "rawP"), type =
c("logfc”, "pvalue")
)
Extract statistics for enrichment analysis:
p-values and log fold changes
extracted_pvalues_and_lfc <- extractStatistics(
object = Plaque_16S_DA,
slot = "pValMat”, colName = "rawP”, type = "pvalue"”, direction = "logFC"
)
transformed log fold changes and untouched log fold changes
extracted_abslfc_and_lfc <- extractStatistics(
object = Plaque_16S_DA,
slot = "statInfo”, colName = "logFC", type = "logfc"”, direction =
"logFC"
)

Only transformed log fold changes for a method and p-values for the other

fitDM 53

extracted_mix <- extractStatistics(
object = Plaque_16S_DA,
slot = c("statInfo”, "pValMat"”), colName = c("logFC", "rawP"), type =
c("logfc”, "pvalue"), direction = "logFC"

£1tDM fitDM

Description

Fit a Dirichlet-Multinomial (DM) distribution for each taxon of the count data. The model estima-
tion procedure is performed by MGLM MGLMreg function without assuming the presence of any
group in the samples (design matrix equal to a column of ones.)

Usage
fitDM(object, assay_name = "counts”, verbose = TRUE)
Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y@ column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
DM <- fitDM(counts)
head(DM)

54 fitHURDLE

fitHURDLE JitHURDLE

Description

Fit a truncated gaussian hurdle model for each taxon of the count data. The hurdle model estimation
procedure is performed by MAST z1m function without assuming the presence of any group in the
samples (design matrix equal to a column of ones.)

Usage

fitHURDLE (object, assay_name = "counts"”, scale = "default”, verbose = TRUE)

Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
scale Character vector, either median or default to choose between the median of
the library size or one million to scale raw counts.
verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y@ column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Fit model on the counts matrix
HURDLE <- fitHURDLE(counts, scale = "median")
head (HURDLE)

fitModels

55

fitModels

fitModels

Description

A wrapper function that fits the specified models for each taxon of the count data and computes
the mean difference (MD) and zero probability difference (ZPD) between estimated and observed

values.

Usage

fitModels(
object,

assay_name = "counts”,

models = c(”"NB", "ZINB”, "DM", "ZIG", "HURDLE"),
scale_HURDLE = c("default”, "median"),

verbose = TRUE

Arguments

object

assay_name

models

scale_HURDLE

verbose

Value

a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

character vector which assumes the values NB, ZINB, DM, ZIG, and HURDLE.

character vector, either median or default to choose between the median of the
library size or one million to scale raw counts for the truncated gaussian hurdle
model.

an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

list of data. frame objects for each model. The first two columns contain the properly transformed
observed values for mean and zero proportion, while the third and the fourth columns contain the
estimated values for the mean and the zero rate respectively.

See Also

fitNB, fitZINB, fitDM, fitZIG, and fitHURDLE for the model estimations, prepareObserved for
raw counts preparation, and meanDifferences for the Mean Difference (MD) and Zero Probability
Difference (ZPD) computations.

56 fitNB

Examples

Generate some random counts
counts <- matrix(rnbinom(n = 600, size = 3, prob = 0.5),
nrow = 100, ncol = 6)
Estimate the counts assuming several distributions
GOF <- fitModels(
object = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"
), scale_HURDLE = c("median”, "default"”)

)

head (GOF)

fitNB fitNB

Description

Fit a Negative Binomial (NB) distribution for each taxon of the count data. The NB estimation pro-
cedure is performed by edgeR glmFit function, using TMM normalized counts, tag-wise dispersion
estimation, and not assuming the presence of any group in the samples (design matrix equal to a
column of ones).

Usage
fitNB(object, assay_name = "counts”, verbose = TRUE)
Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the ‘counts matrix in the ‘Y * column, and the estimated probability to observe a zero in the
‘Y0* column.

fitZIG 57

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the matrix of counts
NB <- fitNB(counts)
head(NB)

fitZIG fitZIG

Description

Fit a Zero-Inflated Gaussian (ZIG) distribution for each taxon of the count data. The model estima-
tion procedure is performed by metagenomeSeq fitZig function without assuming the presence of
any group in the samples (design matrix equal to a column of ones.)

Usage
fitZIG(object, assay_name = "counts”, verbose = TRUE)
Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y@ column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
Z1G <- fitZIG(counts)
head(ZIG)

58 getDA

fitZINB fitZINB

Description

Fit a Zero-Inflated Negative Binomial (ZINB) distribution for each taxon of the countdata. The
ZINB estimation procedure is performed by zinbwave zinbFit function with commondispersion
= FALSE, regularization parameter epsilon = 1e10, and not assuming the presence of any group in
the samples (design matrix equal to a column of ones.)

Usage

fitZINB(object, assay_name = "counts", verbose = TRUE)

Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y0 column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
ZINB <- fitZINB(counts)
head(ZINB)

getDA getDA

Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance
detection method.

getDA 59

Usage
getDA(
method,
slot = "pValMat”,
colName = "rawP",

type = "pvalue”,
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,

top = NULL,
verbose = FALSE
)
Arguments
method Output of a differential abundance detection method. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).
slot The slot name where to extract values (default slot = "pValMat").
colName The column name of the slot where to extract values (default colName = "rawP").
type The value type of the column selected where to extract values. Two values are
possible: "pvalue” or "logfc"” (default type = "pvalue”).
direction statInfo’s column name containing information about the signs of differential

abundance (usually log fold changes) (default direction = NULL).
threshold_pvalue
Threshold value for p-values. If present, features with p-values lower than
threshold_pvalue are considered differentially abundant. Set threshold_pvalue
=1 to not filter by p-values.
threshold_logfc
Threshold value for log fold changes. If present, features with log fold change
absolute values higher than threshold_logfc are considered differentially abun-
dant. Set threshold_logfc = @ to not filter by log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).
verbose Boolean to display the kind of extracted values (default verbose = FALSE).
Value

A data. frame with several columns:

stat which contains the p-values or the absolute log fold change values;

direction which is present if method was a data. frame object, it contains the information about
directionality of differential abundance (usually log fold changes);

DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if
method object was a vector, "UP Abundant”, "DOWN Abundant”, or "non-DA" if method was
adata.frame.

60 getPositives

See Also

getStatistics, extractDA

Examples

data("ps_plaque_16S")
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(
object = ps_plaque_16S,

design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)

features with p-value < 0.1 as DA

getDA(
method = da.limma, slot = "pValMat”, colName = "rawP", type = "pvalue”,
direction = NULL, threshold_pvalue = 0.1, threshold_logfc = 0,
top = NULL

)

top 10 feature with highest logFC are DA

getDA(
method = da.limma, slot = "pValMat”, colName = "rawP", type = "pvalue”,
direction = "logFC", threshold_pvalue = 1, threshold_logfc = @, top = 10

)

features with p-value < 0.1 and |logFC| > 1 are DA

getDA(
method = da.limma, slot = "pValMat”, colName = "rawP", type = "pvalue”,
direction = "logFC", threshold_pvalue = 0.1, threshold_logfc = 1, top =

NULL

)

top 10 features with |logFC| > 1 are DA

getDA(
method = da.limma, slot = "pValMat”, colName = "rawP", type = "pvalue”,
direction = "logFC", threshold_pvalue = 1, threshold_logfc = 1, top = 10

)

getPositives getPositives
Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance
detection method and count the True Positives (TP) and the False Positives (FP).

Usage

getPositives(method, enrichmentCol, TP, FP)

getPositives

Arguments

method

enrichmentCol

TP

FP

Value

61

Output of differential abundance detection method in which DA information is
extracted by the getDA function, information related to enrichment is appropri-
ately added through the addKnowledge function and the Fisher exact tests is
performed for the contingency tables by the enrichmentTests function.

name of the column containing information for enrichment analysis.

A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is expected in that direction, in
the second position.

A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is not expected in that direc-
tion, in the second position.

A named vector containing the number of TPs and FPs.

See Also

createPositives.

Examples

data("ps_plaque_16S")

data("microbial_metabolism™)

Extract genera from the phyloseq tax_table slot

genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]

Genera as rownames of microbial_metabolism data.frame
rownames (microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism

priorInfo <- data.frame(genera,

lvapen
)

microbial_metabolism[genera, "Type"]

Unmatched genera becomes "Unknown"

unknown_metabolism <- is.na(priorInfo$Type)

priorInfolunknown_metabolism, "Type"] <- "Unknown"

priorInfo$Type <- factor(priorInfo$Type)

Add a more informative names column

priorInfo[, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis

Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")

DA analysis

da.limma <- DA_limma(

object
design
coef =

27

ps_plaque_16S,
~ 1 + HMP_BODY_SUBSITE,

62 getStatistics

norm = "TMM"
)
DA <- getDA(
method = da.limma, slot = "pValMat”, colName = "adjP",
type = "pvalue”, direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL
)

Add a priori information
DA_info <- addKnowledge(
method = DA, priorKnowledge = priorInfo,
enrichmentCol = "Type"”, namesCol = "newNames"”
)
Create contingency tables and compute F tests
DA_info_enriched <- enrichmentTest(
method = DA_info, enrichmentCol = "Type",
alternative = "greater”
)
Count True and False Positives
DA_TP_FP <- getPositives(
method = DA_info_enriched, enrichmentCol = "Type",
TP = list(c("UP Abundant”, "Aerobic"), c("DOWN Abundant”, "Anaerobic")),
FP = list(c("UP Abundant”, "Anaerobic"), c(”"DOWN Abundant”, "Aerobic"))

getStatistics getStatistics

Description

Extract the list of p-values or/and log fold changes from the output of a differential abundance
detection method.

Usage

getStatistics(
method,
slot = "pValMat”,
colName = "rawP",
type = "pvalue”,
direction = NULL,
verbose = FALSE

Arguments

method Output of a differential abundance detection method. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot The slot name where to extract values (default slot = "pValMat").

getStatistics

colName

type

direction

verbose

Value

63

The column name of the slot where to extract values (default colName = "rawP").

The value type of the column selected where to extract values. Two values are
possible: "pvalue” or "logfc” (default type = "pvalue”).

statInfo’s column name containing information about the signs of differential
abundance (usually log fold changes) (default direction = NULL).

Boolean to display the kind of extracted values (default verbose = FALSE).

A vector or a data. frame. If direction = NULL, the colname column values, transformed accord-
ing to type (not tranformed if type = "pvalue”, -abs(value) if type = "logfc"), of the slot are
reported, otherwise the direction column of the statInfo matrix is added to the output.

See Also

extractStatistics

Examples

data("ps_plaque_16S")
Add scaling factors

ps_plaque_16S <-
DA analysis

norm_edgeR(object = ps_plaque_16S, method = "TMM")

da.limma <- DA_limma(
object = ps_plaque_16S,

design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"
)
get p-values
getStatistics(
method = da.limma, slot = "pValMat"”, colName = "rawP",
type = "pvalue”, direction = NULL
)

get negative abs(logFC) values

getStatistics(

method = da.limma, slot = "statInfo”, colName = "logFC",
type = "logfc”, direction = NULL

)
get p-values and logFC
getStatistics(
method = da.limma, slot = "pValMat”, colName = "rawP”,

type = "pvalue”, direction = "logFC"

64 get_counts_metadata

get_counts_metadata get_counts_metadata

Description

Check whether the input object is a phyloseq or a TreeSummarizedExperiment, then extract the
requested data slots.

Usage
get_counts_metadata(
object,
assay_name = "counts”,

min_counts = 0,
min_samples = @

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
min_counts Parameter to filter taxa. Set this number to keep features with more than min_counts
counts in more than min_samples samples (default min_counts = 0).
min_samples Parameter to filter taxa. Set this number to keep features with a min_counts
counts in more than min_samples samples (default min_samples = 0).
Value

a list of results:

counts the otu_table slot or assayName assay of the phyloseq or TreeSummarizedExperiment
object;

metadata the sample_data or colData slot of the phyloseq or TreeSummarizedExperiment ob-
ject;

is_phyloseq aboolean equal to TRUE if the input is a phyloseq object.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))
get_counts_metadata(ps)

iterative_ordering 65

Or with a TreeSummarizedExperiment

tse <- TreeSummarizedExperiment: :TreeSummarizedExperiment(
assays = list("counts” = counts), colData = metadata)

get_counts_metadata(tse)

iterative_ordering iterativeOrdering

Description
Turn the chosen columns (factor) of the input data. frame into ordered factors. For each factor, the
order is given by the number of elements in each level of that factor.

Usage

iterative_ordering(df, var_names, i = 1, decreasing = TRUE)

Arguments
df a data.frame object.
var_names character vector containing the names of one or more columns of df.
i iteration index (default i = 1).
decreasing logical value or a vector of them. Each value should be associated to a var_name
vector’s element. Should the sort order be increasing or decreasing?
Value

the input data. frame with the var_names variables as ordered factors.

See Also

plotMutualFindings

Examples

From a dataset with some factor columns
mpg <- data.frame(ggplot2: :mpg)
Order the levels of the desired factors based on the cardinality of each

level.
ordered_mpg <- iterative_ordering(df = mpg,
var_names = c("manufacturer”, "model”),

decreasing = c(TRUE, TRUE))
Now the levels of the factors are ordered in a decreasing way
levels(ordered_mpg$manufacturer)
levels(ordered_mpg$model)

66 meanDifferences

meanDifferences meanDifferences

Description

Compute the differences between the estimated and the observed continuity corrected logarithms
of the average count values (MD), and between the estimated average probability to observe a zero
and the the observed zero rate (ZPD).

Usage

meanDifferences(estimated, observed)

Arguments
estimated atwo column data.frame, output of fitNB, fitZINB, fitDM, fitZIG, or fitHURDLE
functions. More in general, a data frame containing the continuity corrected log-
arithm for the average of the fitted values for each row of a matrix of counts in
the Y column, and the estimated probability to observe a zero in the YO column.
observed a two column data.frame, output of prepareObserved function. More in gen-
eral, a data frame containing the continuity corrected logarithm for the average
of the observed values for each row of a matrix of counts in the Y column, and
the estimated proportion of zeroes in the Y@ column.
Value

a data.frame containing the differences between the estimated and the observed continuity cor-
rected logarithms of the average count values in the MD column, and between the estimated average
probability to observe a zero and the the observed zero rate in the ZPD column.

See Also

prepareObserved.

Examples

Randomly generate the observed and estimated data.frames
observed <- data.frame(Y = rpois(10, 5), Y0 = runif(10, @, 1))
estimated <- data.frame(Y = rpois(10, 5), Y0 = runif(10, 0, 1))

Compute the mean differences between estimated and observed data.frames
meanDifferences(estimated, observed)

microbial_metabolism 67

microbial_metabolism (Data) Microbial metabolism

Description

Aerobic, Anaerobic, or Facultative Anaerobic microbes by genus (NYC-HANES study).

Usage

data(microbial_metabolism)

Format

A data.frame object

norm_CSS norm_CSS

Description

Calculate normalization factors from a phyloseq or TreeSummarizedExperiment object. Inherited
from metagenomeSeq calcNormFactors function which performs the Cumulative Sum Scaling

normalization.
Usage
norm_CSS(object, assay_name = "counts"”, method = "CSS", verbose = TRUE)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
method normalization method to be used (only CSS).
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A new column containing the CSS normalization factors is added to the sample_data slot of the
phyloseq object or the colData slot of the TreeSummarizedExperiment object.

See Also

calcNormFactors for details. setNormalizations and runNormalizations to fastly set and run
normalizations.

https://github.com/waldronlab/nychanesmicrobiome

68 norm_DESeq?2

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "Sg6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Calculate the normalization factors

ps_NF <- norm_CSS(object = ps, method = "CSS")

The phyloseq object now contains the normalization factors:
CSSFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSS"]
head(CSSFacts)

VERY IMPORTANT: metagenomeSeq uses scaling factors to normalize counts

(even though they are called normalization factors). These factors are used
internally by a regression model. To make CSS size factors available for

edgeR, we need to transform them into normalization factors. This is

possible by dividing the factors for the library sizes and renormalizing.
normCSSFacts = CSSFacts / colSums(phyloseq::otu_table(ps_stool_16S))

Renormalize: multiply to 1

normFacts = normCSSFacts/exp(colMeans(log(normCSSFacts)))

norm_DESeq?2 norm_DESeq?2

Description

Calculate size factors from a phyloseq or TreeSummarizedExperiment object. Inherited from DE-
Seq2 estimateSizeFactors function.

Usage
norm_DESeq2(
object,
assay_name = "counts”,
method = c("ratio”, "poscounts"”, "iterate"),

verbose = TRUE,

)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.

norm_DESeq?2

method

verbose

Value

69

n on

Method for estimation: either "ratio”, "poscounts”, or "iterate"”. "ratio”
uses the standard median ratio method introduced in DESeq. The size factor
is the median ratio of the sample over a "pseudosample": for each gene, the
geometric mean of all samples. "poscounts” and "iterate” offer alternative
estimators, which can be used even when all features contain a sample with a
zero (a problem for the default method, as the geometric mean becomes zero,
and the ratio undefined). The "poscounts” estimator deals with a feature with
some zeros, by calculating a modified geometric mean by taking the n-th root
of the product of the non-zero counts. This evolved out of use cases with Paul
McMurdie’s phyloseq package for metagenomic samples. The "iterate” esti-
mator iterates between estimating the dispersion with a design of ~1, and finding
a size factor vector by numerically optimizing the likelihood of the ~1 model.

an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

other parameters for DESeq2 estimateSizeFactors function.

A new column containing the chosen DESeq2-based size factors is added to the sample_data slot
of the phyloseq object or the colData slot of the TreeSummarizedExperiment object.

See Also

estimateSizeFactors for details. setNormalizations and runNormalizations to fastly set and
run normalizations.

Examples

set.seed(1)

Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("”Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),

"group” = as.factor(c("A”, "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),

phyloseq: :sample_data(metadata))

Calculate the size factors

ps_NF <- norm_DESeqg2(object = ps, method = "poscounts")

The phyloseq object now contains the size factors:
sizeFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts”]
head(sizeFacts)

VERY IMPORTANT: DESeq2 uses size factors to normalize counts.

These factors are used internally by a regression model. To make DEseq?2
size factors available for edgeR, we need to transform them into

normalization factors. This is possible by dividing the factors by the
library sizes and renormalizing.

normSizeFacts = sizeFacts / colSums(phyloseq::otu_table(ps_stool_16S))

Renormalize: multiply to 1

normFacts

normSizeFacts/exp(colMeans(log(normSizeFacts)))

70 norm_edgeR

norm_edgeR norm_edgeR

Description

Calculate normalization factors from a phyloseq or TreeSummarizedExperiment object. Inherited
from edgeR calcNormFactors function.

Usage

norm_edgeR (
object,
assay_name = "counts”,
method = c("TMM", "TMMwsp"”, "RLE", "upperquartile”, "posupperquartile”, "none"),
refColumn = NULL,
logratioTrim = 0.3,
sumTrim = 0.05,
doWeighting = TRUE,
Acutoff = -1e+10,
p =0.75,
verbose = TRUE,

)
Arguments

object a phyloseq or TreeSummarizedExperiment object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

method normalization method to be used. Choose between TMM, TMMwsp, RLE, upperquartile,
posupperquartile or none.

refColumn column to use as reference for method="TMM". Can be a column number or a

numeric vector of length nrow(object).

logratioTrim the fraction (0 to 0.5) of observations to be trimmed from each tail of the distri-
bution of log-ratios (M-values) before computing the mean. Used by method="TMM"
for each pair of samples.

sumTrim the fraction (0 to 0.5) of observations to be trimmed from each tail of the dis-
tribution of A-values before computing the mean. Used by method="TMM" for
each pair of samples.

doWeighting logical, whether to use (asymptotic binomial precision) weights when comput-
ing the mean M-values. Used by method="TMM" for each pair of samples.

Acutoff minimum cutoff applied to A-values. Count pairs with lower A-values are ig-
nored. Used by method="TMM" for each pair of samples.

p numeric value between 0 and 1 specifying which quantile of the counts should
be used by method="upperquartile”.

norm_TSS 71

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

other arguments are not currently used.

Value

A new column containing the chosen edgeR-based normalization factors is added to the sample_data
slot of the phyloseq object or the colData slot of the TreeSummarizedExperiment object.

See Also

calcNormFactors for details.

setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample” = c("S1", "S2", "S3", "S4" "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Calculate the normalization factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")

The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(normFacts)

VERY IMPORTANT: edgeR uses normalization factors to normalize library sizes
not counts. They are used internally by a regression model. To make edgeR
normalization factors available for other methods, such as DESeq2 or other
DA methods based on scaling or size factors, we need to transform them into
size factors. This is possible by multiplying the factors for the library
sizes and renormalizing.

normLibSize = normFacts * colSums(phyloseq::otu_table(ps_stool_16S))

Renormalize: multiply to 1

sizeFacts = normLibSize/exp(colMeans(log(normLibSize)))

ER T T TS

norm_TSS norm_TSS

Description

Calculate the Total Sum Scaling (TSS) factors for a phyloseq or a TreeSummarizedExperiment
object, i.e. the library sizes. If the counts are divided by the scaling factors, a relative abundance is
obtained.

72 plotConcordance

Usage
norm_TSS(object, assay_name = "counts"”, method = "TSS", verbose = TRUE)
Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
method normalization method to be used.
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A new column containing the TSS scaling factors is added to the sample_data slot of the phyloseq
object or the colData slot of the TreeSummarizedExperiment object.

See Also

setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Calculate the scaling factors

ps_NF <- norm_TSS(object = ps)

The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq: :sample_data(ps_NF)[, "NF.TSS"]
head(scaleFacts)

plotConcordance plotConcordance

Description

Produce a list of graphical outputs summarizing the between and within method concordance.

Usage

plotConcordance(concordance, threshold = NULL, cols = NULL)

plotConcordance 73

Arguments
concordance A long format data. frame produced by createConcordance function.
threshold The threshold for rank (x-axis upper limit if all methods have a higher number
of computed statistics).
cols A named vector containing the color hex codes.
Value

A 2 elements list of ggplot2 class objects:

concordanceDendrogram which contains the vertically directioned dendrogram for the methods
involved in the concordance analysis;

concordanceHeatmap which contains the heatmap of between and within method concordances.

See Also

createConcordance

Examples

data(ps_plaque_16S)

Balanced design

my_splits <- createSplits(
object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
paired = "RSID", N = 10 # N = 100 suggested

)

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Initialize some limma based methods

my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(
object = results, slot = "pValMat"”, colName = "rawP”, type = "pvalue”

)

plot concordances from rank 1 to 50.

74 plotConcordanceHeatmap

plotConcordance(
concordance = concordance_pvalues,
threshold = 50

plotConcordanceDendrogram
plotConcordanceDendrogram

Description

Plots the method’s dendrogram of concordances.

Usage
plotConcordanceDendrogram(hc, direction = "v”, cols)

Arguments
hc Hierarchical clustering results produced in plotConcordance function.
direction vertical (default direction = "v") or horizontal (direction = "h").
cols A named vector containing the color hex codes.

Value

a ggplot2 object

See Also

createConcordance and plotConcordance

plotConcordanceHeatmap
plotConcordanceHeatmap

Description

Plots the heatmap of concordances.

Usage

plotConcordanceHeatmap(c_df, threshold, cols)

plotContingency 75

Arguments
c_df A simplified concordance data. frame produced in plotConcordance function.
threshold The threshold for rank (x-axis upper limit if all methods have a higher number
of computed statistics).
cols A named vector containing the color hex codes.
Value

a ggplot2 object

See Also

createConcordance and plotConcordance

plotContingency plotContingency

Description

Plot of the contingency tables for the chosen method. The top-left cells are colored, according to
Fisher exact tests” p-values, if the number of features in those cells are enriched.

Usage

plotContingency(enrichment, method, levels_to_plot)

Arguments
enrichment enrichment object produced by createEnrichment function.
method name of the method to plot.

levels_to_plot A character vector containing the levels of the enrichment variable to plot.

Value

a ggplot2 object.

See Also

createEnrichment, plotEnrichment, and plotMutualFindings.

76

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq: :tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column

plotContingency

priorInfo[, "newNames"”] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"1])

Perform DA analysis

Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis

enrichment <- createEnrichment(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type”, namesCol =
slot = "pValMat”, colName = "adjP", type = "pvalue”, direction
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose

Contingency tables

plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(
enrichment = enrichment, enrichmentCol = "Type",

n_methods = 1

"GENUS",
"logFC",
= TRUE)

plotEnrichment 77

plotEnrichment plotEnrichment

Description

Summary plot for the number of differentially abundant (DA) features and their association with
enrichment variable. If some features are UP-Abundant or DOWN-Abundant (or just DA), sev-
eral bars will be represented in the corresponding direction. Significance thresholds are reported
over/under each bar, according to the Fisher exact tests.

Usage

plotEnrichment(enrichment, enrichmentCol, levels_to_plot)

Arguments

enrichment enrichment object produced by createEnrichment function.
enrichmentCol name of the column containing information for enrichment analysis.

levels_to_plot A character vector containing the levels of the enrichment variable to plot.

Value

a ggplot2 object.

See Also

createEnrichment, plotContingency, and plotMutualFindings.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames (microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown”
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfol, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

78 plotFDR

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS™))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: :sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"]1])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis

enrichment <- createEnrichment(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type"”, namesCol = "GENUS",
slot = "pValMat”, colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

Contingency tables

plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(
enrichment = enrichment, enrichmentCol = "Type",
n_methods = 1
)
plotFDR plotFDR
Description

Draw the nominal false discovery rates for the 0.01, 0.05, and 0.1 levels.

Usage
plotFDR(dAf_FDR, cols = NULL)

Arguments

df_FDR a data. frame produced by the createTIEC function, containing the FDR val-
ues.

cols named vector of colors.

plotFPR 79

Value

A ggplot object.

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(df_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

plotFPR plotFPR

Description
Draw the boxplots of the proportions of p-values lower than 0.01, 0.05, and 0.1 thresholds for each
method.

Usage
plotFPR(df_FPR, cols = NULL)

80 plotKS

Arguments
df_FPR a data.frame produced by the createTIEC function, containing the FPR val-
ues.
cols named vector of colors.
Value
A ggplot object.
Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head (mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(dAf_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(@, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

plotKS plotKS

Description

Draw the boxplots of the Kolmogorov-Smirnov test statistics for the p-value distributions across the
mock comparisons.

plotKS 81

Usage

plotkKS(df_KS, cols = NULL)

Arguments
df _KS adata. frame produced by the createTIEC function containing the KS statistics
and their p-values.
cols named vector of colors.
Value
A ggplot object.
Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head (mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(df_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(@, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

82 plotLogP

plotLogP plotLogP

Description
Draw the p-values or the average p-values distribution across the mock comparisons in logarithmic
scale.

Usage
plotLogP(df_pval = NULL, df_QQ = NULL, cols = NULL)

Arguments
df_pval a data.frame produced by the createTIEC function, containing the p-values
for each taxon, method, and mock comparison. It is used to draw the negative
log10 p-values distribution. If df_pval is supplied, let df _QQ = NULL.
df_QQ a data.frame produced by the createTIEC function, containing the average
p-values for each quantile and method. It is used to draw the negative log10
average p-values distribution. If df_QQ is supplied, let df _pval = NULL.
cols named vector of colors.
Value
A ggplot object.
Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head (mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

plotMD 83

object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(dAf_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

plotMD plotMD

Description
A function to plot mean difference (MD) and zero probability difference (ZPD) values between
estimated and observed values.

Usage

plotMD(data, difference = NULL, split = TRUE)

Arguments
data a list, output of the fitModels function. Each element of the list is a ‘data.frame*
object with Model, Y, YO, MD, and ZPD columns containing the model name, the
observed values for the mean and the zero proportion and the differences be-
tween observed and estimated values.
difference character vector, either MD or ZPD to plot the differences between estimated and
observed mean counts or the differences between estimated zero probability and
observed zero proportion.
split Display each model mean differences in different facets (default split = TRUE).
If FALSE, points are not displayed for more clear representation.
Value

a ggplot object.

See Also

fitModels and RMSE for the model estimations and the RMSE computations respectively. plotRMSE
for the graphical evaluation of the RMSE values.

84 plotMutualFindings

Examples

Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(
object = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"
), scale_HURDLE = c("median"”, "default"”)
)

Plot the results
plotMD(data = GOF, difference = "MD", split = TRUE)
plotMD(data = GOF, difference = "ZPD", split = TRUE)

plotMutualFindings plotMutualFindings

Description

Plot and filter the features which are considered differentially abundant, simultaneously, by a spec-
ified number of methods.

Usage

plotMutualFindings(enrichment, enrichmentCol, levels_to_plot, n_methods = 1)

Arguments

enrichment enrichment object produced by createEnrichment function.
enrichmentCol name of the column containing information for enrichment analysis.
levels_to_plot A character vector containing the levels of the enrichment variable to plot.

n_methods minimum number of method that mutually find the features.

Value

a ggplot2 object.

See Also

createEnrichment, plotEnrichment, and plotContingency.

plotMutualFindings

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq: :tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"”] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: : sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"1])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis

enrichment <- createEnrichment(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type”, namesCol = "GENUS",
slot = "pValMat”, colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

Contingency tables

plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(
enrichment = enrichment, enrichmentCol = "Type",

n_methods = 1

86

plotPositives

plotPositives plotPositives

Description

Plot the difference between the number of true positives (TP) and false positives (FP) for each

method and for each "top’ threshold provided by the createPositives() function.

Usage

Arguments
positives data.frame object produced by createPositives() function.
cols named vector of cols (default cols = NULL).

Value

plotPositives(positives, cols = NULL)

a ggplot2 object.

See Also

getPositives, createPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq: :tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfolunknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column

priorInfo[, "newNames"] <- paste@(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
object = ps_plaque_16S)

plotQQ 87

Initialize some limma based methods

my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq: :sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: :sample_data(ps_plaque_16S)[["RSID"1])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Count TPs and FPs, from the top 1 to the top 20 features.
As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type”,
namesCol = "newNames”, slot = "pValMat”, colName = "rawP”,
type = "pvalue”, direction = "logFC", threshold_pvalue = 1,
threshold_logfc = @, top = 1:20, alternative = "greater”,
verbose = FALSE,
TP = list(c("DOWN Abundant”, "Anaerobic”), c("UP Abundant”, "Aerobic")),
FP = 1list(c("DOWN Abundant”, "Aerobic"), c("UP Abundant”, "Anaerobic")))

Plot the TP-FP differences for each threshold
plotPositives(positives = positives)

plotQQ plotQQ

Description

Draw the average QQ-plots across the mock comparisons.

Usage

plotQQ(df_QQ, cols = NULL, zoom = c(@, 0.1), split = FALSE)

Arguments
df_QQ Coordinates to draw the QQ-plot to compare the mean observed p-value distri-
bution across comparisons, with the theoretical uniform distribution.
cols named vector of colors.
zoom 2-dimesional vector containing the starting and the final coordinates (default:
c(0, 0.1))
split boolean value. If TRUE, the qqg-plots are reported separately for each method

(default split = FALSE). Setting it to TRUE is hardly suggested when the number
of methods is high or when their colors are similar.

88 plotRMSE

Value

A ggplot object.

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results

plotFPR(df_FPR = TIEC_summary$df_FPR)

plotFDR(df_FDR = TIEC_summary$df_FDR)

plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotLogP(df_QQ = TIEC_summary$df_QQ)

plotRMSE plotRMSE

Description
A function to plot RMSE values computed for mean difference (MD) and zero probability difference
(ZPD) values between estimated and observed values.

Usage

plotRMSE (data, difference = NULL, plotIt = TRUE)

prepareObserved 89

Arguments
data a list, output of the fitModels function. Each element of the list is a ‘data.frame’
object with Model, Y, YO, MD, and ZPD columns containing the model name, the
observed values for the mean and the zero proportion and the differences be-
tween observed and estimated values.
difference character vector, either MD or ZPD to plot the differences between estimated and
observed mean counts or the differences between estimated zero probability and
observed zero proportion.
plotIt logical. Should plotting be done? (default plotIt = TRUE)
Value

a ggplot object.

See Also

fitModels and RMSE for the model estimations and the RMSE computations respectively. plotMD
for the graphical evaluation.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(
object = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"
), scale_HURDLE = c("median”, "default")
)

Plot the RMSE results
plotRMSE (data = GOF, difference = "MD")
plotRMSE(data = GOF, difference = "ZPD")

prepareObserved prepareObserved

Description

Continuity corrected logarithms of the average counts and fraction of zeroes by feature.

Usage

prepareObserved(object, assay_name = "counts”, scale = NULL)

90 ps_plaque_16S

Arguments
object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
scale If specified it refers to the character vector used in fitHURDLE function. Either
median or default to choose between the median library size or one million as
scaling factors for raw counts.
Value

A data frame containing the continuity corrected logarithm for the raw count mean values for each
taxon of the matrix of counts in the Y column and the observed zero rate in the Y@ column. If scale
is specified the continuity corrected logarithm for the mean CPM (scale = "default”) or the mean
counts per median library size (scale = "median”) is computed instead.

See Also

meanDifferences

Examples

Generate some random counts
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

observedl <- prepareObserved(counts)
For the comparison with HURDLE model

observed2 <- prepareObserved(counts, scale = "median”)
ps_plaque_16S (Data) 60 Gingival Plaque samples of 16S rRNA (HMP 2012)
Description

A demonstrative purpose dataset containing microbial abundances for a total of 88 OTUs. The 60
Gingival Plaque paired samples belong to the Human Microbiome Project. This particular subset
contains 30 Supragingival and 30 Subgingival Plaque samples from the SEX = "Male"”, RUN_CENTER
= "WUCG", and VISITNO = "1" samples. It is possible to obtain the same dataset after basic filters
(remove taxa with zero counts) and collapsing the counts to the genus level; HMP16SData Biocon-
ductor package was used to download the data.

Usage
data(ps_plaque_16S)

Format

An object of class phyloseq

ps_stool_16S 91

ps_stool_16S (Data) 33 Stool samples of 16S rRNA (HMP 2012)

Description

A demonstrative purpose dataset containing microbial abundances for a total of 71 OTUs. The
32 Stool samples belong to the Human Microbiome Project. This particular subset contains the
SEX = "Male”, RUN_CENTER = "BI", and VISITNO = "1" samples. It is possible to obtain the same
dataset after basic filters (remove taxa with zero counts) and collapsing the counts to the genus
level; HMP16Data Bioconductor package was used to download the data.

Usage

data(ps_stool_16S)

Format

An object of class phyloseq

RMSE RMSE

Description

Computes the Root Mean Square Error (RMSE) from a vector of differences.

Usage

RMSE (differences)

Arguments

differences a vector of differences.

Value

RMSE value

See Also

prepareObserved and meanDifferences.

92

runDA

Examples

Generate the data.frame of Mean Differences and Zero Probability Difference
MD_df <- data.frame(MD = rpois(1@, 5), ZPD = runif(1@, -1, 1))

Calculate RMSE for MD and ZPD values
RMSE (MD_df[, "MD"1)
RMSE(MD_df[, "ZPD"1)

runDA runDA

Description

Run the differential abundance detection methods.

Usage

runDA(method_list, object, weights = NULL, verbose = TRUE)

Arguments
method_list a list object containing the methods and their parameters.
object a phyloseq object.
weights an optional numeric matrix giving observational weights.
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
Value

A named list containing the results for each method.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Set some simple normalizations
my_norm <- setNormalizations()

Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_norm, object = ps)

Set some limma instances

runMocks 93

my_methods <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "poscounts"”, "CSS"))

Run the methods
results <- runDA(method_list = my_methods, object = ps)

runMocks runMocks

Description

Run the differential abundance detection methods on mock datasets.

Usage
runMocks (
mocks,
method_list,
object,
weights = NULL,
verbose = TRUE,
BPPARAM = BiocParallel::SerialParam()
)
Arguments
mocks a data.frame containing N rows and nsamples columns (if even). Each cell
of the data frame contains the "grpl" or "grp2" characters which represent the
mock groups pattern. Produced by the createMocks function.
method_list a list object containing the methods and their parameters.
object a phyloseq or TreeSummarizedExperiment object.
weights an optional numeric matrix giving observational weights.
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.
BPPARAM An optional BiocParallelParam instance defining the parallel back-end to be
used during evaluation.
Value

A named list containing the results for each method.

94 runNormalizations

Examples

Load some data
data(ps_stool_16S)

Generate the pattern for 10 mock comparisons

(N = 1000 is suggested)

mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object

my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2, norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

runNormalizations runNormalizations

Description

Add normalization/scaling factors to a phyloseq object

Usage

runNormalizations(
normalization_list,
object,
assay_name = "counts”,
verbose = TRUE

Arguments

normalization_list
a list object containing the normalization methods and their parameters.

object a phyloseq or TreeSummarizedExperiment object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

runSplits

Value

A phyloseq object containing the normalization/scaling factors.

See Also

setNormalizations

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4" 6 "S5" "S6"),
"group” = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Set some simple normalizations
my_normalizations <- setNormalizations()

Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_normalizations, object = ps)

95

runSplits runSplits

Description

Run the differential abundance detection methods on split datasets.

Usage

runSplits(
split_list,
method_list,
normalization_list,
object,
assay_name = "counts”,
min_counts = 0,
min_samples = 0,
verbose = TRUE,
BPPARAM = BiocParallel::SerialParam()

96 runSplits

Arguments
split_list Alistof 2 data. frame objects: Subset1 and Subset2 produced by the createSplits
function.
method_list a list object containing the methods and their parameters.

normalization_list
a list object containing the normalization method names and their parameters
produced by setNormalizations.

object a phyloseq object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

min_counts Parameter to filter taxa. Set this number to keep features with more than min_counts
counts in more than min_samples samples (default min_counts = 0).

min_samples Parameter to filter taxa. Set this number to keep features with a min_counts
counts in more than min_samples samples (default min_samples = 0).

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

BPPARAM An optional BiocParallelParam instance defining the parallel back-end to be
used during evaluation.
Value

A named list containing the results for each method.

Examples

data(ps_plaque_16S)

Balanced design

my_splits <- createSplits(
object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
paired = "RSID", N = 10 # N = 100 suggested

)

Make sure the subject ID variable is a factor
phyloseq: :sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
phyloseq: : sample_data(ps_plaque_16S)[["RSID"1])

Initialize some limma based methods

my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque”,
norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR"”, "norm_CSS"),
method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
normalization_list = my_norm, object = ps_plaque_16S)

setNormalizations 97

setNormalizations setNormalizations

Description

Set the methods and parameters to compute normalization/scaling factors.

Usage

setNormalizations(
fun = c("norm_edgeR", "norm_DESeq2", "norm_CSS"),
method = c("TMM", "poscounts"”, "CSS")

)
Arguments
fun a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2",
"norm_CSS"..).
method a character with the normalization method (e.g. "TMM", "upperquartile"... if
the fun is "norm_edgeR").
Value

a list object containing the normalization methods and their parameters.

See Also

runNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

Set a TMM normalization
my_TMM_normalization <- setNormalizations(fun = "norm_edgeR", method = "TMM")

Set some simple normalizations
my_normalizations <- setNormalizations()

Add a custom normalization
my_normalizations <- c(my_normalizations,
myNormMethod1 = list(”"myNormMethod”, "parameter1”, "parameter2"))

98

set ALDEx2

set_ALDEx2

set ALDEx2

Description

Set the parameters for ALDExX2 differential abundance detection method.

Usage

set_ALDEx2(

assay_name = "counts”,
pseudo_count = FALSE,
design = NULL,
mc.samples = 128,

test = "t",
paired.test

FALSE,

denom = "all”,
contrast = NULL,

expand = TRUE

Arguments

assay_name

pseudo_count

design

mc.samples

test

paired.test

denom

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

a character with the name of a variable to group samples and compare them or a
formula to compute a model.matrix (when test = "glm").

an integer. The number of Monte Carlo samples to use when estimating the un-
derlying distributions. Since we are estimating central tendencies, 128 is usually
sufficient.

a character string. Indicates which tests to perform. "t" runs Welch’s t test while
"wilcox" runs Wilcoxon test. "kw" runs Kruskal-Wallace test while "kw_gIlm"
runs glm ANOVA-like test. "glm" runs a generalized linear model.

A boolean. Toggles whether to do paired-sample tests. Applies to effect =
TRUE and test = "t".

An any variable (all, iglr, zero, lvha, median, user) indicating features to use as
the denominator for the Geometric Mean calculation The default "all" uses the
geometric mean abundance of all features. Using "median" returns the median
abundance of all features. Using "iqlr" uses the features that are between the
first and third quartile of the variance of the clr values across all samples. Using
"zero" uses the non-zero features in each grop as the denominator. This approach
is an extreme case where there are many nonzero features in one condition but
many zeros in another. Using "lvha" uses features that have low variance (bot-
tom quartile) and high relative abundance (top quartile in every sample). It is

set ANCOM 99

also possible to supply a vector of row indices to use as the denominator. Here,
the experimentalist is determining a-priori which rows are thought to be invari-
ant. In the case of RNA-seq, this could include ribosomal protein genes and and
other house-keeping genes. This should be used with caution because the offsets
may be different in the original data and in the data used by the function because
features that are 0 in all samples are removed by aldex.clr.

contrast character vector with exactly three elements: the name of a variable used in
"design", the name of the level of interest, and the name of the reference level.
If "kw" or "kw_glm" as test, contrast vector is not used.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_ALDEx2 method.

See Also

DA_ALDEx2

Examples

Set some basic combinations of parameters for ALDEx2

base_ALDEx2 <- set_ALDEx2(design = "group"”,
contrast = c("group”, "grp2", "grpl"))

Set a specific set of normalization for ALDEx2 (even of other

packages!)

setNorm_ALDEx2 <- set_ALDEx2(design = "group”,
contrast = c("group”, "grp2", "grpl"))

Set many possible combinations of parameters for ALDEx2

all_ALDEx2 <- set_ALDEx2(design = "group”, denom = c("iqlr", "zero"),
test = c("t", "wilcox"), contrast = c("group”, "grp2", "grpl"))

set_ANCOM set ANCOM

Description

Set the parameters for ANCOM differential abundance detection method.

Usage

set_ANCOM(
assay_name = "counts”,
pseudo_count = FALSE,
fix_formula = NULL,
adj_formula = NULL,
rand_formula = NULL,

100

set ANCOM

Ime_control = 1lme4::1lmerControl(),
contrast = NULL,

alpha =

0.05,

p_adj_method = "BH",
struc_zero = FALSE,

BC = TRUE,
n_cl =1,

expand = TRUE

Arguments

assay_name

pseudo_count

fix_formula

adj_formula

rand_formula

Ime_control

contrast

alpha
p_adj_method

struc_zero

BC

n_cl

expand

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

Used when BC = TRUE (ANCOM-BC2). The character string expresses how the
microbial absolute abundances for each taxon depend on the fixed effects in
metadata.

Used when BC = FALSE (ANCOM). The character string represents the formula
for covariate adjustment. Default is NULL.

Optionally used when BC = TRUE or BC = FALSE. The character string expresses
how the microbial absolute abundances for each taxon depend on the random
effects in metadata. ANCOMB and ANCOM-BC2 follows the 1merTest pack-
age in formulating the random effects. See ?1merTest: : Imer for more details.
Default is rand_formula = NULL.

a list of control parameters for mixed model fitting. See ?1me4: : lmerControl
for details.

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

numeric. Level of significance. Default is 0.05.

character. method to adjust p-values. Default is "holm". Options include
"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See
?stats::p.adjust for more details.

logical. Whether to detect structural zeros based on group. Default is FALSE.
See Details for a more comprehensive discussion on structural zeros.

boolean for ANCOM method to use. If TRUE the bias correction (ANCOM-
BC2) is computed (default BC = TRUE). When BC = FALSE computational time
may increase and p-values are not computed.

numeric. The number of nodes to be forked. For details, see ?parallel: :makeCluster.

Default is 1 (no parallel computing).

logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

set_basic

Value

101

A named list containing the set of parameters for DA_ANCOM method.

See Also

DA_ANCOM

Examples

Set some basic combinations of parameters for ANCOM with bias correction
base_ANCOMBC <- set_ANCOM(pseudo_count = FALSE, fix_formula = "group”,

contrast =

c("group”, "B", "A"), BC = TRUE, expand = FALSE)

many_ANCOMs <- set_ANCOM(pseudo_count = c(TRUE, FALSE),

fix_formula

"group”, contrast = c("group”, "B", "A"),

struc_zero = c(TRUE, FALSE), BC = c(TRUE, FALSE))

set_basic

set_basic

Description

Set the parameters for basic differential abundance detection methods such as t and wilcox.

Usage

set_basic(

assay_name = "counts”,
pseudo_count = FALSE,
contrast = NULL,

test = c("t"”, "wilcox"),
paired = FALSE,

expand = TRUE

Arguments

assay_name

pseudo_count
contrast

test
paired

expand

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

name of the test to perform. Choose between "t" or "wilcox".

boolean. Choose whether the test is paired or not (default paired = FALSE). If

paired = TRUE be sure to provide the object properly ordered (by the grouping
variable).

logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

102 set_corncob

Value

A named list containing the set of parameters for DA_basic method.

See Also

DA_basic

Examples

Set some basic methods
basic_methods <- set_basic(pseudo_count = FALSE, test = c("t", "wilcox"),
contrast = c("group”, "B", "A"), expand = TRUE)

set_corncob set_corncob

Description

Set the parameters for corncob differential abundance detection method.

Usage

set_corncob(
assay_name = "counts”,
pseudo_count = FALSE,
formula = NULL,
phi.formula = NULL,
formula_null = NULL,
phi.formula_null = NULL,
test = c("Wald", "LRT"),
boot = FALSE,
coefficient = NULL,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

formula an object of class formula without the response: a symbolic description of the
model to be fitted to the abundance.

phi.formula an object of class formula without the response: a symbolic description of the
model to be fitted to the dispersion.

formula_null Formula for mean under null, without response

set_dearseq

103

phi.formula_null

test

boot

coefficient

expand

Value

Formula for overdispersion under null, without response

Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (like-
lihood ratio test).

Boolean. Defaults to FALSE. Indicator of whether or not to use parametric boot-
strap algorithm. (See pbWald and pbLRT).

The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

A named list containing the set of parameters for DA_corncob method.

See Also

DA_corncob

Examples

Set some basic combinations of parameters for corncob

base_corncob <- set_corncob(formula = ~ group, phi.formula = ~ group,
formula_null = ~ 1, phi.formula_null = ~ group, coefficient = "groupB")

Set many possible combinations of parameters for corncob

all_corncob <- set_corncob(pseudo_count = c(TRUE, FALSE), formula = ~ group,

phi.formula =
coefficient

~ group, formula_null = ~ 1, phi.formula_null = ~ group,
"groupB”, boot = c(TRUE, FALSE))

set_dearseq

set_dearseq

Description

Set the parameters for dearseq differential abundance detection method.

Usage

set_dearseq(

assay_name = "counts”,
pseudo_count = FALSE,

covariates

NULL,

variables2test = NULL,

sample_group = NULL,

test = c("permutation”, "asymptotic”),
preprocessed = FALSE,

104

n_perm = 1000
expand = TRUE
)
Arguments
assay_name

pseudo_count

covariates

variables2test

sample_group

test

preprocessed

n_perm

expand

Value

set_dearseq

’

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

add 1 to all counts if TRUE (default pseudo_count = FALSE).

a character vector containing the colnames of the covariates to include in the
model.

a character vector containing the colnames of the variable of interest.

a vector of length n indicating whether the samples should be grouped (e.g.
paired samples or longitudinal data). Coerced to be a factor. Default is NULL
in which case no grouping is performed.

a character string indicating which method to use to approximate the variance
component score test, either ’permutation’ or *asymptotic’ (default test = "permutation”).

a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

the number of perturbations. Default is 1000

logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

A named list containing the set of parameters for DA_dearseq method.

See Also

DA_dearseq

Examples

Set some basic

combinations of parameters for dearseq

base_dearseq <- set_dearseq(pseudo_count = FALSE, variables2test = "group”,
test = c("permutation”, "asymptotic”), expand = TRUE)

set_DESeq?2 105

set_DESeq2 set_DESeq2

Description

Set the parameters for DESeq?2 differential abundance detection method.

Usage

set_DESeq2(
assay_name = "counts”,
pseudo_count = FALSE,
design = NULL,
contrast = NULL,
alpha = 0.05,
norm = c("ratio”, "poscounts”, "iterate"),
weights_logical = FALSE,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
design character or formula to specify the model matrix.

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

alpha the significance cutoff used for optimizing the independent filtering (by default
0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha
should be set to that value.

norm name of the normalization method to use in the differential abundance analy-
sis. Choose between the native DESeq2 normalization methods, such as ratio,
poscounts, or iterate. Alternatively (only for advanced users), if norm is
equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile”, or
"none" from norm_edgeR, "CSS" from norm_CSS, or "TSS" from norm_TSS, the
normalization factors are automatically transformed into size factors. If custom
factors are supplied, make sure they are compatible with DESeq2 size factors.

weights_logical
logical vector, if TRUE a matrix of observational weights will be used for dif-
ferential abundance analysis (default weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

106 set_edgeR

Value

A named list containing the set of parameters for DA_DESeq2 method.

See Also
DA_DESeq2

Examples

Set some basic combinations of parameters for DESeq?2

base_DESeq2 <- set_DESeqg2(design = ~ group, contrast = c("group”, "B", "A"))

Set a specific set of normalization for DESeq2

setNorm_DESeq2 <- set_DESeq2(design = ~ group, contrast =
c("group”, "B", "A"), norm = c("ratio”, "poscounts"))

Set many possible combinations of parameters for DESeq2

all_DESeq2 <- set_DESeq2(pseudo_count = c(TRUE, FALSE), design = ~ group,
contrast = c("group”, "B", "A"), weights_logical = c(TRUE,FALSE))

set_edgeR set_edgeR

Description

Set the parameters for edgeR differential abundance detection method.

Usage

set_edgeR(
assay_name = "counts”,
pseudo_count = FALSE,
group_name = NULL,
design = NULL,
robust = FALSE,
coef = 2,
norm = c("TMM", "TMMwsp"”, "RLE", "upperquartile”, "posupperquartile”, "none"),
weights_logical = FALSE,
expand = TRUE

Arguments
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

group_name character giving the name of the column containing information about experi-
mental group/condition for each sample/library.

design character or formula to specify the model matrix.

set_limma 107

robust logical, should the estimation of prior.df be robustified against outliers?

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-
vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,
"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,

make sure they are compatible with edgeR normalization factors.

weights_logical
logical vector, if true a matrix of observation weights must be supplied (default
weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_edgeR method.

See Also

DA_edgeR

Examples

Set some basic combinations of parameters for edgeR
base_edgeR <- set_edgeR(group_name = "group”, design = ~ group, coef = 2)

Set a specific set of normalization for edgeR
setNorm_edgeR <- set_edgeR(group_name = "group”, design = ~ group, coef = 2,
norm = c("TMM", "RLE"))

Set many possible combinations of parameters for edgeR

all_edgeR <- set_edgeR(pseudo_count = c(TRUE, FALSE), group_name = "group”,
design = ~ group, robust = c(TRUE, FALSE), coef = 2,
weights_logical = c(TRUE, FALSE))

set_limma set_limma

Description

Set the parameters for limma differential abundance detection method.

108 set_limma

Usage

set_limma(
assay_name = "counts"”,
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = c("TMM", "TMMwsp"”, "RLE", "upperquartile”, "posupperquartile”, "none"),
weights_logical = FALSE,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design character name of the metadata columns, formula, or design matrix with rows
corresponding to samples and columns to coefficients to be estimated.

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-
vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,
"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,
make sure they are compatible with edgeR normalization factors.

weights_logical
logical vector, if TRUE a matrix of observational weights will be used for dif-
ferential abundance analysis (default weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).
Value

A named list containing the set of parameters for DA_limma method.

See Also

DA_limma

Examples

Set some basic combinations of parameters for limma

base_limma <- set_limma(design = ~ group, coef = 2)

Set a specific set of normalization for limma (even of other packages!)
setNorm_limma <- set_limma(design = ~ group, coef = 2,

set_linda

109

norm = c("TMM", "upperquartile”))

Set many possible combinations of parameters for limma

all_limma <- set_limma(pseudo_count = c(TRUE, FALSE), design = ~ group,
coef = 2, weights_logical = c(TRUE, FALSE))

set_linda

set_linda

Description

Set the parameters for linda differential abundance detection method.

Usage

set_linda(

assay_name = "counts"”,
formula = NULL,
contrast = NULL,

is.winsor =

TRUE,
outlier.pct =

0.03,

zero.handling = c("pseudo-count”, "imputation”),
pseudo.cnt = 0.5,

alpha = 0.05,

p.adj.method = "BH",

expand = TRUE

Arguments

assay_name

formula

contrast

is.winsor

outlier.pct

zero.handling

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

a character string for the formula. The formula should conform to that used
by 1m (independent data) or 1mer (correlated data). For example: formula =
"~xT1xx2+x3+(1]1id)'. At least one fixed effect is required.

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

a logical value indicating whether winsorization should be performed to replace
outliers (high values). The default is TRUE.

the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03.

a character string of ’pseudo-count’ or “imputation’ indicating the zero handling
method used when feature.dat is 'count’. If ’pseudo-count’, apseudo.cnt
will be added to each value in feature.dat. If "imputation’, then we use the im-
putation approach using the formula in the referenced paper. Basically, zeros are
imputed with values proportional to the sequencing depth. When feature.dat

110 set_Maaslin2

is ’proportion’, this parameter will be ignored and zeros will be imputed by half
of the minimum for each feature.

pseudo.cnt a positive numeric value for the pseudo-count to be added if zero.handling is
"pseudo-count’. Default is 0.5.

alpha a numerical value between 0 and 1 indicating the significance level for declaring
differential features. Default is 0.05.

p.adj.method a character string indicating the p-value adjustment approach for addressing
multiple testing. See R function p.adjust. Default is 'BH’.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_linda method.

See Also
DA_linda
Examples
Set some basic combinations of parameters for ANCOM with bias correction
base_linda <- set_linda(formula = "~ group”, contrast = c("group”, "B", "A"),
zero.handling = "pseudo-count”, expand = TRUE)
many_linda <- set_linda(formula = "~ group”, contrast = c("group”, "B", "A"),
is.winsor = c(TRUE, FALSE),
zero.handling = c("pseudo-count”, "imputation"), expand = TRUE)
set_Maaslin2 set_Maaslin2
Description

Set the parameters for Maaslin2 differential abundance detection method.

Usage

set_Maaslin2(
assay_name = "counts”,
normalization = c("TSS", "CLR", "CSS", "NONE", "TMM"),
transform = c("LOG", "LOGIT", "AST", "NONE"),
analysis_method = c("LM", "CPLM", "ZICP", "NEGBIN", "ZINB"),
correction = "BH",
random_effects = NULL,
fixed_effects = NULL,
contrast = NULL,
reference = NULL,
expand = TRUE

set_maaslin3

Arguments

assay_name

111

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

normalization The normalization method to apply.

transform

The transform to apply.

analysis_method

correction

The analysis method to apply.

The correction method for computing the g-value.

random_effects The random effects for the model, comma-delimited for multiple effects.

fixed_effects The fixed effects for the model, comma-delimited for multiple effects.

contrast

reference

expand

Value

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

The factor to use as a reference for a variable with more than two levels provided
as a string of ’variable,reference’ semi-colon delimited for multiple variables.

logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

A named list containing the set of parameters for DA_Maaslin2 method.

See Also

DA_Maaslin2

Examples

Set some basic combinations of parameters for Maaslin2

base_Maaslin2 <- set_Maaslin2(normalization = "TSS", transform = "LOG",
analysis_method = "LM", fixed_effects = "group”,
contrast = c("group”, "B", "A"))

many_Maaslin2 <- set_Maaslin2(normalization = c("TSS", "CLR", "CSS", "TMM",

"NONE"),

transform = c("LOG", "NONE"),

analysis_method = c("LM", "NEGBIN"), fixed_effects = "group”,

contrast

= c("group”, "B", "A"))

set_maaslin3

set_maaslin3

Description

Set the parameters for maaslin3 differential abundance detection method.

112

set_maaslin3

Usage
set_maaslin3(
assay_name = "counts"”,
normalization = c("TSS", "CLR", "NONE"),

transform = c("LOG", "PLOG", "NONE"),
median_comparison_abundance = c(TRUE, FALSE),
small_random_effects = c(TRUE, FALSE),

stat_type = c("abundance"”, "prevalence"),
pvalue_type = c("abundance”, "prevalence"”, "joint"),
correction = "BH",

formula = NULL,
contrast = NULL,

expand = TRUE

Arguments

assay_name

normalization

transform

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

median_comparison_abundance

Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.

small_random_effects

stat_type

pvalue_type

correction

formula

Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

Whether to return statistics based on abundance ("abundance") or prevalence
("prevalence") models.

Whether to return p-values based on abundance ("abundance") models, preva-
lence ("prevalence") models, or joint ("joint") p-values. Choose "abundance"
or "joint" when stat_type is set to "abundance", choose "prevalence" when
stat_type is set to "prevalence".

The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and
strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

set_maaslin3 113

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Details

Some maaslin3 parameters are not available for customization in this implementation. For this
reason they assume default values or are internally assigned. The latter case is represented by:

* warn_prevalence which is internally set to TRUE when normalization = "TSS" and transform
= ”LOG”;

* subtract_median which is internally set to the same median_comparison_abundance value;

* zero_threshold which is automatically set to -1 when transform = "PLOG";

* evaluate_only is automatically set to "abundance” when transform = "PLOG".
MaAsLin 3 produces both abundance and prevalence associations with individual p and adjusted
p-values (specific to abundance or prevalence) as well as joint p and adjusted p-values for testing
whether a metadatum is associated with either the abundance or prevalence. To avoid issues with
having twice as many associations as other tools (from both abundance and prevalence), stat_type
can be set to report the desired abundance or prevalence associations. When the abundance and
prevalence associations are expected to go in the same direction, pvalue_type = "joint" allows

to return p-values and adjusted p-values taken from the joint p-values and adjusted p-values. Please
refer to maaslin3’s guide to choose proper parameter combinations.

Value

A named list containing the set of parameters for DA_maas1lin3 method.

See Also

DA_maaslin3

Examples

Set some basic combinations of parameters for maaslin3

base_maaslin3 <- set_maaslin3(normalization = "TSS", transform = "L0G",
median_comparison_abundance = TRUE,
small_random_effects = FALSE, stat_type = "abundance”,

pvalue_type = "abundance”, formula = ~ group,
contrast = c("group”, "B", "A"))
many_maaslin3 <- set_maaslin3(normalization = c("TSS", "CLR"),

transform = c("LOG", "NONE"),

median_comparison_abundance = c(TRUE, FALSE),
small_random_effects = FALSE,

stat_type = "abundance”, pvalue_type = c("abundance”, "joint"),
formula = ~ group, contrast = c("group”, "B", "A"))

114 set MAST

set_MAST set_MAST

Description

Set the parameters for MAST differential abundance detection method.

Usage
set_MAST(
assay_name = "counts"”,
pseudo_count = FALSE,
rescale = c("median”, "default"),

design = NULL,
coefficient = NULL,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

rescale Rescale count data, per million if "default’, or per median library size if 'median’
("median’ is suggested for metagenomics data).

design The model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula, or a ‘model.matrix* object.

coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_MAST method.

See Also

DA_MAST

set_metagenomeSeq 115

Examples

Set some basic combinations of parameters for MAST

base_MAST <- set_MAST(design = ~ group, coefficient = "groupB")

Set many possible combinations of parameters for MAST

all_MAST <- set_MAST(pseudo_count = c(TRUE, FALSE), rescale = c("median”,

"default"), design = ~ group, coefficient = "groupB")
set_metagenomeSeq set_metagenomeSeq
Description

Set the parameters for metagenomeSeq differential abundance detection method.

Usage

set_metagenomeSeq(
assay_name = "counts"”,
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = "CSS",
model = "fitFeatureModel”,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design the model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula.

coef coefficient of interest to grab log fold-changes.

norm name of the normalization method to use in the differential abundance analy-

sis. Choose the native metagenomeSeq normalization method CSS. Alternatively
(only for advanced users), if normis equal to "TMM", "TMMwsp", "RLE", "up-
perquartile”, "posupperquartile”, or "none" from norm_edgeR, "ratio", "poscounts"”,
or "iterate" from norm_DESeq2, or "TSS" from norm_TSS, the factors are auto-
matically transformed into scaling factors. If custom factors are supplied, make

sure they are compatible with metagenomeSeq normalization factors.

model character equal to "fitFeatureModel" for differential abundance analysis using a
zero-inflated log-normal model, "fitZig" for a complex mathematical optimiza-
tion routine to estimate probabilities that a zero for a particular feature in a
sample is a technical zero or not. The latter model relies heavily on the limma
package (default model = "fitFeatureModel").

116 set_mixMC

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_metagenomeSeq method.

See Also

DA_metagenomeSeq

Examples

Set a basic combination of parameters for metagenomeSeq

base_mgs <- set_metagenomeSeq(design = ~ group, coef = 2)
Set a specific model for metagenomeSeq
setModel_mgs <- set_metagenomeSeq(design = ~ group, coef = 2,

model = "fitZig")

Set many possible combinations of parameters for metagenomeSeq

all_mgs <- set_metagenomeSeq(pseudo_count = c(TRUE, FALSE), design = ~ group,
coef = 2, model = c("fitFeatureModel”, "fitZig"), norm = "CSS")

set_mixMC set_mixMC

Description

Set the parameters for mixMC sPLS-DA.

Usage

set_mixMC(
assay_name = "counts”,
pseudo_count = 1,
contrast = NULL,
ID_variable = NULL,
expand = TRUE

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count a positive numeric value for the pseudo-count to be added. Default is 1.

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

set_NOISeq 117

ID_variable a character string indicating the name of the variable name corresponding to the
repeated measures units (e.g., the subject ID).
expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).
Value

A named list contaning the set of parameters for DA_mixMC method.

See Also

DA_mixMC

Examples

Set some basic combinations of parameters for mixMC
base_mixMC <- set_mixMC(pseudo_count = 1, contrast = c("group”, "B", "A"))
many_mixMC <- set_mixMC(pseudo_count = c(0.1, 0.5, 1),

contrast = c("group”, "B", "A"))

set_NOISeq set_NOISeq

Description

Set the parameters for NOISeq differential abundance detection method.

Usage

set_NOISeq(
assay_name = "counts”,
pseudo_count = FALSE,
contrast = NULL,

norm = C("rpkm“y lluquall’ ”tmm”, Hnll)’
expand = TRUE
)
Arguments
assay_name the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

contrast character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

118 set_Seurat

norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp,
RLE, upperquartile, posupperquartile, or none. Alternatively (only for ad-
vanced users), if normis equal to "ratio", "poscounts”, or "iterate" from norm_DESeq2,
"CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are auto-
matically transformed into normalization factors. If custom factors are supplied,

make sure they are compatible with edgeR normalization factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_NOISeq method.

See Also

DA_NOISeq

Examples

Set a basic combination of parameters for NOISeq with 'tmm' normalization
base_NOISeq <- set_NOISeq(pseudo_count = FALSE, norm = "tmm",
contrast = c("group”, "B", "A"), expand = FALSE)
try many normalizations
many_NOISeq <- set_NOISeq(pseudo_count = FALSE,

norm = c("tmm”, "uqua”, "rpkm”, "n"), contrast = c("group”, "B", "A"))
set_Seurat set_Seurat
Description

Set the parameters for Seurat differential abundance detection method.

Usage

set_Seurat(

assay_name = "counts"”,
pseudo_count = FALSE,
test = "wilcox",
contrast = NULL,

norm = "LogNormalize",
scale.factor = 10000,
expand = TRUE

set_Seurat 119

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
test Denotes which test to use. Available options are:

"wilcox" Identifies differentially abundant features between two groups of sam-
ples using a Wilcoxon Rank Sum test (default).

"bimod"” Likelihood-ratio test for the feature abundances, (McDavid et al., Bioin-
formatics, 2013).

"roc” Identifies *'markers’ of feature abundance using ROC analysis. For each
feature, evaluates (using AUC) a classifier built on that feature alone, to
classify between two groups of cells. An AUC value of 1 means that abun-
dance values for this feature alone can perfectly classify the two groupings
(i.e. Each of the samples in group.l exhibit a higher level than each of
the samples in group.2). An AUC value of 0 also means there is perfect
classification, but in the other direction. A value of 0.5 implies that the
feature has no predictive power to classify the two groups. Returns a ’pre-
dictive power’ (abs(AUC-0.5) * 2) ranked matrix of putative differentially
expressed genes.

"t" Identify differentially abundant features between two groups of samples
using the Student’s t-test.

"negbinom” Identifies differentially abundant features between two groups of
samples using a negative binomial generalized linear model.

"poisson” Identifies differentially abundant features between two groups of
samples using a poisson generalized linear model.

"LR" Uses a logistic regression framework to determine differentially abundant
features. Constructs a logistic regression model predicting group member-
ship based on each feature individually and compares this to a null model
with a likelihood ratio test.

"MAST" Identifies differentially expressed genes between two groups of cells
using a hurdle model tailored to scRNA-seq data. Utilizes the MAST pack-
age to run the DE testing.

"DESeq2" Identifies differentially abundant features between two groups of sam-
ples based on a model using DESeq2 which uses a negative binomial dis-
tribution (Love et al, Genome Biology, 2014).

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

norm Method for normalization.

LogNormalize Feature counts for each sample are divided by the total counts
of that sample and multiplied by the scale.factor. This is then natural-log
transformed using loglp;

CLR Applies a centered log ratio transformation;

RC Relative counts. Feature counts for each sample are divided by the total
counts of that sample and multiplied by the scale.factor. No log-transformation
is applied. For counts per million (CPM) set scale.factor = 1e6;

120 set_ZicoSeq

none No normalization
scale.factor Sets the scale factor for cell-level normalization

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_Seurat method.

See Also

DA_Seurat

Examples

Set some basic combinations of parameters for Seurat

base_Seurat <- set_Seurat(contrast = c("group”, "B", "A"))

Set many possible combinations of parameters for Seurat

all_Seurat <- set_Seurat(test = c("wilcox”, "t", "negbinom”, "poisson"),
norm = c("LogNormalize”, "CLR", "RC", "none"),

scale.factor = c(1000, 10000), contrast = c("group”, "B", "A"))

set_ZicoSeq set_ZicoSeq

Description

Set the parameters for ZicoSeq differential abundance detection method.

Usage

set_ZicoSeq(
assay_name = "counts”,
contrast = NULL,
strata = NULL,
adj.name = NULL,
feature.dat.type = c("count”, "proportion", "other"),
is.winsor = TRUE,
outlier.pct = 0.03,
winsor.end = c("top”, "bottom”, "both"),
is.post.sample = TRUE,
post.sample.no = 25,
perm.no = 99,
link.func = list(function(x) sign(x) * (abs(x))"0.5),
ref.pct = 0.5,
stage.no = 6,
excl.pct = 0.2,
expand = TRUE

set_ZicoSeq

Arguments

assay_name

contrast

strata

adj.name

121

the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts”). Not used if the input object is a phyloseq.

character vector with exactly, three elements: a string indicating the name of
factor whose levels are the conditions to be compared, the name of the level of
interest, and the name of the other level.

a factor such as subject IDs indicating the permutation strata or characters in-
dicating the strata variable in meta.dat. Permutation will be confined to each
stratum. This can be used for paired or some longitudinal designs.

the name(s) for the variable(s) to be adjusted. Multiple variables are allowed.
They could be numeric or categorical; should be in meta.dat.

feature.dat. type

is.winsor

outlier.pct

winsor.end

is.post.sample

post.sample.no

perm.no

link.func

ref.pct
stage.no

excl.pct

expand

Value

non

the type of the feature data. It could be "count", "proportion" or "other". For
"proportion" data type, posterior sampling will not be performed, but the reference-
based ratio approach will still be used to address compositional effects. For
"other" data type, neither posterior sampling or reference-base ratio approach
will be used.

a logical value indicating whether winsorization should be performed to replace
outliers. The default is TRUE.

the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03. For count/proportion data, outlier.pct should be less than
prev.filter.

a character indicating whether the outliers at the "top", "bottom" or "both" will
be winsorized. The default is "top". If the feature.dat. type is "other", "both"
may be considered.

a logical value indicating whether to perform posterior sampling of the underly-
ing proportions. Only relevant when the feature data are counts.

the number of posterior samples if posterior sampling is used. The default is 25.

the number of permutations. If the raw p values are of the major interest, set
perm.no to at least 999.

a list of transformation functions for the feature data or the ratios. Based on our
experience, square-root transformation is a robust choice for many datasets.

percentage of reference taxa. The default is 0.5.
the number of stages if multiple-stage normalization is used. The default is 6.

the maximum percentage of significant features (nominal p-value < 0.05) in the
reference set that should be removed. Only relevant when multiple-stage nor-
malization is used.

logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

A named list containing the set of parameters for DA_ZicoSeq method.

122

See Also

DA_ZicoSeq

Examples

Set some basic combinations of parameters for ZicoSeq

base_ZicoSeq <-

many_ZicoSeq <-

set_ZicoSeq(contrast = c("group”, "B", "A"),

feature.dat.type = "count”, winsor.end = "top")

set_ZicoSeq(contrast = c("group”, "B", "A"),

feature.dat.type = "count”, outlier.pct = c(0.03, 0.05),

winsor.end = "top"”, is.post.sample

= ¢(TRUE, FALSE))

weights_ZINB

weights_ZINB

weights_ZINB

Description

Computes the observational weights of the counts under a zero-inflated negative binomial (ZINB)
model. For each count, the ZINB distribution is parametrized by three parameters: the mean value
and the dispersion of the negative binomial distribution, and the probability of the zero component.

Usage

weights_ZINB(

object,

assay_name = "counts”,
design,

K=o,
commondispersion = TRUE,
zeroinflation = TRUE,
verbose = FALSE,

Arguments

object

assay_name

design

K

a phyloseq or TreeSummarizedExperiment object.

the name of the assay to extract from the TreeSummarizedExperiment object

(default assayName = "counts”). Not used if the input object is a phyloseq.

character name of the metadata columns, formula, or design matrix with rows

corresponding to samples and columns to coefficients to be estimated (the user

needs to explicitly include the intercept in the design).

integer. Number of latent factors.

commondispersion
Whether or not a single dispersion for all features is estimated (default TRUE).

weights_ZINB 123

zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial
model is fitted instead.
verbose Print helpful messages.

Additional parameters to describe the model, see zinbModel.

Value

A matrix of weights.

See Also

zinbFit for zero-inflated negative binomial parameters’ estimation and computeObservationalWeights
for weights extraction.

Examples

set.seed(1)

Create a very simple phyloseq object

counts <- matrix(rnbinom(n = 6@, size = 3, prob = 0.5), nrow = 10, ncol = 6)

metadata <- data.frame(”Sample” = c("S1", "S2", "S3", "S4" 6 "S5", "S6"))

ps <- phyloseq::phyloseq(phyloseq: :otu_table(counts, taxa_are_rows = TRUE),
phyloseq: :sample_data(metadata))

Calculate the ZINB weights

zinbweights <- weights_ZINB(object = ps, K = @, design = "~ 1")

Index

+ datasets
microbial_metabolism, 67
ps_plaque_16S, 90
ps_stool_16S, 91

* internal
plotConcordanceDendrogram, 74
plotConcordanceHeatmap, 74

addKnowledge, 4, 12, 48
AddMetaData, 45
aldex, 21

ancom, 23

ancombc, 23
areaCAT, 5, 10

bbdml, 25
BiocParallelParam, 93, 96

calcNormFactors, 67, 70, 71

CAT, 7

checkNormalization, 8
computeObservationalWeights, 123
createColors, 8
createConcordance, 6, 7,9, 73-75
createEnrichment, 4, 11,48, 75,77, 84
createMocks, 13, 19, 93
createPositives, 14, 61, 86
CreateSeuratObject, 45
createSplits, 17, 96
createTIEC, 18, 78, 80-82

DA_ALDEx2, 19, 99
DA_ANCOM, 21, 101
DA_basic, 23, 102
DA_corncob, 24, 103
DA_dearseq, 26, 104
DA_DESeq2, 27, 106
DA_edgeR, 29, 107
DA_limma, 31, 108
DA_linda, 32, 110

124

DA_Maaslin2, 34, 111
DA_maaslin3, 35, 113
DA_MAST, 37, 114
DA_metagenomeSeq, 39, 116
DA_mixMC, 40, 117
DA_NOISeq, 42, 118
DA_Seurat, 24, 43, 120
DA_ZicoSeq, 45, 122
dear_seq, 27
DESeq, 28

DGEList, 30
differentialTest, 25

enrichmentTest, 12, 47
estimateDisp, 30
estimateGLMRobustDisp, 30
estimateSizeFactors, 68, 69
extractDA, 12, 48, 49, 60
extractStatistics, 10, 50, 51, 63

FindMarkers, 45
FindVariableFeatures, 45
fitDM, 53, 55, 66
fitHURDLE, 54, 55, 66, 90
fitModels, 55, 83, 89
fitNB, 55, 56, 66
fitZIG, 55, 57, 66
fitzig, 40, 57
fitZINB, 55, 58, 66

get_counts_metadata, 64
getDA, 50, 58
getPositives, 16, 60, 86
getStatistics, 52, 60, 62
glmFit, 56

glmQLFit, 30
glmQLFTest, 30

iterative_ordering, 65

linda, 33

INDEX 125

ImFit, 32 set_ALDEx2, 98
set_ANCOM, 99
Maaslin2, 35 set_basic, 101
maaslin3, 37 set_corncob, 102
meanDifferences, 55, 66, 90, 91 set_dearseq, 103
MGLMreg, 53 set_DESeq2, 105
microbial_metabolism, 67 set_edgeR, 106
MRfulltable, 40 set_limma, 107
set_linda, 109
noiseqgbio, 43 set_Maaslin2, 110
norm_CSS, 8, 28, 30, 31,42, 67, 97, 105, 107, set_maaslin3, 111
108,118 set_MAST, 114
norm_DESeq2, 8, 30, 31, 39, 42,68, 97, 107, set_metagenomeSeq, 115
108,115,118 set_mixMC, 116
norm_edgeR, 8, 28, 39, 70, 97, 105, 115 set_NOISeq, 117
norm_TSS, 8, 28, 30, 31, 39, 42,71, 97, 105, set_Seurat, 118
107, 108, 115,118 set_ZicoSeq, 120
NormalizeData, 45 setNormalizations, 8, 67,69, 71, 72, 95, 96,
97
pbLRT, 25, 103 splsda, 41
pbWald, 25, 103
perf, 41 tune.splsda, 41
phyloseq_to_deseq2, 28
plotConcordance, 6, 72, 74, 75 voom, 32

plotConcordanceDendrogram, 74
plotConcordanceHeatmap, 74
plotContingency, 75, 77, 84
plotEnrichment, 75, 77, 84

weights_ZINB, 122

ZicoSeq, 47
zinbFit, 58, 123

piotigi,zg zinbModel, 123
plo , Im, 38, 54
plotKS, 80 o

plotLogP, 82

plotMD, 83, 89
plotMutualFindings, 65, 75, 77, 84
plotPositives, 16, 86

plotQQ, 87

plotRMSE, 83, 88
prepareObserved, 55, 66, 89, 91
ps_plaque_16S, 90
ps_stool_16S, 91

results, 28

RMSE, 83, 89, 91

runDA, 92

runMocks, 93
runNormalizations, 67, 69, 71, 72, 94, 97
runSplits, 95

ScaleData, 45

	addKnowledge
	areaCAT
	CAT
	checkNormalization
	createColors
	createConcordance
	createEnrichment
	createMocks
	createPositives
	createSplits
	createTIEC
	DA_ALDEx2
	DA_ANCOM
	DA_basic
	DA_corncob
	DA_dearseq
	DA_DESeq2
	DA_edgeR
	DA_limma
	DA_linda
	DA_Maaslin2
	DA_maaslin3
	DA_MAST
	DA_metagenomeSeq
	DA_mixMC
	DA_NOISeq
	DA_Seurat
	DA_ZicoSeq
	enrichmentTest
	extractDA
	extractStatistics
	fitDM
	fitHURDLE
	fitModels
	fitNB
	fitZIG
	fitZINB
	getDA
	getPositives
	getStatistics
	get_counts_metadata
	iterative_ordering
	meanDifferences
	microbial_metabolism
	norm_CSS
	norm_DESeq2
	norm_edgeR
	norm_TSS
	plotConcordance
	plotConcordanceDendrogram
	plotConcordanceHeatmap
	plotContingency
	plotEnrichment
	plotFDR
	plotFPR
	plotKS
	plotLogP
	plotMD
	plotMutualFindings
	plotPositives
	plotQQ
	plotRMSE
	prepareObserved
	ps_plaque_16S
	ps_stool_16S
	RMSE
	runDA
	runMocks
	runNormalizations
	runSplits
	setNormalizations
	set_ALDEx2
	set_ANCOM
	set_basic
	set_corncob
	set_dearseq
	set_DESeq2
	set_edgeR
	set_limma
	set_linda
	set_Maaslin2
	set_maaslin3
	set_MAST
	set_metagenomeSeq
	set_mixMC
	set_NOISeq
	set_Seurat
	set_ZicoSeq
	weights_ZINB
	Index

