## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(cache = TRUE) ## ----installation, include=TRUE,results="hide",message=FALSE,warning=FALSE---- library(cBioPortalData) library(AnVIL) ## ----citation, eval=FALSE----------------------------------------------------- # citation("MultiAssayExperiment") # citation("cBioPortalData") ## ----get_studies-------------------------------------------------------------- cbio <- cBioPortal() studies <- getStudies(cbio, buildReport = TRUE) head(studies) ## ----cbiodatapack, message=FALSE,warning=FALSE-------------------------------- ## Use ask=FALSE for non-interactive use laml <- cBioDataPack("laml_tcga", ask = FALSE) laml ## ----cbioportaldata, warning=FALSE-------------------------------------------- acc <- cBioPortalData( api = cbio, by = "hugoGeneSymbol", studyId = "acc_tcga", genes = c( "TERT", "TERF2", "CDK4", "ZNRF3", "CDKN2A", "RB1", "RPL22", "TP53", "CTNNB1", "PRKAR1A", "MEN1" ), molecularProfileIds = c("acc_tcga_linear_CNA", "acc_tcga_mutations"), ) acc ## ----metadata_acc------------------------------------------------------------- metadata(acc) ## ----build_prompt, echo=FALSE------------------------------------------------- cat( "Our testing shows that '%s' is not currently building.\n", " Use 'downloadStudy()' to manually obtain the data.\n", " Proceed anyway? [y/n]: y" ) ## ----remove_cache, eval=FALSE------------------------------------------------- # removeCache("laml_tcga") ## ----remove_cache_all, eval=FALSE--------------------------------------------- # unlink("~/.cache/cBioPortalData/") ## ----load_surv,message=FALSE,warning=FALSE------------------------------------ library(survival) library(survminer) ## ----check_data--------------------------------------------------------------- table(colData(laml)$OS_STATUS) class(colData(laml)$OS_MONTHS) ## ----clean_data--------------------------------------------------------------- collaml <- colData(laml) collaml[collaml$OS_MONTHS == "[Not Available]", "OS_MONTHS"] <- NA collaml$OS_MONTHS <- as.numeric(collaml$OS_MONTHS) colData(laml) <- collaml ## ----survplot----------------------------------------------------------------- fit <- survfit( Surv(OS_MONTHS, as.numeric(substr(OS_STATUS, 1, 1))) ~ SEX, data = colData(laml) ) ggsurvplot(fit, data = colData(laml), risk.table = TRUE) ## ----sessioninfo-------------------------------------------------------------- sessionInfo()